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Chapter 1

Introduction

cvodes [42] is part of a software family called sundials: SUite of Nonlinear and DIfferential/AL-
gebraic equation Solvers [26]. This suite consists of cvode, arkode, kinsol, and ida, and variants
of these with sensitivity analysis capabilities. cvodes is a solver for stiff and nonstiff initial value
problems (IVPs) for systems of ordinary differential equation (ODEs). In addition to solving stiff and
nonstiff ODE systems, cvodes has sensitivity analysis capabilities, using either the forward or the
adjoint methods.

1.1 Historical Background

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers that
have been written at LLNL in the past are vode [5] and vodpk [8]. vode is a general purpose solver
that includes methods for both stiff and nonstiff systems, and in the stiff case uses direct methods
(full or banded) for the solution of the linear systems that arise at each implicit step. Externally,
vode is very similar to the well known solver lsode [38]. vodpk is a variant of vode that uses
a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear systems.
vodpk is a powerful tool for large stiff systems because it combines established methods for stiff
integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of
the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [6]. The
capabilities of both vode and vodpk have been combined in the C-language package cvode [13].

At present, cvode may utilize a variety of Krylov methods provided in sundials that can be used
in conjuction with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [41],
FGMRES (Flexible Generalized Minimum RESidual) [40], Bi-CGStab (Bi-Conjugate Gradient Stabi-
lized) [44], TFQMR (Transpose-Free Quasi-Minimal Residual) [20], and PCG (Preconditioned Con-
jugate Gradient) [21] linear iterative methods. As Krylov methods, these require almost no matrix
storage for solving the Newton equations as compared to direct methods. However, the algorithms
allow for a user-supplied preconditioner matrix, and for most problems preconditioning is essential for
an efficient solution. For very large stiff ODE systems, the Krylov methods are preferable over direct
linear solver methods, and are often the only feasible choice. Among the Krylov methods in sundials,
we recommend GMRES as the best overall choice. However, users are encouraged to compare all op-
tions, especially if encountering convergence failures with GMRES. Bi-CGStab and TFQMR have an
advantage in storage requirements, in that the number of workspace vectors they require is fixed, while
that number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage
in that it is designed to support preconditioners that vary between iterations (e.g. iterative methods).
PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

In the process of translating the vode and vodpk algorithms into C, the overall cvode organi-
zation has been changed considerably. One key feature of the cvode organization is that the linear
system solvers comprise a layer of code modules that is separated from the integration algorithm,
allowing for easy modification and expansion of the linear solver array. A second key feature is a
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separate module devoted to vector operations; this facilitated the extension to multiprosessor envi-
ronments with minimal impacts on the rest of the solver, resulting in pvode [10], the parallel variant
of cvode.

cvodes is written with a functionality that is a superset of that of the pair cvode/pvode.
Sensitivity analysis capabilities, both forward and adjoint, have been added to the main integrator.
Enabling forward sensititivity computations in cvodes will result in the code integrating the so-
called sensitivity equations simultaneously with the original IVP, yielding both the solution and its
sensitivity with respect to parameters in the model. Adjoint sensitivity analysis, most useful when
the gradients of relatively few functionals of the solution with respect to many parameters are sought,
involves integration of the original IVP forward in time followed by the integration of the so-called
adjoint equations backward in time. cvodes provides the infrastructure needed to integrate any
final-condition ODE dependent on the solution of the original IVP (in particular the adjoint system).

Development of cvodes was concurrent with a redesign of the vector operations module across
the sundials suite. The key feature of the nvector module is that it is written in terms of abstract
vector operations with the actual vector functions attached by a particular implementation (such as
serial or parallel) of nvector. This allows writing the sundials solvers in a manner independent of
the actual nvector implementation (which can be user-supplied), as well as allowing more than one
nvector module to be linked into an executable file. sundials (and thus cvodes) is supplied with
serial, MPI-parallel, and both OpenMP and Pthreads thread-parallel nvector implementations.

There were several motivations for choosing the C language for cvode, and later for cvodes.
First, a general movement away from Fortran and toward C in scientific computing was apparent.
Second, the pointer, structure, and dynamic memory allocation features in C are extremely useful in
software of this complexity. Finally, we prefer C over C++ for cvodes because of the wider availability
of C compilers, the potentially greater efficiency of C, and the greater ease of interfacing the solver
to applications written in extended Fortran.

1.2 Changes from previous versions

Changes in v4.1.0

An additional nvector implementation was added for the Tpetra vector from the Trilinos library
to facilitate interoperability between sundials and Trilinos. This implementation is accompanied by
additions to user documentation and sundials examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES ENABLE RAJA CMake option has been removed. The option EXAMPLES ENABLE CUDA

enables all examples that use CUDA including the RAJA examples with a CUDA back end (if the
RAJA nvector is enabled).

The implementation header file cvodes impl.h is no longer installed. This means users who are
directly manipulating the CVodeMem structure will need to update their code to use cvodes’s public
API.

Python is no longer required to run make test and make test install.

Changes in v4.0.2

Added information on how to contribute to sundials and a contributing agreement.

Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The
symbols are now included in the cvodes library, libsundials cvodes.

Changes in v4.0.1

No changes were made in this release.
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Changes in v4.0.0

cvodes’ previous direct and iterative linear solver interfaces, cvdls and cvspils, have been merged
into a single unified linear solver interface, cvls, to support any valid sunlinsol module. This
includes the “DIRECT” and “ITERATIVE” types as well as the new “MATRIX ITERATIVE” type.
Details regarding how cvls utilizes linear solvers of each type as well as discussion regarding intended
use cases for user-supplied sunlinsol implementations are included in Chapter 9. All cvodes example
programs and the standalone linear solver examples have been updated to use the unified linear solver
interface.

The unified interface for the new cvls module is very similar to the previous cvdls and cvspils
interfaces. To minimize challenges in user migration to the new names, the previous C routine names
may still be used; these will be deprecated in future releases, so we recommend that users migrate to
the new names soon.

The names of all constructor routines for sundials-provided sunlinsol implementations have
been updated to follow the naming convention SUNLinSol * where * is the name of the linear solver.
The new names are SUNLinSol Band, SUNLinSol Dense, SUNLinSol KLU, SUNLinSol LapackBand,
SUNLinSol LapackDense, SUNLinSol PCG, SUNLinSol SPBCGS, SUNLinSol SPFGMR, SUNLinSol SPGMR,
SUNLinSol SPTFQMR, and SUNLinSol SuperLUMT. Solver-specific “set” routine names have been simi-
larly standardized. To minimize challenges in user migration to the new names, the previous routine
names may still be used; these will be deprecated in future releases, so we recommend that users
migrate to the new names soon. All cvodes example programs and the standalone linear solver
examples have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth ar-
gument.

sundials integrators have been updated to utilize generic nonlinear solver modules defined through
the sunnonlinsol API. This API will ease the addition of new nonlinear solver options and allow for
external or user-supplied nonlinear solvers. The sunnonlinsol API and sundials provided modules
are described in Chapter 10 and follow the same object oriented design and implementation used by
the nvector, sunmatrix, and sunlinsol modules. Currently two sunnonlinsol implementations
are provided, sunnonlinsol newton and sunnonlinsol fixedpoint. These replicate the previ-
ous integrator specific implementations of a Newton iteration and a fixed-point iteration (previously
referred to as a functional iteration), respectively. Note the sunnonlinsol fixedpoint module can
optionally utilize Anderson’s method to accelerate convergence. Example programs using each of these
nonlinear solver modules in a standalone manner have been added and all cvodes example programs
have been updated to use generic sunnonlinsol modules.

With the introduction of sunnonlinsol modules, the input parameter iter to CVodeCreate

has been removed along with the function CVodeSetIterType and the constants CV NEWTON and
CV FUNCTIONAL. Instead of specifying the nonlinear iteration type when creating the cvodes memory
structure, cvodes uses the sunnonlinsol newton module implementation of a Newton iteration by
default. For details on using a non-default or user-supplied nonlinear solver see Chapters 4, 5, and 6.
cvodes functions for setting the nonlinear solver options (e.g., CVodeSetMaxNonlinIters) or getting
nonlinear solver statistics (e.g., CVodeGetNumNonlinSolvIters) remain unchanged and internally call
generic sunnonlinsol functions as needed.

Three fused vector operations and seven vector array operations have been added to the nvec-
tor API. These optional operations are disabled by default and may be activated by calling vector
specific routines after creating an nvector (see Chapter 7 for more details). The new operations are
intended to increase data reuse in vector operations, reduce parallel communication on distributed
memory systems, and lower the number of kernel launches on systems with accelerators. The fused op-
erations are N VLinearCombination, N VScaleAddMulti, and N VDotProdMulti and the vector array
operations are N VLinearCombinationVectorArray, N VScaleVectorArray, N VConstVectorArray,
N VWrmsNormVectorArray, N VWrmsNormMaskVectorArray, N VScaleAddMultiVectorArray, and
N VLinearCombinationVectorArray. If an nvector implementation defines any of these operations
as NULL, then standard nvector operations will automatically be called as necessary to complete the
computation.
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Multiple updates to nvector cuda were made:

• Changed N VGetLength Cuda to return the global vector length instead of the local vector length.

• Added N VGetLocalLength Cuda to return the local vector length.

• Added N VGetMPIComm Cuda to return the MPI communicator used.

• Removed the accessor functions in the namespace suncudavec.

• Changed the N VMake Cuda function to take a host data pointer and a device data pointer instead
of an N VectorContent Cuda object.

• Added the ability to set the cudaStream t used for execution of the nvector cuda kernels.
See the function N VSetCudaStreams Cuda.

• Added N VNewManaged Cuda, N VMakeManaged Cuda, and N VIsManagedMemory Cuda functions
to accommodate using managed memory with the nvector cuda.

Multiple changes to nvector raja were made:

• Changed N VGetLength Raja to return the global vector length instead of the local vector length.

• Added N VGetLocalLength Raja to return the local vector length.

• Added N VGetMPIComm Raja to return the MPI communicator used.

• Removed the accessor functions in the namespace suncudavec.

A new nvector implementation for leveraging OpenMP 4.5+ device offloading has been added,
nvector openmpdev. See §7.10 for more details.

Two changes were made in the cvode/cvodes/arkode initial step size algorithm:

1. Fixed an efficiency bug where an extra call to the right hand side function was made.

2. Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm
would exit with the step size calculated on the penultimate iteration. Now it will exit with the
step size calculated on the final iteration.

Changes in v3.2.1

The changes in this minor release include the following:

• Fixed a bug in the cuda nvector where the N VInvTest operation could write beyond the
allocated vector data.

• Fixed library installation path for multiarch systems. This fix changes the default library instal-
lation path to CMAKE INSTALL PREFIX/CMAKE INSTALL LIBDIR from CMAKE INSTALL PREFIX/lib.
CMAKE INSTALL LIBDIR is automatically set, but is available as a CMake option that can modi-
fied.
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Changes in v3.2.0

Support for optional inequality constraints on individual components of the solution vector has been
added to cvode and cvodes. See Chapter 2 and the description of CVodeSetConstraints in §4.5.7.1
for more details. Use of CVodeSetConstraints requires the nvector operations N MinQuotient,
N VConstrMask, and N VCompare that were not previously required by cvode and cvodes.

Fixed a thread-safety issue when using ajdoint sensitivity analysis.

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. arm-
clang) that did not define STDC VERSION .

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when
using a GPU system. The vectors assume one GPU device per MPI rank.

Changed the name of the raja nvector library to libsundials nveccudaraja.lib from
libsundials nvecraja.lib to better reflect that we only support cuda as a backend for raja cur-
rently.

Several changes were made to the build system:

• CMake 3.1.3 is now the minimum required CMake version.

• Deprecate the behavior of the SUNDIALS INDEX TYPE CMake option and added the
SUNDIALS INDEX SIZE CMake option to select the sunindextype integer size.

• The native CMake FindMPI module is now used to locate an MPI installation.

• If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE <language> COMPILER can compile MPI programs before trying to locate and use an
MPI installation.

• The previous options for setting MPI compiler wrappers and the executable for running MPI
programs have been have been depreated. The new options that align with those used in native
CMake FindMPI module are MPI C COMPILER, MPI CXX COMPILER, MPI Fortran COMPILER, and
MPIEXEC EXECUTABLE.

• When a Fortran name-mangling scheme is needed (e.g., LAPACK ENABLE is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the in-
ferred or default scheme needs to be overridden, the advanced options SUNDIALS F77 FUNC CASE

and SUNDIALS F77 FUNC UNDERSCORES can be used to manually set the name-mangling scheme
and bypass trying to infer the scheme.

• Parts of the main CMakeLists.txt file were moved to new files in the src and example directories
to make the CMake configuration file structure more modular.

Changes in v3.1.2

The changes in this minor release include the following:

• Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default
to locate shared libraries on OSX.

• Fixed Windows specific problem where sunindextype was not correctly defined when using
64-bit integers for the sundials index type. On Windows sunindextype is now defined as the
MSVC basic type int64.

• Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.
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• Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types,
and fixed a bug in the full reinitialization approach where the sparse SUNMatrix pointer would
go out of scope on some architectures.

• Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the
sum, but had the wrong sparsity pattern. The sum now occurs in-place, by performing the sum
backwards in the existing storage. However, it is still more efficient if the user-supplied Jacobian
routine allocates storage for the sum I + γJ manually (with zero entries if needed).

• Added new example, cvRoberts FSA dns Switch.c, which demonstrates switching on/off for-
ward sensitivity computations. This example came from the usage notes page of the SUNDIALS
website.

• The misnamed function CVSpilsSetJacTimesSetupFnBS has been deprecated and replaced by
CVSpilsSetJacTimesBS. The deprecated function CVSpilsSetJacTimesSetupFnBS will be re-
moved in the next major release.

• Changed the LICENSE install path to instdir/include/sundials.

Changes in v3.1.1

The changes in this minor release include the following:

• Fixed a minor bug in the cvSLdet routine, where a return was missing in the error check for
three inconsistent roots.

• Fixed a potential memory leak in the spgmr and spfgmr linear solvers: if “Initialize” was
called multiple times then the solver memory was reallocated (without being freed).

• Updated KLU sunlinsol module to use a typedef for the precision-specific solve function to
be used (to avoid compiler warnings).

• Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).

• Bugfix in sunmatrix sparse.c where we had used int instead of sunindextype in one location.

• Added missing #include <stdio.h> in nvector and sunmatrix header files.

• Fixed an indexing bug in the cuda nvector implementation of N VWrmsNormMask and revised
the raja nvector implementation of N VWrmsNormMask to work with mask arrays using values
other than zero or one. Replaced double with realtype in the raja vector test functions.

In addition to the changes above, minor corrections were also made to the example programs, build
system, and user documentation.

Changes in v3.1.0

Added nvector print functions that write vector data to a specified file (e.g., N VPrintFile Serial).
Added make test and make test install options to the build system for testing sundials after

building with make and installing with make install respectively.

Changes in v3.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs
have been updated. The goal of the redesign of these interfaces was to provide more encapsulation
and ease in interfacing custom linear solvers and interoperability with linear solver libraries. Specific
changes include:
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• Added generic SUNMATRIX module with three provided implementations: dense, banded and
sparse. These replicate previous SUNDIALS Dls and Sls matrix structures in a single object-
oriented API.

• Added example problems demonstrating use of generic SUNMATRIX modules.

• Added generic SUNLINEARSOLVER module with eleven provided implementations: dense,
banded, LAPACK dense, LAPACK band, KLU, SuperLU MT, SPGMR, SPBCGS, SPTFQMR,
SPFGMR, PCG. These replicate previous SUNDIALS generic linear solvers in a single object-
oriented API.

• Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

• Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iter-
ative linear solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER
objects.

• Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND,
IDAKLU, ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils
interfaces and SUNLINEARSOLVER/SUNMATRIX modules. The exception is CVDIAG, a
diagonal approximate Jacobian solver available to CVODE and CVODES.

• Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLIN-
EARSOLVER objects, along with updated Dls and Spils linear solver interfaces.

• Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow spec-
ification of a user-provided ”JTSetup” routine. This change supports users who wish to set
up data structures for the user-provided Jacobian-times-vector (”JTimes”) routine, and where
the cost of one JTSetup setup per Newton iteration can be amortized between multiple JTimes
calls.

Two additional nvector implementations were added – one for cuda and one for raja vectors.
These vectors are supplied to provide very basic support for running on GPU architectures. Users are
advised that these vectors both move all data to the GPU device upon construction, and speedup will
only be realized if the user also conducts the right-hand-side function evaluation on the device. In
addition, these vectors assume the problem fits on one GPU. Further information about raja, users
are referred to th web site, https://software.llnl.gov/RAJA/. These additions are accompanied by
additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to
be a 32- or 64-bit integer data index type. sunindextype is defined to be int32 t or int64 t when
portable types are supported, otherwise it is defined as int or long int. The Fortran interfaces
continue to use long int for indices, except for their sparse matrix interface that now uses the new
sunindextype. This new flexible capability for index types includes interfaces to PETSc, hypre,
SuperLU MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
sundials.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE

have been changed to SUNTRUE and SUNFALSE respectively.
Temporary vectors were removed from preconditioner setup and solve routines for all packages. It

is assumed that all necessary data for user-provided preconditioner operations will be allocated and
stored in user-provided data structures.

The file include/sundials fconfig.h was added. This file contains sundials type information
for use in Fortran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get sundials release
version information at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is
a movement in scientific software to provide a foundation for the rapid and efficient production of



8 Introduction

high-quality, sustainable extreme-scale scientific applications. More information can be found at,
https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of
separate BLAS ENABLE and BLAS LIBRARIES CMake variables, additional error checking during CMake
configuration, minor bug fixes, and renaming CMake options to enable/disable examples for greater
clarity and an added option to enable/disable Fortran 77 examples. These changes included changing
EXAMPLES ENABLE to EXAMPLES ENABLE C, changing CXX ENABLE to EXAMPLES ENABLE CXX, changing
F90 ENABLE to EXAMPLES ENABLE F90, and adding an EXAMPLES ENABLE F77 option.

A bug fix was made in CVodeFree to call lfree unconditionally (if non-NULL).
Corrections and additions were made to the examples, to installation-related files, and to the user

documentation.

Changes in v2.9.0

Two additional nvector implementations were added – one for Hypre (parallel) ParVector vectors,
and one for petsc vectors. These additions are accompanied by additions to various interface functions
and to user documentation.

Each nvector module now includes a function, N VGetVectorID, that returns the nvector
module name.

A bug was fixed in the interpolation functions used in solving backward problems for adjoint
sensitivity analysis.

For each linear solver, the various solver performance counters are now initialized to 0 in both the
solver specification function and in solver linit function. This ensures that these solver counters are
initialized upon linear solver instantiation as well as at the beginning of the problem solution.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done
to return integers from linear solver and preconditioner ’free’ functions.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various
additions and corrections were made to the interfaces to the sparse solvers KLU and SuperLU MT,
including support for CSR format when using KLU.

In interpolation routines for backward problems, added logic to bypass sensitivity interpolation if
input sensitivity argument is NULL.

New examples were added for use of sparse direct solvers within sensitivity integrations and for
use of OpenMP.

Minor corrections and additions were made to the cvodes solver, to the examples, to installation-
related files, and to the user documentation.

Changes in v2.8.0

Two major additions were made to the linear system solvers that are available for use with the cvodes
solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second, an
interface to SuperLU MT, the multi-threaded version of SuperLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of
these additions, a sparse matrix (CSC format) structure was added to cvodes.

Otherwise, only relatively minor modifications were made to the cvodes solver:
In cvRootfind, a minor bug was corrected, where the input array rootdir was ignored, and a line

was added to break out of root-search loop if the initial interval size is below the tolerance ttol.
In CVLapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an

illegal input error for DGBTRF/DGBTRS.
Some minor changes were made in order to minimize the differences between the sources for private

functions in cvodes and cvode.
An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian:

With a call to CVDlsSetDenseJacFnBS or CVDlsSetBandJacFnBS, the user can specify a user-supplied
Jacobian function of type CVDls***JacFnBS, for the case where the backward problem depends on
the forward sensitivities.



1.2 Changes from previous versions 9

In CVodeQuadSensInit, the line cv mem->cv fQS data = ... was corrected (missing Q).
In the User Guide, a paragraph was added in Section 6.2.1 on CVodeAdjReInit, and a paragraph

was added in Section 6.2.9 on CVodeGetAdjY. In the example cvsRoberts ASAi dns, the output was
revised to include the use of CVodeGetAdjY.

Two minor bugs were fixed regarding the testing of input on the first call to CVode – one involving
tstop and one involving the initialization of *tret.

For the Adjoint Sensitivity Analysis case in which the backward problem depends on the forward
sensitivities, options have been added to allow for user-supplied pset, psolve, and jtimes functions.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,
SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and example programs.

In the example cvsHessian ASA FSA, an error was corrected in the function fB2: y2 in place of
y3 in the third term of Ith(yBdot,6).

Two new nvector modules have been added for thread-parallel computing environments — one
for OpenMP, denoted NVECTOR OPENMP, and one for Pthreads, denoted NVECTOR PTHREADS.

With this version of sundials, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The function
NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays, respec-
tively. In a minor change to the user interface, the type of the index which in CVODES was changed
from long int to int.

Errors in the logic for the integration of backward problems were identified and fixed.
A large number of minor errors have been fixed. Among these are the following: In CVSetTqBDF,

the logic was changed to avoid a divide by zero. After the solver memory is created, it is set to zero
before being filled. In each linear solver interface function, the linear solver memory is freed on an error
return, and the **Free function now includes a line setting to NULL the main memory pointer to the
linear solver memory. In the rootfinding functions CVRcheck1/CVRcheck2, when an exact zero is found,
the array glo of g values at the left endpoint is adjusted, instead of shifting the t location tlo slightly.
In the installation files, we modified the treatment of the macro SUNDIALS USE GENERIC MATH,
so that the parameter GENERIC MATH LIB is either defined (with no value) or not defined.

Changes in v2.6.0

Two new features related to the integration of ODE IVP problems were added in this release: (a) a
new linear solver module, based on BLAS and LAPACK for both dense and banded matrices, and (b)
an option to specify which direction of zero-crossing is to be monitored while performing rootfinding.

This version also includes several new features related to sensitivity analysis, among which are: (a)
support for integration of quadrature equations depending on both the states and forward sensitivity
(and thus support for forward sensitivity analysis of quadrature equations), (b) support for simulta-
neous integration of multiple backward problems based on the same underlying ODE (e.g., for use in
an forward-over-adjoint method for computing second order derivative information), (c) support for
backward integration of ODEs and quadratures depending on both forward states and sensitivities
(e.g., for use in computing second-order derivative information), and (d) support for reinitialization
of the adjoint module.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization
of all linear solver modules into two families (besides the existing family of scaled preconditioned
iterative linear solvers, the direct solvers, including the new LAPACK-based ones, were also organized
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into a direct family); (b) maintaining a single pointer to user data, optionally specified through a
Set-type function; and (c) a general streamlining of the preconditioner modules distributed with the
solver. Moreover, the prototypes of all functions related to integration of backward problems were
modified to support the simultaneous integration of multiple problems. All backward problems defined
by the user are internally managed through a linked list and identified in the user interface through
a unique identifier.

Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire sundials source tree (see §3.1).
At the user interface level, the main impact is in the mechanism of including sundials header files
which must now include the relative path (e.g. #include <cvode/cvode.h>). Additional changes
were made to the build system: all exported header files are now installed in separate subdirectories
of the instaltion include directory.

In the adjoint solver module, the following two bugs were fixed: in CVodeF the solver was sometimes
incorrectly taking an additional step before returning control to the user (in CV NORMAL mode) thus
leading to a failure in the interpolated output function; in CVodeB, while searching for the current check
point, the solver was sometimes reaching outside the integration interval resulting in a segmentation
fault.

The functions in the generic dense linear solver (sundials dense and sundials smalldense) were
modified to work for rectangular m×n matrices (m ≤ n), while the factorization and solution functions
were renamed to DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization
and solution functions in the generic band linear solver were renamed BandGBTRF and BandGBTRS,
respectively.

Changes in v2.4.0

cvspbcg and cvsptfqmr modules have been added to interface with the Scaled Preconditioned
Bi-CGstab (spbcgs) and Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (sptfqmr)
linear solver modules, respectively (for details see Chapter 4). At the same time, function type names
for Scaled Preconditioned Iterative Linear Solvers were added for the user-supplied Jacobian-times-
vector and preconditioner setup and solve functions.

A new interpolation method was added to the cvodes adjoint module. The function CVadjMalloc

has an additional argument which can be used to select the desired interpolation scheme.

The deallocation functions now take as arguments the address of the respective memory block
pointer.

To reduce the possibility of conflicts, the names of all header files have been changed by adding
unique prefixes (cvodes and sundials ). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see
Appendix A.

Changes in v2.3.0

A minor bug was fixed in the interpolation functions of the adjoint cvodes module.

Changes in v2.2.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. An optional user-supplied routine for setting the error weight vector was
added. Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user
data right after its use. The build systems has been further improved to make it more robust.
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Changes in v2.1.2

A bug was fixed in the CVode function that was potentially leading to erroneous behaviour of the
rootfinding procedure on the integration first step.

Changes in v2.1.1

This cvodes release includes bug fixes related to forward sensitivity computations (possible loss of
accuray on a BDF order increase and incorrect logic in testing user-supplied absolute tolerances). In
addition, we have added the option of activating and deactivating forward sensitivity calculations on
successive cvodes runs without memory allocation/deallocation.

Other changes in this minor sundials release affect the build system.

Changes in v2.1.0

The major changes from the previous version involve a redesign of the user interface across the entire
sundials suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, cvodes now provides
a set of routines (with prefix CVodeSet) to change the default values for various quantities controlling
the solver and a set of extraction routines (with prefix CVodeGet) to extract statistics after return
from the main solver routine. Similarly, each linear solver module provides its own set of Set- and
Get-type routines. For more details see §4.5.7 and §4.5.9.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians,
preconditioner information, and sensitivity right hand sides) were simplified by reducing the number
of arguments. The same information that was previously accessible through such arguments can now
be obtained through Get-type functions.

The rootfinding feature was added, whereby the roots of a set of given functions may be computed
during the integration of the ODE system.

Installation of cvodes (and all of sundials) has been completely redesigned and is now based on
configure scripts.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions. Specific example programs are provided
as a separate document. We expect that some readers will want to concentrate on the general instruc-
tions, while others will refer mostly to the examples, and the organization is intended to accommodate
both styles.

There are different possible levels of usage of cvodes. The most casual user, with a small IVP
problem only, can get by with reading §2.1, then Chapter 4 through §4.5.6 only, and looking at
examples in [43]. In addition, to solve a forward sensitivity problem the user should read §2.6,
followed by Chapter 5 through §5.2.5 only, and look at examples in [43].

In a different direction, a more expert user with an IVP problem may want to (a) use a package
preconditioner (§4.8), (b) supply his/her own Jacobian or preconditioner routines (§4.6), (c) do mul-
tiple runs of problems of the same size (§4.5.10), (d) supply a new nvector module (Chapter 7),
or even (e) supply new sunlinsol and/or sunmatrix modules (Chapters 8 and 9). An advanced
user with a forward sensitivity problem may also want to (a) provide his/her own sensitivity equa-
tions right-hand side routine (§5.3), (b) perform multiple runs with the same number of sensitivity
parameters (§5.2.1), or (c) extract additional diagnostic information (§5.2.5). A user with an adjoint
sensitivity problem needs to understand the IVP solution approach at the desired level and also go
through §2.7 for a short mathematical description of the adjoint approach, Chapter 6 for the usage of
the adjoint module in cvodes, and the examples in [43].

The structure of this document is as follows:

• In Chapter 2, we give short descriptions of the numerical methods implemented by cvodes for
the solution of initial value problems for systems of ODEs, continue with short descriptions of
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preconditioning (§2.2), stability limit detection (§2.3), and rootfinding (§2.4), and conclude with
an overview of the mathematical aspects of sensitivity analysis, both forward (§2.6) and adjoint
(§2.7).

• The following chapter describes the structure of the sundials suite of solvers (§3.1) and the
software organization of the cvodes solver (§3.2).

• Chapter 4 is the main usage document for cvodes for simulation applications. It includes a
complete description of the user interface for the integration of ODE initial value problems.
Readers that are not interested in using cvodes for sensitivity analysis can then skip the next
two chapters.

• Chapter 5 describes the usage of cvodes for forward sensitivity analysis as an extension of its
IVP integration capabilities. We begin with a skeleton of the user main program, with emphasis
on the steps that are required in addition to those already described in Chapter 4. Following
that we provide detailed descriptions of the user-callable interface routines specific to forward
sensitivity analysis and of the additonal optional user-defined routines.

• Chapter 6 describes the usage of cvodes for adjoint sensitivity analysis. We begin by describing
the cvodes checkpointing implementation for interpolation of the original IVP solution during
integration of the adjoint system backward in time, and with an overview of a user’s main
program. Following that we provide complete descriptions of the user-callable interface routines
for adjoint sensitivity analysis as well as descriptions of the required additional user-defined
routines.

• Chapter 7 gives a brief overview of the generic nvector module shared among the various
components of sundials, and details on the nvector implementations provided with sundials.

• Chapter 8 gives a brief overview of the generic sunmatrix module shared among the vari-
ous components of sundials, and details on the sunmatrix implementations provided with
sundials: a dense implementation (§8.2), a banded implementation (§8.3) and a sparse imple-
mentation (§8.4).

• Chapter 9 gives a brief overview of the generic sunlinsol module shared among the various
components of sundials. This chapter contains details on the sunlinsol implementations
provided with sundials. The chapter also contains details on the sunlinsol implementations
provided with sundials that interface with external linear solver libraries.

• Finally, in the appendices, we provide detailed instructions for the installation of cvodes, within
the structure of sundials (Appendix A), as well as a list of all the constants used for input to
and output from cvodes functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as CVodeInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as cvdls, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin.!

1.4 SUNDIALS Release License

All sundials packages are released open source, under the BSD 3-Clause license. The only require-
ments of the license are preservation of copyright and a standard disclaimer of liability. The full text
of the license and an additional notice are provided below and may also be found in the LICENSE
and NOTICE files provided with all sundials packages.

If you are using sundials with any third party libraries linked in (e.g., LAPACK, KLU, Su-!

perLU MT, petsc, or hypre), be sure to review the respective license of the package as that license
may have more restrictive terms than the sundials license. For example, if someone builds sundials
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with a statically linked KLU, the build is subject to terms of the LGPL license (which is what KLU
is released with) and not the sundials BSD license anymore.

1.4.1 BSD 3-Clause License

Copyright (c) 2002-2019, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to en-
dorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Govern-
ment. Neither the United States Government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

1.4.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
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UCRL-CODE-155951 (CVODE)

UCRL-CODE-155950 (CVODES)

UCRL-CODE-155952 (IDA)

UCRL-CODE-237203 (IDAS)

LLNL-CODE-665877 (KINSOL)



Chapter 2

Mathematical Considerations

cvodes solves ODE initial value problems (IVPs) in real N -space, which we write in the abstract
form

ẏ = f(t, y) , y(t0) = y0 , (2.1)

where y ∈ RN . Here we use ẏ to denote dy/dt. While we use t to denote the independent variable, and
usually this is time, it certainly need not be. cvodes solves both stiff and nonstiff systems. Roughly
speaking, stiffness is characterized by the presence of at least one rapidly damped mode, whose time
constant is small compared to the time scale of the solution itself.

Additionally, if (2.1) depends on some parameters p ∈ RNp , i.e.

ẏ = f(t, y, p)

y(t0) = y0(p) ,
(2.2)

cvodes can also compute first order derivative information, performing either forward sensitivity
analysis or adjoint sensitivity analysis. In the first case, cvodes computes the sensitivities of the
solution with respect to the parameters p, while in the second case, cvodes computes the gradient of
a derived function with respect to the parameters p.

2.1 IVP solution

The methods used in cvodes are variable-order, variable-step multistep methods, based on formulas
of the form

K1∑
i=0

αn,iy
n−i + hn

K2∑
i=0

βn,iẏ
n−i = 0 . (2.3)

Here the yn are computed approximations to y(tn), and hn = tn − tn−1 is the step size. The user
of cvode must choose appropriately one of two multistep methods. For nonstiff problems, cvode
includes the Adams-Moulton formulas, characterized by K1 = 1 and K2 = q above, where the order q
varies between 1 and 12. For stiff problems, cvodes includes the Backward Differentiation Formulas
(BDF) in so-called fixed-leading coefficient (FLC) form, given by K1 = q and K2 = 0, with order q
varying between 1 and 5. The coefficients are uniquely determined by the method type, its order, the
recent history of the step sizes, and the normalization αn,0 = −1. See [9] and [31].

For either choice of formula, a nonlinear system must be solved (approximately) at each integration
step. This nonlinear system can be formulated as either a rootfinding problem

F (yn) ≡ yn − hnβn,0f(tn, y
n)− an = 0 , (2.4)

or as a fixed-point problem

G(yn) ≡ hnβn,0f(tn, y
n) + an = yn . (2.5)
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where an ≡
∑
i>0(αn,iy

n−i+hnβn,iẏ
n−i). cvodes provides several nonlinear solver choices as well as

the option of using a user-defined nonlinear solver (see Chapter 10). By default cvodes solves (2.4)
with a Newton iteration which requires the solution of linear systems

M [yn(m+1) − yn(m)] = −F (yn(m)) , (2.6)

in which
M ≈ I − γJ , J = ∂f/∂y , and γ = hnβn,0 . (2.7)

The exact variation of the Newton iteration depends on the choice of linear solver and is discussed
below and in §10.2. For nonstiff systems, a fixed-point iteration (previously referred to as a functional
iteration in this guide) for solving (2.5) is also available. This involves evaluations of f only and
can (optionally) use Anderson’s method [3, 45, 18, 35] to accelerate convergence (see §10.3 for more
details). For any nonlinear solver, the initial guess for the iteration is a predicted value yn(0) computed
explicitly from the available history data.

For nonlinear solvers that require the solution of the linear system (2.6) (e.g., the default Newton
iteration), cvodes provides several linear solver choices, including the option of a user-supplied linear
solver module (see Chapter 9). The linear solver modules distributed with sundials are organized in
two families, a direct family comprising direct linear solvers for dense, banded, or sparse matrices, and
a spils family comprising scaled preconditioned iterative (Krylov) linear solvers. The methods offered
through these modules are as follows:

• dense direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

• band direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

• sparse direct solver interfaces, using either the KLU sparse solver library [14, 1], or the thread-
enabled SuperLU MT sparse solver library [34, 16, 2] (serial or threaded vector modules only)
[Note that users will need to download and install the klu or superlumt packages independent
of cvodes],

• spgmr, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver,

• spfgmr, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method)
solver,

• spbcgs, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

• sptfqmr, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver, or

• pcg, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are often not feasible, the combination of a BDF in-
tegrator and a preconditioned Krylov method yields a powerful tool because it combines established
methods for stiff integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific
treatment of the dominant source of stiffness, in the form of the user-supplied preconditioner matrix
[6].

In addition, cvode also provides a linear solver module which only uses a diagonal approximation
of the Jacobian matrix.

Note that the dense, band, and sparse direct linear solvers can only be used with the serial and
threaded vector representations. The diagonal solver can be used with any vector representation.

In the process of controlling errors at various levels, cvodes uses a weighted root-mean-square
norm, denoted ‖ · ‖WRMS, for all error-like quantities. The multiplicative weights used are based on
the current solution and on the relative and absolute tolerances input by the user, namely

Wi = 1/[rtol · |yi|+ atoli] . (2.8)
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Because 1/Wi represents a tolerance in the component yi, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the cases of a matrix-based linear solver, the default Newton iteration is a Modified Newton
iteration, in that the iteration matrix M is fixed throughout the nonlinear iterations. However, in
the case that a matrix-free iterative linear solver is used, the default Newton iteration is an Inexact
Newton iteration, in which M is applied in a matrix-free manner, with matrix-vector products Jv
obtained by either difference quotients or a user-supplied routine. With the default Newton iteration,
the matrix M and preconditioner matrix P are updated as infrequently as possible to balance the
high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

• starting the problem,

• more than 20 steps have been taken since the last update,

• the value γ̄ of γ at the last update satisfies |γ/γ̄ − 1| > 0.3,

• a non-fatal convergence failure just occurred, or

• an error test failure just occurred.

When forced by a convergence failure, an update of M or P may or may not involve a reevaluation
of J (in M) or of Jacobian data (in P ), depending on whether Jacobian error was the likely cause of
the failure. More generally, the decision is made to reevaluate J (or instruct the user to reevaluate
Jacobian data in P ) when:

• starting the problem,

• more than 50 steps have been taken since the last evaluation,

• a convergence failure occurred with an outdated matrix, and the value γ̄ of γ at the last update
satisfies |γ/γ̄ − 1| < 0.2, or

• a convergence failure occurred that forced a step size reduction.

The default stopping test for nonlinear solver iterations is related to the subsequent local error test,
with the goal of keeping the nonlinear iteration errors from interfering with local error control. As
described below, the final computed value yn(m) will have to satisfy a local error test ‖yn(m)−yn(0)‖ ≤
ε. Letting yn denote the exact solution of (2.4), we want to ensure that the iteration error yn− yn(m)

is small relative to ε, specifically that it is less than 0.1ε. (The safety factor 0.1 can be changed by the
user.) For this, we also estimate the linear convergence rate constant R as follows. We initialize R to
1, and reset R = 1 when M or P is updated. After computing a correction δm = yn(m)− yn(m−1), we
update R if m > 1 as

R← max{0.3R, ‖δm‖/‖δm−1‖} .

Now we use the estimate

‖yn − yn(m)‖ ≈ ‖yn(m+1) − yn(m)‖ ≈ R‖yn(m) − yn(m−1)‖ = R‖δm‖ .

Therefore the convergence (stopping) test is

R‖δm‖ < 0.1ε .

We allow at most 3 iterations (but this limit can be changed by the user). We also declare the iteration
diverged if any ‖δm‖/‖δm−1‖ > 2 with m > 1. If convergence fails with J or P current, we are forced
to reduce the step size, and we replace hn by hn/4. The integration is halted after a preset number
of convergence failures; the default value of this limit is 10, but this can be changed by the user.

When an iterative method is used to solve the linear system, its errors must also be controlled, and
this also involves the local error test constant. The linear iteration error in the solution vector δm is
approximated by the preconditioned residual vector. Thus to ensure (or attempt to ensure) that the
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linear iteration errors do not interfere with the nonlinear error and local integration error controls, we
require that the norm of the preconditioned residual be less than 0.05 · (0.1ε).

When the Jacobian is stored using either dense or band sunmatrix objects, the Jacobian may be
supplied by a user routine, or approximated by difference quotients, at the user’s option. In the latter
case, we use the usual approximation

Jij = [fi(t, y + σjej)− fi(t, y)]/σj .

The increments σj are given by

σj = max
{√

U |yj |, σ0/Wj

}
,

where U is the unit roundoff, σ0 is a dimensionless value, and Wj is the error weight defined in (2.8).
In the dense case, this scheme requires N evaluations of f , one for each column of J . In the band case,
the columns of J are computed in groups, by the Curtis-Powell-Reid algorithm, with the number of
f evaluations equal to the bandwidth.

We note that with sparse and user-supplied sunmatrix objects, the Jacobian must be supplied
by a user routine.

In the case of a Krylov method, preconditioning may be used on the left, on the right, or both,
with user-supplied routines for the preconditioning setup and solve operations, and optionally also
for the required matrix-vector products Jv. If a routine for Jv is not supplied, these products are
computed as

Jv = [f(t, y + σv)− f(t, y)]/σ . (2.9)

The increment σ is 1/‖v‖, so that σv has norm 1.
A critical part of cvodes — making it an ODE “solver” rather than just an ODE method, is its

control of local error. At every step, the local error is estimated and required to satisfy tolerance
conditions, and the step is redone with reduced step size whenever that error test fails. As with
any linear multistep method, the local truncation error LTE, at order q and step size h, satisfies an
asymptotic relation

LTE = Chq+1y(q+1) +O(hq+2)

for some constant C, under mild assumptions on the step sizes. A similar relation holds for the error
in the predictor yn(0). These are combined to get a relation

LTE = C ′[yn − yn(0)] +O(hq+2) .

The local error test is simply ‖LTE‖ ≤ 1. Using the above, it is performed on the predictor-corrector
difference ∆n ≡ yn(m) − yn(0) (with yn(m) the final iterate computed), and takes the form

‖∆n‖ ≤ ε ≡ 1/|C ′| .

If this test passes, the step is considered successful. If it fails, the step is rejected and a new step size
h′ is computed based on the asymptotic behavior of the local error, namely by the equation

(h′/h)q+1‖∆n‖ = ε/6 .

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test repeated. If it fails
three times, the order q is reset to 1 (if q > 1), or the step is restarted from scratch (if q = 1). The
ratio h′/h is limited above to 0.2 after two error test failures, and limited below to 0.1 after three.
After seven failures, cvodes returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, cvode periodically adjusts the
order, with the goal of maximizing the step size. The integration starts out at order 1 and varies the
order dynamically after that. The basic idea is to pick the order q for which a polynomial of order q
best fits the discrete data involved in the multistep method. However, if either a convergence failure
or an error test failure occurred on the step just completed, no change in step size or order is done.
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At the current order q, selecting a new step size is done exactly as when the error test fails, giving a
tentative step size ratio

h′/h = (ε/6‖∆n‖)1/(q+1) ≡ ηq .

We consider changing order only after taking q+ 1 steps at order q, and then we consider only orders
q′ = q − 1 (if q > 1) or q′ = q + 1 (if q < 5). The local truncation error at order q′ is estimated using
the history data. Then a tentative step size ratio is computed on the basis that this error, LTE(q′),
behaves asymptotically as hq

′+1. With safety factors of 1/6 and 1/10 respectively, these ratios are:

h′/h = [1/6‖LTE(q − 1)‖]1/q ≡ ηq−1

and
h′/h = [1/10‖LTE(q + 1)‖]1/(q+2) ≡ ηq+1 .

The new order and step size are then set according to

η = max{ηq−1, ηq, ηq+1} , h′ = ηh ,

with q′ set to the index achieving the above maximum. However, if we find that η < 1.5, we do not
bother with the change. Also, h′/h is always limited to 10, except on the first step, when it is limited
to 104.

The various algorithmic features of cvodes described above, as inherited from vode and vodpk,
are documented in [5, 8, 25]. They are also summarized in [26].

cvodes permits the user to impose optional inequality constraints on individual components of
the solution vector y. Any of the following four constraints can be imposed: yi > 0, yi < 0, yi ≥ 0,
or yi ≤ 0. The constraint satisfaction is tested after a successful nonlinear system solution. If any
constraint fails, we declare a convergence failure of the Newton iteration and reduce the step size.
Rather than cutting the step size by some arbitrary factor, cvodes estimates a new step size h′ using
a linear approximation ofthe components in y that failed the constraint test (including a afety factor
of 0.9 to cover the strict inequality case).

Normally, cvodes takes steps until a user-defined output value t = tout is overtaken, and then
it computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force cvodes not to integrate
past a given stopping point t = tstop.

2.2 Preconditioning

When using a nonlinear solver that requires the solution of the linear system (2.6) (e.g., the default
Newton iteration), cvodes makes repeated use of a linear solver to solve linear systems of the form
Mx = −r, where x is a correction vector and r is a residual vector. If this linear system solve is done
with one of the scaled preconditioned iterative linear solvers supplied with sundials, these solvers
are rarely successful if used without preconditioning; it is generally necessary to precondition the
system in order to obtain acceptable efficiency. A system Ax = b can be preconditioned on the left, as
(P−1A)x = P−1b; on the right, as (AP−1)Px = b; or on both sides, as (P−1L AP−1R )PRx = P−1L b. The
Krylov method is then applied to a system with the matrix P−1A, or AP−1, or P−1L AP−1R , instead of
A. In order to improve the convergence of the Krylov iteration, the preconditioner matrix P , or the
product PLPR in the last case, should in some sense approximate the system matrix A. Yet at the
same time, in order to be cost-effective, the matrix P , or matrices PL and PR, should be reasonably
efficient to evaluate and solve. Finding a good point in this tradeoff between rapid convergence and
low cost can be very difficult. Good choices are often problem-dependent (for example, see [6] for an
extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with sundials allow for preconditioning either side,
or on both sides, although we know of no situation where preconditioning on both sides is clearly
superior to preconditioning on one side only (with the product PLPR). Moreover, for a given precon-
ditioner matrix, the merits of left vs. right preconditioning are unclear in general, and the user should
experiment with both choices. Performance will differ because the inverse of the left preconditioner is
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included in the linear system residual whose norm is being tested in the Krylov algorithm. As a rule,
however, if the preconditioner is the product of two matrices, we recommend that preconditioning be
done either on the left only or the right only, rather than using one factor on each side.

Typical preconditioners used with cvodes are based on approximations to the system Jacobian,
J = ∂f/∂y. Since the matrix involved is M = I − γJ , any approximation J̄ to J yields a matrix that
is of potential use as a preconditioner, namely P = I − γJ̄ . Because the linear solver iteration occurs
within a nonlinear solver iteration and further also within a time integration, and since each of these
iterations has its own test for convergence, the preconditioner may use a very crude approximation, as
long as it captures the dominant numerical feature(s) of the system. We have found that the combina-
tion of a preconditioner with the Newton-Krylov iteration, using even a fairly poor approximation to
the Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e.,
a modified Newton iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.3 BDF stability limit detection

cvodes includes an algorithm, stald (STAbility Limit Detection), which provides protection against
potentially unstable behavior of the BDF multistep integration methods in certain situations, as
described below.

When the BDF option is selected, cvodes uses Backward Differentiation Formula methods of
orders 1 to 5. At order 1 or 2, the BDF method is A-stable, meaning that for any complex constant
λ in the open left half-plane, the method is unconditionally stable (for any step size) for the standard
scalar model problem ẏ = λy. For an ODE system, this means that, roughly speaking, as long as all
modes in the system are stable, the method is also stable for any choice of step size, at least in the
sense of a local linear stability analysis.

At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each case,
in order for the method to be stable at step size h on the scalar model problem, the product hλ must
lie within a region of absolute stability. That region excludes a portion of the left half-plane that is
concentrated near the imaginary axis. The size of that region of instability grows as the order increases
from 3 to 5. What this means is that, when running BDF at any of these orders, if an eigenvalue λ of
the system lies close enough to the imaginary axis, the step sizes h for which the method is stable are
limited (at least according to the linear stability theory) to a set that prevents hλ from leaving the
stability region. The meaning of close enough depends on the order. At order 3, the unstable region
is much narrower than at order 5, so the potential for unstable behavior grows with order.

System eigenvalues that are likely to run into this instability are ones that correspond to weakly
damped oscillations. A pure undamped oscillation corresponds to an eigenvalue on the imaginary axis.
Problems with modes of that kind call for different considerations, since the oscillation generally must
be followed by the solver, and this requires step sizes (h ∼ 1/ν, where ν is the frequency) that are
stable for BDF anyway. But for a weakly damped oscillatory mode, the oscillation in the solution is
eventually damped to the noise level, and at that time it is important that the solver not be restricted
to step sizes on the order of 1/ν. It is in this situation that the new option may be of great value.

In terms of partial differential equations, the typical problems for which the stability limit detection
option is appropriate are ODE systems resulting from semi-discretized PDEs (i.e., PDEs discretized
in space) with advection and diffusion, but with advection dominating over diffusion. Diffusion alone
produces pure decay modes, while advection tends to produce undamped oscillatory modes. A mix of
the two with advection dominant will have weakly damped oscillatory modes.

The stald algorithm attempts to detect, in a direct manner, the presence of a stability region
boundary that is limiting the step sizes in the presence of a weakly damped oscillation [23]. The
algorithm supplements (but differs greatly from) the existing algorithms in cvodes for choosing step
size and order based on estimated local truncation errors. The stald algorithm works directly with
history data that is readily available in cvodes. If it concludes that the step size is in fact stability-
limited, it dictates a reduction in the method order, regardless of the outcome of the error-based
algorithm. The stald algorithm has been tested in combination with the vode solver on linear
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advection-dominated advection-diffusion problems [24], where it works well. The implementation in
cvodes has been successfully tested on linear and nonlinear advection-diffusion problems, among
others.

This stability limit detection option adds some computational overhead to the cvodes solution.
(In timing tests, these overhead costs have ranged from 2% to 7% of the total, depending on the size
and complexity of the problem, with lower relative costs for larger problems.) Therefore, it should
be activated only when there is reasonable expectation of modes in the user’s system for which it
is appropriate. In particular, if a cvode solution with this option turned off appears to take an
inordinately large number of steps at orders 3-5 for no apparent reason in terms of the solution time
scale, then there is a good chance that step sizes are being limited by stability, and that turning on
the option will improve the efficiency of the solution.

2.4 Rootfinding

The cvodes solver has been augmented to include a rootfinding feature. This means that, while
integrating the Initial Value Problem (2.1), cvodes can also find the roots of a set of user-defined
functions gi(t, y) that depend both on t and on the solution vector y = y(t). The number of these root
functions is arbitrary, and if more than one gi is found to have a root in any given interval, the various
root locations are found and reported in the order that they occur on the t axis, in the direction of
integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes
in sign of gi(t, y(t)), denoted gi(t) for short. If a user root function has a root of even multiplicity
(no sign change), it will probably be missed by cvodes. If such a root is desired, the user should
reformulate the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any gi(t) over each time step taken, and
then (when a sign change is found) to hone in on the root(s) with a modified secant method [22]. In
addition, each time g is computed, cvodes checks to see if gi(t) = 0 exactly, and if so it reports this
as a root. However, if an exact zero of any gi is found at a point t, cvodes computes g at t+ δ for a
small increment δ, slightly further in the direction of integration, and if any gi(t+δ) = 0 also, cvodes
stops and reports an error. This way, each time cvodes takes a time step, it is guaranteed that the
values of all gi are nonzero at some past value of t, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, cvodes has an interval (tlo, thi] in which roots of the gi(t) are to be sought, such that
thi is further ahead in the direction of integration, and all gi(tlo) 6= 0. The endpoint thi is either tn,
the end of the time step last taken, or the next requested output time tout if this comes sooner. The
endpoint tlo is either tn−1, the last output time tout (if this occurred within the last step), or the last
root location (if a root was just located within this step), possibly adjusted slightly toward tn if an
exact zero was found. The algorithm checks gi at thi for zeros and for sign changes in (tlo, thi). If
no sign changes were found, then either a root is reported (if some gi(thi) = 0) or we proceed to the
next time interval (starting at thi). If one or more sign changes were found, then a loop is entered to
locate the root to within a rather tight tolerance, given by

τ = 100 ∗ U ∗ (|tn|+ |h|) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |gi(thi)|/|gi(thi)− gi(tlo)|, corresponding to the
closest to tlo of the secant method values. At each pass through the loop, a new value tmid is set,
strictly within the search interval, and the values of gi(tmid) are checked. Then either tlo or thi is
reset to tmid according to which subinterval is found to include the sign change. If there is none in
(tlo, tmid) but some gi(tmid) = 0, then that root is reported. The loop continues until |thi − tlo| < τ ,
and then the reported root location is thi.

In the loop to locate the root of gi(t), the formula for tmid is

tmid = thi − (thi − tlo)gi(thi)/[gi(thi)− αgi(tlo)] ,
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where α is a weight parameter. On the first two passes through the loop, α is set to 1, making tmid
the secant method value. Thereafter, α is reset according to the side of the subinterval (low vs. high,
i.e., toward tlo vs. toward thi) in which the sign change was found in the previous two passes. If
the two sides were opposite, α is set to 1. If the two sides were the same, α is halved (if on the low
side) or doubled (if on the high side). The value of tmid is closer to tlo when α < 1 and closer to thi
when α > 1. If the above value of tmid is within τ/2 of tlo or thi, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least τ/2.

2.5 Pure quadrature integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity
analysis run (see §2.7) it is of interest to compute integral quantities of the form

z(t) =

∫ t

t0

q(τ, y(τ), p) dτ . (2.10)

The most effective approach to compute z(t) is to extend the original problem with the additional
ODEs (obtained by applying Leibnitz’s differentiation rule):

ż = q(t, y, p) , z(t0) = 0 . (2.11)

Note that this is equivalent to using a quadrature method based on the underlying linear multistep
polynomial representation for y(t).

This can be done at the “user level” by simply exposing to cvodes the extended ODE system
(2.2)+(2.10). However, in the context of an implicit integration solver, this approach is not desirable
since the nonlinear solver module will require the Jacobian (or Jacobian-vector product) of this ex-
tended ODE. Moreover, since the additional states z do not enter the right-hand side of the ODE
(2.10) and therefore the right-hand side of the extended ODE system, it is much more efficient to treat
the ODE system (2.10) separately from the original system (2.2) by “taking out” the additional states
z from the nonlinear system (2.4) that must be solved in the correction step of the LMM. Instead,
“corrected” values zn are computed explicitly as

zn = − 1

αn,0

(
hnβn,0q(tn, yn, p) + hn

K2∑
i=1

βn,iż
n−i +

K1∑
i=1

αn,iz
n−i

)
,

once the new approximation yn is available.
The quadrature variables z can be optionally included in the error test, in which case corresponding

relative and absolute tolerances must be provided.

2.6 Forward sensitivity analysis

Typically, the governing equations of complex, large-scale models depend on various parameters,
through the right-hand side vector and/or through the vector of initial conditions, as in (2.2). In
addition to numerically solving the ODEs, it may be desirable to determine the sensitivity of the results
with respect to the model parameters. Such sensitivity information can be used to estimate which
parameters are most influential in affecting the behavior of the simulation or to evaluate optimization
gradients (in the setting of dynamic optimization, parameter estimation, optimal control, etc.).

The solution sensitivity with respect to the model parameter pi is defined as the vector si(t) =
∂y(t)/∂pi and satisfies the following forward sensitivity equations (or sensitivity equations for short):

ṡi =
∂f

∂y
si +

∂f

∂pi
, si(t0) =

∂y0(p)

∂pi
, (2.12)

obtained by applying the chain rule of differentiation to the original ODEs (2.2).
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When performing forward sensitivity analysis, cvodes carries out the time integration of the
combined system, (2.2) and (2.12), by viewing it as an ODE system of size N(Ns + 1), where Ns
is the number of model parameters pi, with respect to which sensitivities are desired (Ns ≤ Np).
However, major improvements in efficiency can be made by taking advantage of the special form of
the sensitivity equations as linearizations of the original ODEs. In particular, for stiff systems, for
which cvodes employs a Newton iteration, the original ODE system and all sensitivity systems share
the same Jacobian matrix, and therefore the same iteration matrix M in (2.7).

The sensitivity equations are solved with the same linear multistep formula that was selected for
the original ODEs and, if Newton iteration was selected, the same linear solver is used in the correction
phase for both state and sensitivity variables. In addition, cvodes offers the option of including (full
error control) or excluding (partial error control) the sensitivity variables from the local error test.

2.6.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the
combined ODE and sensitivity system for the vector ŷ = [y, s1, . . . , sNs ].

• Staggered Direct

In this approach [12], the nonlinear system (2.4) is first solved and, once an acceptable numerical
solution is obtained, the sensitivity variables at the new step are found by directly solving (2.12)
after the (BDF or Adams) discretization is used to eliminate ṡi. Although the system matrix
of the above linear system is based on exactly the same information as the matrix M in (2.7),
it must be updated and factored at every step of the integration, in contrast to an evalutaion
of M which is updated only occasionally. For problems with many parameters (relative to the
problem size), the staggered direct method can outperform the methods described below [33].
However, the computational cost associated with matrix updates and factorizations makes this
method unattractive for problems with many more states than parameters (such as those arising
from semidiscretization of PDEs) and is therefore not implemented in cvodes.

• Simultaneous Corrector

In this method [36], the discretization is applied simultaneously to both the original equations
(2.2) and the sensitivity systems (2.12) resulting in the following nonlinear system

F̂ (ŷn) ≡ ŷn − hnβn,0f̂(tn, ŷn)− ân = 0 ,

where f̂ = [f(t, y, p), . . . , (∂f/∂y)(t, y, p)si + (∂f/∂pi)(t, y, p), . . .], and ân is comprised of the
terms in the discretization that depend on the solution at previous integration steps. This
combined nonlinear system can be solved using a modified Newton method as in (2.6) by solving
the corrector equation

M̂ [ŷn(m+1) − ŷn(m)] = −F̂ (ŷn(m)) (2.13)

at each iteration, where

M̂ =


M
−γJ1 M
−γJ2 0 M

...
...

. . .
. . .

−γJNs
0 . . . 0 M

 ,
M is defined as in (2.7), and Ji = (∂/∂y) [(∂f/∂y)si + (∂f/∂pi)]. It can be shown that 2-step
quadratic convergence can be retained by using only the block-diagonal portion of M̂ in the
corrector equation (2.13). This results in a decoupling that allows the reuse of M without
additional matrix factorizations. However, the products (∂f/∂y)si and the vectors ∂f/∂pi must
still be reevaluated at each step of the iterative process (2.13) to update the sensitivity portions
of the residual Ĝ.
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• Staggered corrector

In this approach [19], as in the staggered direct method, the nonlinear system (2.4) is solved
first using the Newton iteration (2.6). Then a separate Newton iteration is used to solve the
sensitivity system (2.12):

M [s
n(m+1)
i − sn(m)

i ] =

−
[
s
n(m)
i − γ

(
∂f

∂y
(tn, y

n, p)s
n(m)
i +

∂f

∂pi
(tn, y

n, p)

)
− ai,n

]
, (2.14)

where ai,n =
∑
j>0(αn,js

n−j
i + hnβn,j ṡ

n−j
i ). In other words, a modified Newton iteration is

used to solve a linear system. In this approach, the vectors ∂f/∂pi need be updated only
once per integration step, after the state correction phase (2.6) has converged. Note also that
Jacobian-related data can be reused at all iterations (2.14) to evaluate the products (∂f/∂y)si.

cvodes implements the simultaneous corrector method and two flavors of the staggered corrector
method which differ only if the sensitivity variables are included in the error control test. In the
full error control case, the first variant of the staggered corrector method requires the convergence of
the iterations (2.14) for all Ns sensitivity systems and then performs the error test on the sensitivity
variables. The second variant of the method will perform the error test for each sensitivity vector
si, (i = 1, 2, . . . , Ns) individually, as they pass the convergence test. Differences in performance
between the two variants may therefore be noticed whenever one of the sensitivity vectors si fails a
convergence or error test.

An important observation is that the staggered corrector method, combined with a Krylov linear
solver, effectively results in a staggered direct method. Indeed, the Krylov solver requires only the
action of the matrix M on a vector and this can be provided with the current Jacobian information.
Therefore, the modified Newton procedure (2.14) will theoretically converge after one iteration.

2.6.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, cvodes provides an automated estimation of absolute
tolerances for the sensitivity variables based on the absolute tolerance for the corresponding state
variable. The relative tolerance for sensitivity variables is set to be the same as for the state variables.
The selection of absolute tolerances for the sensitivity variables is based on the observation that
the sensitivity vector si will have units of [y]/[pi]. With this, the absolute tolerance for the j-th
component of the sensitivity vector si is set to atolj/|p̄i|, where atolj are the absolute tolerances for
the state variables and p̄ is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute
tolerances is equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector
si with weights based on si be the same as the weighted root-mean-square norm of the vector of scaled
sensitivities s̄i = |p̄i|si with weights based on the state variables (the scaled sensitivities s̄i being
dimensionally consistent with the state variables). However, this choice of tolerances for the si may
be a poor one, and the user of cvodes can provide different values as an option.

2.6.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the right-hand side of the sensitivity systems (2.12): an-
alytic evaluation, automatic differentiation, complex-step approximation, and finite differences (or
directional derivatives). cvodes provides all the software hooks for implementing interfaces to au-
tomatic differentiation (AD) or complex-step approximation; future versions will include a generic
interface to AD-generated functions. At the present time, besides the option for analytical sen-
sitivity right-hand sides (user-provided), cvodes can evaluate these quantities using various finite
difference-based approximations to evaluate the terms (∂f/∂y)si and (∂f/∂pi), or using directional
derivatives to evaluate [(∂f/∂y)si + (∂f/∂pi)]. As is typical for finite differences, the proper choice of
perturbations is a delicate matter. cvodes takes into account several problem-related features: the
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relative ODE error tolerance rtol, the machine unit roundoff U , the scale factor p̄i, and the weighted
root-mean-square norm of the sensitivity vector si.

Using central finite differences as an example, the two terms (∂f/∂y)si and ∂f/∂pi in the right-
hand side of (2.12) can be evaluated either separately:

∂f

∂y
si ≈

f(t, y + σysi, p)− f(t, y − σysi, p)
2σy

, (2.15)

∂f

∂pi
≈ f(t, y, p+ σiei)− f(t, y, p− σiei)

2σi
, (2.15’)

σi = |p̄i|
√

max(rtol, U) , σy =
1

max(1/σi, ‖si‖WRMS/|p̄i|)
,

or simultaneously:

∂f

∂y
si +

∂f

∂pi
≈ f(t, y + σsi, p+ σei)− f(t, y − σsi, p− σei)

2σ
, (2.16)

σ = min(σi, σy) ,

or by adaptively switching between (2.15)+(2.15’) and (2.16), depending on the relative size of the
finite difference increments σi and σy. In the adaptive scheme, if ρ = max(σi/σy, σy/σi), we use
separate evaluations if ρ > ρmax (an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (σi, σy, σ) and switching between finite difference
and directional derivative formulas have also been implemented for one-sided difference formulas.
Forward finite differences can be applied to (∂f/∂y)si and ∂f/∂pi separately, or the single directional
derivative formula

∂f

∂y
si +

∂f

∂pi
≈ f(t, y + σsi, p+ σei)− f(t, y, p)

σ

can be used. In cvodes, the default value of ρmax = 0 indicates the use of the second-order centered
directional derivative formula (2.16) exclusively. Otherwise, the magnitude of ρmax and its sign (pos-
itive or negative) indicates whether this switching is done with regard to (centered or forward) finite
differences, respectively.

2.6.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.5), cvodes does
not carry their sensitivities automatically. Instead, we provide a more general feature through which
integrals depending on both the states y of (2.2) and the state sensitivities si of (2.12) can be evaluated.
In other words, cvodes provides support for computing integrals of the form:

z̄(t) =

∫ t

t0

q̄(τ, y(τ), s1(τ), . . . , sNp
(τ), p) dτ .

If the sensitivities of the quadrature variables z of (2.10) are desired, these can then be computed
by using:

q̄i = qysi + qpi , i = 1, . . . , Np ,

as integrands for z̄, where qy and qp are the partial derivatives of the integrand function q of (2.10).
As with the quadrature variables z, the new variables z̄ are also excluded from any nonlinear solver

phase and “corrected” values z̄n are obtained through explicit formulas.

2.7 Adjoint sensitivity analysis

In the forward sensitivity approach described in the previous section, obtaining sensitivities with
respect to Ns parameters is roughly equivalent to solving an ODE system of size (1 + Ns)N . This
can become prohibitively expensive, especially for large-scale problems, if sensitivities with respect
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to many parameters are desired. In this situation, the adjoint sensitivity method is a very attractive
alternative, provided that we do not need the solution sensitivities si, but rather the gradients with
respect to model parameters of a relatively few derived functionals of the solution. In other words, if
y(t) is the solution of (2.2), we wish to evaluate the gradient dG/dp of

G(p) =

∫ T

t0

g(t, y, p)dt , (2.17)

or, alternatively, the gradient dg/dp of the function g(t, y, p) at the final time T . The function g must
be smooth enough that ∂g/∂y and ∂g/∂p exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For
details on the derivation see [11]. Introducing a Lagrange multiplier λ, we form the augmented
objective function

I(p) = G(p)−
∫ T

t0

λ∗ (ẏ − f(t, y, p)) dt , (2.18)

where ∗ denotes the conjugate transpose. The gradient of G with respect to p is

dG

dp
=
dI

dp
=

∫ T

t0

(gp + gys)dt−
∫ T

t0

λ∗ (ṡ− fys− fp) dt , (2.19)

where subscripts on functions f or g are used to denote partial derivatives and s = [s1, . . . , sNs
] is the

matrix of solution sensitivities. Applying integration by parts to the term λ∗ṡ, and by requiring that
λ satisfy

λ̇ = −
(
∂f

∂y

)∗
λ−

(
∂g

∂y

)∗
λ(T ) = 0 ,

(2.20)

the gradient of G with respect to p is nothing but

dG

dp
= λ∗(t0)s(t0) +

∫ T

t0

(gp + λ∗fp) dt . (2.21)

The gradient of g(T, y, p) with respect to p can be then obtained by using the Leibnitz differentiation
rule. Indeed, from (2.17),

dg

dp
(T ) =

d

dT

dG

dp

and therefore, taking into account that dG/dp in (2.21) depends on T both through the upper inte-
gration limit and through λ, and that λ(T ) = 0,

dg

dp
(T ) = µ∗(t0)s(t0) + gp(T ) +

∫ T

t0

µ∗fpdt , (2.22)

where µ is the sensitivity of λ with respect to the final integration limit T . Thus µ satisfies the
following equation, obtained by taking the total derivative with respect to T of (2.20):

µ̇ = −
(
∂f

∂y

)∗
µ

µ(T ) =

(
∂g

∂y

)∗
t=T

.

(2.23)

The final condition on µ(T ) follows from (∂λ/∂t) + (∂λ/∂T ) = 0 at T , and therefore, µ(T ) = −λ̇(T ).
The first thing to notice about the adjoint system (2.20) is that there is no explicit specification

of the parameters p; this implies that, once the solution λ is found, the formula (2.21) can then be
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used to find the gradient of G with respect to any of the parameters p. The same holds true for the
system (2.23) and the formula (2.22) for gradients of g(T, y, p). The second important remark is that
the adjoint systems (2.20) and (2.23) are terminal value problems which depend on the solution y(t)
of the original IVP (2.2). Therefore, a procedure is needed for providing the states y obtained during
a forward integration phase of (2.2) to cvodes during the backward integration phase of (2.20) or
(2.23). The approach adopted in cvodes, based on checkpointing, is described below.

2.7.1 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires,
at the current time, the states y which were computed during the forward integration phase. Since
cvodes implements variable-step integration formulas, it is unlikely that the states will be available
at the desired time and so some form of interpolation is needed. The cvodes implementation being
also variable-order, it is possible that during the forward integration phase the order may be reduced
as low as first order, which means that there may be points in time where only y and ẏ are available.
These requirements therefore limit the choices for possible interpolation schemes. cvodes implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial
interpolation method which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size
of the vectors y and ẏ that would need to be stored make this approach computationally intractable.
Thus, cvodes settles for a compromise between storage space and execution time by implementing
a so-called checkpointing scheme. At the cost of at most one additional forward integration, this
approach offers the best possible estimate of memory requirements for adjoint sensitivity analysis. To
begin with, based on the problem size N and the available memory, the user decides on the number
Nd of data pairs (y, ẏ) if cubic Hermite interpolation is selected, or on the number Nd of y vectors
in the case of variable-degree polynomial interpolation, that can be kept in memory for the purpose
of interpolation. Then, during the first forward integration stage, after every Nd integration steps a
checkpoint is formed by saving enough information (either in memory or on disk) to allow for a hot
restart, that is a restart which will exactly reproduce the forward integration. In order to avoid storing
Jacobian-related data at each checkpoint, a reevaluation of the iteration matrix is forced before each
checkpoint. At the end of this stage, we are left with Nc checkpoints, including one at t0. During the
backward integration stage, the adjoint variables are integrated from T to t0 going from one checkpoint
to the previous one. The backward integration from checkpoint i+ 1 to checkpoint i is preceded by a
forward integration from i to i+ 1 during which the Nd vectors y (and, if necessary ẏ) are generated
and stored in memory for interpolation1 (see Fig. 2.1).

This approach transfers the uncertainty in the number of integration steps in the forward inte-
gration phase to uncertainty in the final number of checkpoints. However, Nc is much smaller than
the number of steps taken during the forward integration, and there is no major penalty for writ-
ing/reading the checkpoint data to/from a temporary file. Note that, at the end of the first forward
integration stage, interpolation data are available from the last checkpoint to the end of the interval of
integration. If no checkpoints are necessary (Nd is larger than the number of integration steps taken
in the solution of (2.2)), the total cost of an adjoint sensitivity computation can be as low as one
forward plus one backward integration. In addition, cvodes provides the capability of reusing a set
of checkpoints for multiple backward integrations, thus allowing for efficient computation of gradients
of several functionals (2.17).

1The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation at
the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th checkpoint, in
which case it uses the BDF order at the right-most relevant point). However, because of the FLC BDF implementation
(see §2.1), the resulting interpolation polynomial is only an approximation to the underlying BDF interpolant.

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also used
by other adjoint solvers (e.g. daspkadjoint). The variable-degree polynomial is more memory-efficient (it requires
only half of the memory storage of the cubic Hermite interpolation) and is more accurate. The accuracy differences
are minor when using BDF (since the maximum method order cannot exceed 5), but can be significant for the Adams
method for which the order can reach 12.
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Figure 2.1: Illustration of the checkpointing algorithm for generation of the forward solution during
the integration of the adjoint system.

Finally, we note that the adjoint sensitivity module in cvodes provides the necessary infrastructure
to integrate backwards in time any ODE terminal value problem dependent on the solution of the
IVP (2.2), including adjoint systems (2.20) or (2.23), as well as any other quadrature ODEs that may
be needed in evaluating the integrals in (2.21) or (2.22). In particular, for ODE systems arising from
semi-discretization of time-dependent PDEs, this feature allows for integration of either the discretized
adjoint PDE system or the adjoint of the discretized PDE.

2.8 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute
second-order derivative information. Considering the ODE problem (2.2) and some model output
functional,2 g(y) then the Hessian d2g/dp2 can be obtained in a forward sensitivity analysis setting as

d2g

dp2
=
(
gy ⊗ INp

)
ypp + yTp gyyyp ,

where ⊗ is the Kronecker product. The second-order sensitivities are solution of the matrix ODE
system:

ẏpp =
(
fy ⊗ INp

)
· ypp +

(
IN ⊗ yTp

)
· fyyyp

ypp(t0) =
∂2y0
∂p2

,

where yp is the first-order sensitivity matrix, the solution of Np systems (2.12), and ypp is a third-order
tensor. It is easy to see that, except for situations in which the number of parameters Np is very small,
the computational cost of this so-called forward-over-forward approach is exorbitant as it requires the
solution of Np +N2

p additional ODE systems of the same dimension N as (2.2).

A much more efficient alternative is to compute Hessian-vector products using a so-called forward-
over-adjoint approach. This method is based on using the same “trick” as the one used in computing
gradients of pointwise functionals with the adjoint method, namely applying a formal directional
forward derivation to one of the gradients of (2.21) or (2.22). With that, the cost of computing
a full Hessian is roughly equivalent to the cost of computing the gradient with forward sensitivity
analysis. However, Hessian-vector products can be cheaply computed with one additional adjoint
solve. Consider for example, G(p) =

∫ tf
t0
g(t, y) dt. It can be shown that the product between the

Hessian of G (with respect to the parameters p) and some vector u can be computed as

∂2G

∂p2
u =

[(
λT ⊗ INp

)
yppu+ yTp µ

]
t=t0

,

2For the sake of simplifity in presentation, we do not include explicit dependencies of g on time t or parameters p.
Moreover, we only consider the case in which the dependency of the original ODE (2.2) on the parameters p is through
its initial conditions only. For details on the derivation in the general case, see [37].
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where λ, µ, and s are solutions of

− µ̇ = fTy µ+
(
λT ⊗ In

)
fyys+ gyys ; µ(tf ) = 0

− λ̇ = fTy λ+ gTy ; λ(tf ) = 0

ṡ = fys ; s(t0) = y0pu

(2.24)

In the above equation, s = ypu is a linear combination of the columns of the sensitivity matrix yp.
The forward-over-adjoint approach hinges crucially on the fact that s can be computed at the cost of
a forward sensitivity analysis with respect to a single parameter (the last ODE problem above) which
is possible due to the linearity of the forward sensitivity equations (2.12).

Therefore, the cost of computing the Hessian-vector product is roughly that of two forward and two
backward integrations of a system of ODEs of size N . For more details, including the corresponding
formulas for a pointwise model functional output, see [37].

To allow the foward-over-adjoint approach described above, cvodes provides support for:

• the integration of multiple backward problems depending on the same underlying forward prob-
lem (2.2), and

• the integration of backward problems and computation of backward quadratures depending on
both the states y and forward sensitivities (for this particular application, s) of the original
problem (2.2).





Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode and arkode (for ODE
systems), kinsol (for nonlinear algebraic systems), and ida (for differential-algebraic systems). In
addition, sundials also includes variants of cvode and ida with sensitivity analysis capabilities
(using either forward or adjoint methods), called cvodes and idas, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Figs. 3.1 and 3.2). The following
is a list of the solver packages presently available, and the basic functionality of each:

• cvode, a solver for stiff and nonstiff ODE systems dy/dt = f(t, y) based on Adams and BDF
methods;

• cvodes, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

• arkode, a solver for ODE systems Mdy/dt = fE(t, y)+fI(t, y) based on additive Runge-Kutta
methods;

• ida, a solver for differential-algebraic systems F (t, y, ẏ) = 0 based on BDF methods;

• idas, a solver for differential-algebraic systems with sensitivity analysis capabilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0.

3.2 CVODES organization

The cvodes package is written in ANSI C. The following summarizes the basic structure of the
package, although knowledge of this structure is not necessary for its use.

The overall organization of the cvodes package is shown in Figure 3.3. The basic elements of the
structure are a module for the basic integration algorithm (including forward sensitivity analysis), a
module for adjoint sensitivity analysis, and support for the solution of nonlinear and linear systems
that arise in the case of a stiff system. The central integration module, implemented in the files
cvode.h, cvode impl.h, and cvode.c, deals with the evaluation of integration coefficients, estimation
of local error, selection of stepsize and order, and interpolation to user output points, among other
issues.

cvodes utilizes generic linear and nonlinear solver modules defined by the sunlinsol API (see
Chapter 9) and sunnonlinsol API (see Chapter 10), respectively. As such, cvodes has no knowledge
of the method being used to solve the linear and nonlinear systems that arise. For any given user
problem, there exists a single nonlinear solver interface and, if necessary, one of the linear system
solver interfaces is specified, and invoked as needed during the integration.
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Figure 3.1: High-level diagram of the sundials suite

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward
sensitivity equations simultaneously with the original IVP. The sensitivity variables may be included
in the local error control mechanism of the main integrator. cvodes provides three different strategies
for dealing with the correction stage for the sensitivity variables: CV SIMULTANEOUS, CV STAGGERED

and CV STAGGERED1 (see §2.6 and §5.2.1). The cvodes package includes an algorithm for the ap-
proximation of the sensitivity equations right-hand sides by difference quotients, but the user has the
option of supplying these right-hand sides directly.

The adjoint sensitivity module (file cvodea.c) provides the infrastructure needed for the backward
integration of any system of ODEs which depends on the solution of the original IVP, in particular the
adjoint system and any quadratures required in evaluating the gradient of the objective functional.
This module deals with the setup of the checkpoints, the interpolation of the forward solution during
the backward integration, and the backward integration of the adjoint equations.

At present, the package includes two linear solver interfaces. The primary linear solver interface,
cvls, supports both direct and iterative linear solvers built using the generic sunlinsol API (see
Chapter 9). These solvers may utilize a sunmatrix object (see Chapter 8) for storing Jacobian
information, or they may be matrix-free. Since cvodes can operate on any valid sunlinsol im-
plementation, the set of linear solver modules available to cvodes will expand as new sunlinsol
modules are developed.

Additionally, cvodes includes the diagonal linear solver interface, cvdiag, that creates an inter-
nally generated diagonal approximation to the Jacobian.

For users employing dense or banded Jacobian matrices, cvodes includes algorithms for their
approximation through difference quotients, although the user also has the option of supplying a
routine to compute the Jacobian (or an approximation to it) directly. This user-supplied routine is
required when using sparse or user-supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, cvodes includes an algorithm for the
approximation by difference quotients of the product Mv. Again, the user has the option of providing
routines for this operation, in two phases: setup (preprocessing of Jacobian data) and multiplication.
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Figure 3.2: Organization of the sundials suite
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Figure 3.3: Overall structure diagram of the cvodes package. Modules specific to cvodes begin with
“CV” (cvls, cvdiag, cvbbdpre, cvbandpre, and cvnls), all other items correspond to generic
solver and auxiliary modules. Note also that the LAPACK, klu and superlumt support is through
interfaces to external packages. Users will need to download and compile those packages independently.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again
in two phases: setup and solve. While there is no default choice of preconditioner analogous to
the difference-quotient approximation in the direct case, the references [6, 8], together with the ex-
ample and demonstration programs included with cvodes, offer considerable assistance in building
preconditioners.

cvodes’ linear solver interface consists of four primary phases, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, and only as required to achieve
convergence.

cvodes also provides two preconditioner modules, for use with any of the Krylov iterative linear
solvers. The first one, cvbandpre, is intended to be used with nvector serial, nvector openmp
or nvector pthreads and provides a banded difference-quotient Jacobian-based preconditioner,
with corresponding setup and solve routines. The second preconditioner module, cvbbdpre, works
in conjunction with nvector parallel and generates a preconditioner that is a block-diagonal
matrix with each block being a banded matrix.

All state information used by cvodes to solve a given problem is saved in a structure, and a
pointer to that structure is returned to the user. There is no global data in the cvodes package, and
so, in this respect, it is reentrant. State information specific to the linear solver is saved in a separate
structure, a pointer to which resides in the cvodes memory structure. The reentrancy of cvodes was
motivated by the anticipated multicomputer extension, but is also essential in a uniprocessor setting
where two or more problems are solved by intermixed calls to the package from within a single user
program.
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Using CVODES for IVP Solution

This chapter is concerned with the use of cvodes for the solution of initial value problems (IVPs) in
a C language setting. The following sections treat the header files and the layout of the user’s main
program, and provide descriptions of the cvodes user-callable functions and user-supplied functions.
This usage is essentially equivalent to using cvode [27].

The sample programs described in the companion document [43] may also be helpful. Those codes
may be used as templates (with the removal of some lines used in testing) and are included in the
cvodes package.

The user should be aware that not all sunlinsol and sunmatrix modules are compatible with
all nvector implementations. Details on compatibility are given in the documentation for each
sunmatrix module (Chapter 8) and each sunlinsol module (Chapter 9). For example, nvec-
tor parallel is not compatible with the dense, banded, or sparse sunmatrix types, or with the
corresponding dense, banded, or sparse sunlinsol modules. Please check Chapters 8 and 9 to verify
compatibility between these modules. In addition to that documentation, we note that the cvband-
pre preconditioning module is only compatible with the nvector serial, nvector openmp, and
nvector pthreads vector implementations, and the preconditioner module cvbbdpre can only
be used with nvector parallel. It is not recommended to use a threaded vector module with
SuperLU MT unless it is the nvector openmp module, and SuperLU MT is also compiled with
OpenMP.

cvodes uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of cvodes, following the procedure described in
Appendix A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by cvodes. The relevant library files are

• libdir/libsundials cvodes.lib,

• libdir/libsundials nvec*.lib,

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

• incdir/include/cvodes

• incdir/include/sundials

• incdir/include/nvector
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• incdir/include/sunmatrix

• incdir/include/sunlinsol

• incdir/include/sunnonlinsol

The directories libdir and incdir are the install library and include directories, respectively. For
a default installation, these are instdir/lib and instdir/include, respectively, where instdir is the
directory where sundials was installed (see Appendix A).

Note that an application cannot link to both the cvode and cvodes libraries because both
contain user-callable functions with the same names (to ensure that cvodes is backward compatible
with cvode). Therefore, applications that contain both ODE problems and ODEs with sensitivity
analysis, should use cvodes.

4.2 Data Types

The sundials types.h file contains the definition of the type realtype, which is used by the sundials
solvers for all floating-point data, the definition of the integer type sunindextype, which is used
for vector and matrix indices, and booleantype, which is used for certain logic operations within
sundials.

4.2.1 Floating point types

The type realtype can be float, double, or long double, with the default being double. The user
can change the precision of the sundials solvers arithmetic at the configuration stage (see §A.1.2).

Additionally, based on the current precision, sundials types.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. sundials
uses the RCONST macro internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point
constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype). Thus, a previously existing piece of ANSI C code can use sundials without modifying
the code to use realtype, so long as the sundials libraries use the correct precision (for details see
§A.1.2).

4.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable
int64 t type, and the user can change it to int32 t at the configuration stage. The configuration
system will detect if the compiler does not support portable types, and will replace int32 t and
int64 t with int and long int, respectively, to ensure use of the desired sizes on Linux, Mac OS X,
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and Windows platforms. sundials currently does not support unsigned integer types for vector and
matrix indices, although these could be added in the future if there is sufficient demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both
index storage types except for any calls to index storage-specific external libraries. (Our C and C++

example programs use sunindextype.) Users can, however, use any one of int, long int, int32 t,
int64 t or long long int in their code, assuming that this usage is consistent with the typedef
for sunindextype on their architecture). Thus, a previously existing piece of ANSI C code can use
sundials without modifying the code to use sunindextype, so long as the sundials libraries use the
appropriate index storage type (for details see §A.1.2).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• cvodes/cvodes.h, the main header file for cvodes, which defines the several types and various
constants, and includes function prototypes. This includes the header file for cvls,
cvodes/cvodes ls.h.

Note that cvodes.h includes sundials types.h, which defines the types realtype, sunindextype,
and booleantype and the constants SUNFALSE and SUNTRUE.

The calling program must also include an nvector implementation header file, of the form
nvector/nvector ***.h. See Chapter 7 for the appropriate name. This file in turn includes the
header file sundials nvector.h which defines the abstract N Vector data type.

If using a non-default nonlinear solver module, or when interacting with a sunnonlinsol module
directly, the calling program must also include a sunnonlinsol implementation header file, of the form
sunnonlinsol/sunnonlinsol ***.h where *** is the name of the nonlinear solver module (see Chap-
ter 10 for more information). This file in turn includes the header file sundials nonlinearsolver.h

which defines the abstract SUNNonlinearSolver data type.
If using a nonlinear solver that requires the solution of a linear system of the form (2.6) (e.g., the

default Newton iteration), then a linear solver module header file will be required. The header files
corresponding to the various sundials-provided linear solver modules available for use with cvodes
are:

• Direct linear solvers:

– sunlinsol/sunlinsol dense.h, which is used with the dense linear solver module, sun-
linsol dense;

– sunlinsol/sunlinsol band.h, which is used with the banded linear solver module, sun-
linsol band;

– sunlinsol/sunlinsol lapackdense.h, which is used with the LAPACK dense linear solver
module, sunlinsol lapackdense;

– sunlinsol/sunlinsol lapackband.h, which is used with the LAPACK banded linear
solver module, sunlinsol lapackband;

– sunlinsol/sunlinsol klu.h, which is used with the klu sparse linear solver module,
sunlinsol klu;

– sunlinsol/sunlinsol superlumt.h, which is used with the superlumt sparse linear
solver module, sunlinsol superlumt;

• Iterative linear solvers:

– sunlinsol/sunlinsol spgmr.h, which is used with the scaled, preconditioned GMRES
Krylov linear solver module, sunlinsol spgmr;
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– sunlinsol/sunlinsol spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, sunlinsol spfgmr;

– sunlinsol/sunlinsol spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, sunlinsol spbcgs;

– sunlinsol/sunlinsol sptfqmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, sunlinsol sptfqmr;

– sunlinsol/sunlinsol pcg.h, which is used with the scaled, preconditioned CG Krylov
linear solver module, sunlinsol pcg;

• cvodes/cvodes diag.h, which is used with the cvdiag diagonal linear solver module.

The header files for the sunlinsol dense and sunlinsol lapackdense linear solver modules
include the file sunmatrix/sunmatrix dense.h, which defines the sunmatrix dense matrix module,
as as well as various functions and macros acting on such matrices.

The header files for the sunlinsol band and sunlinsol lapackband linear solver modules in-
clude the file sunmatrix/sunmatrix band.h, which defines the sunmatrix band matrix module, as
as well as various functions and macros acting on such matrices.

The header files for the sunlinsol klu and sunlinsol superlumt sparse linear solvers include
the file sunmatrix/sunmatrix sparse.h, which defines the sunmatrix sparse matrix module, as
well as various functions and macros acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials iterative.h,
which enumerates the kind of preconditioning, and (for the spgmr and spfgmr solvers) the choices
for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
cvsDiurnal kry p example (see [43]), preconditioning is done with a block-diagonal matrix. For this,
even though the sunlinsol spgmr linear solver is used, the header sundials/sundials dense.h is
included for access to the underlying generic dense matrix arithmetic routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of
an ODE IVP. Most of the steps are independent of the nvector, sunmatrix, sunlinsol, and
sunnonlinsol implementations used. For the steps that are not, refer to Chapters 7, 8, 9, and 10
for the specific name of the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate

For example, call MPI Init to initialize MPI if used, or set num threads, the number of threads
to use within the threaded vector functions, if used.

2. Set problem dimensions etc.

This generally includes the problem size N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular
nvector implementation.

For native sundials vector implementations (except the cuda and raja-based ones), use a call
of the form y0 = N VMake ***(..., ydata) if the realtype array ydata containing the initial
values of y already exists. Otherwise, create a new vector by making a call of the form y0 =

N VNew ***(...), and then set its elements by accessing the underlying data with a call of the
form ydata = N VGetArrayPointer(y0). See §7.2-7.5 for details.
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For the hypre and petsc vector wrappers, first create and initialize the underlying vector, and
then create an nvector wrapper with a call of the form y0 = N VMake ***(yvec), where yvec

is a hypre or petsc vector. Note that calls like N VNew ***(...) and N VGetArrayPointer(...)

are not available for these vector wrappers. See §7.6 and §7.7 for details.

If using either the cuda- or raja-based vector implementations use a call of the form y0 =

N VMake ***(..., c) where c is a pointer to a suncudavec or sunrajavec vector class if this class
already exists. Otherwise, create a new vector by making a call of the form y0 = N VNew ***(...),
and then set its elements by accessing the underlying data where it is located with a call of the
form N VGetDeviceArrayPointer *** or N VGetHostArrayPointer ***. Note that the vector
class will allocate memory on both the host and device when instantiated. See §7.8-7.9 for details.

4. Create cvodes object

Call cvode mem = CVodeCreate(lmm) to create the cvodes memory block and to specify the
linear multistep method. CVodeCreate returns a pointer to the cvodes memory structure. See
§4.5.1 for details.

5. Initialize cvodes solver

Call CVodeInit(...) to provide required problem specifications, allocate internal memory for
cvodes, and initialize cvodes. CVodeInit returns a flag, the value of which indicates either
success or an illegal argument value. See §4.5.1 for details.

6. Specify integration tolerances

Call CVodeSStolerances(...) or CVodeSVtolerances(...) to specify either a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances, respectively. Alternatively, call CVodeWFtolerances to specify a function which sets
directly the weights used in evaluating WRMS vector norms. See §4.5.2 for details.

7. Create matrix object

If a nonlinear solver requiring a linear solve will be used (e.g., the the default Newton iteration)
and the linear solver will be a matrix-based linear solver, then a template Jacobian matrix must
be created by calling the appropriate constructor function defined by the particular sunmatrix
implementation.

For the sundials-supplied sunmatrix implementations, the matrix object may be created using
a call of the form

SUNMatrix J = SUNBandMatrix(...);

or

SUNMatrix J = SUNDenseMatrix(...);

or

SUNMatrix J = SUNSparseMatrix(...);

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

8. Create linear solver object

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then
the desired linear solver object must be created by calling the appropriate constructor function
defined by the particular sunlinsol implementation.

For any of the sundials-supplied sunlinsol implementations, the linear solver object may be
created using a call of the form

SUNLinearSolver LS = SUNLinSol *(...);
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where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §4.5.3 and
Chapter 9.

9. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to
that linear solver. See the documentation for each sunlinsol module in Chapter 9 for details.

10. Attach linear solver module

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then
initialize the cvls linear solver interface by attaching the linear solver object (and matrix object,
if applicable) with the call (for details see §4.5.3):

ier = CVodeSetLinearSolver(...);

Alternately, if the cvodes-specific diagonal linear solver module, cvdiag, is desired, initialize the
linear solver module and attach it to cvodes with the call

ier = CVDiag(...);

11. Set optional inputs

Call CVodeSet* functions to change any optional inputs that control the behavior of cvodes from
their default values. See §4.5.7.1 and §4.5.7 for details.

12. Create nonlinear solver object (optional)

If using a non-default nonlinear solver (see §4.5.4), then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular sunnonlinsol imple-
mentation (e.g., NLS = SUNNonlinSol ***(...); where *** is the name of the nonlinear solver
(see Chapter 10 for details).

13. Attach nonlinear solver module (optional)

If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching
the nonlinear solver object by calling ier = CVodeSetNonlinearSolver(cvode mem, NLS); (see
§4.5.4 for details).

14. Set nonlinear solver optional inputs (optional)

Call the appropriate set functions for the selected nonlinear solver module to change optional
inputs specific to that nonlinear solver. These must be called after CVodeInit if using the default
nonlinear solver or after attaching a new nonlinear solver to cvode, otherwise the optional inputs
will be overridden by cvodes defaults. See Chapter 10 for more information on optional inputs.

15. Specify rootfinding problem

Optionally, call CVodeRootInit to initialize a rootfinding problem to be solved during the inte-
gration of the ODE system. See §4.5.5, and see §4.5.7.3 for relevant optional input calls.

16. Advance solution in time

For each point at which output is desired, call ier = CVode(cvode mem, tout, yout, &tret,

itask). Here itask specifies the return mode. The vector yout (which can be the same as the
vector y0 above) will contain y(t). See §4.5.6 for details.

17. Get optional outputs

Call CV*Get* functions to obtain optional output. See §4.5.9 for details.

18. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the
appropriate destructor function defined by the nvector implementation:
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N VDestroy(y);

19. Free solver memory

Call CVodeFree(&cvode mem) to free the memory allocated by cvodes.

20. Free nonlinear solver memory (optional)

If a non-default nonlinear solver was used, then call SUNNonlinSolFree(NLS) to free any memory
allocated for the sunnonlinsol object.

21. Free linear solver and matrix memory

Call SUNLinSolFree and SUNMatDestroy to free any memory allocated for the linear solver and
matrix objects created above.

22. Finalize MPI, if used

Call MPI Finalize() to terminate MPI.

sundials provides some linear solvers only as a means for users to get problems running and not
as highly efficient solvers. For example, if solving a dense system, we suggest using the LAPACK
solvers if the size of the linear system is > 50, 000. (Thanks to A. Nicolai for his testing and rec-
ommendation.) Table 4.1 shows the linear solver interfaces available as sunlinsol modules and the
vector implementations required for use. As an example, one cannot use the dense direct solver inter-
faces with the MPI-based vector implementation. However, as discussed in Chapter 9 the sundials
packages operate on generic sunlinsol objects, allowing a user to develop their own solvers should
they so desire.

Table 4.1: sundials linear solver interfaces and vector implementations that can be used for each.
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Dense X X X X
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LapackDense X X X X
LapackBand X X X X

klu X X X X
superlumt X X X X

spgmr X X X X X X X X X
spfgmr X X X X X X X X X
spbcgs X X X X X X X X X

sptfqmr X X X X X X X X X
pcg X X X X X X X X X

User Supp. X X X X X X X X X

4.5 User-callable functions

This section describes the cvodes functions that are called by the user to setup and then solve an
IVP. Some of these are required. However, starting with §4.5.7, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of cvodes. In
any case, refer to §4.4 for the correct order of these calls.
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On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.7.1).

4.5.1 CVODES initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the IVP solution is complete, as it frees the cvodes memory block created and allocated by the first
two calls.

CVodeCreate

Call cvode mem = CVodeCreate(lmm);

Description The function CVodeCreate instantiates a cvodes solver object and specifies the solution
method.

Arguments lmm (int) specifies the linear multistep method and must be one of two possible values:
CV ADAMS or CV BDF.

The recommended choices for lmm are CV ADAMS for nonstiff problems and CV BDF for
stiff problems. The default Newton iteration is recommended for stiff problems, and
the fixed-point solver (previously referred to as the functional iteration in this guide) is
recommended for nonstiff problems. For details on how to attach a different nonlinear
solver module to cvodes see the description of CVodeSetNonlinearSolver.

Return value If successful, CVodeCreate returns a pointer to the newly created cvodes memory block
(of type void *). Otherwise, it returns NULL.

CVodeInit

Call flag = CVodeInit(cvode mem, f, t0, y0);

Description The function CVodeInit provides required problem and solution specifications, allocates
internal memory, and initializes cvodes.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

f (CVRhsFn) is the C function which computes the right-hand side function
f in the ODE. This function has the form f(t, y, ydot, user data) (for
full details see §4.6.1).

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeInit was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT An input argument to CVodeInit has an illegal value.

Notes If an error occurred, CVodeInit also sends an error message to the error handler func-
tion.

CVodeFree

Call CVodeFree(&cvode mem);

Description The function CVodeFree frees the memory allocated by a previous call to CVodeCreate.

Arguments The argument is the pointer to the cvodes memory block (of type void *).

Return value The function CVodeFree has no return value.
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4.5.2 CVODES tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to CVodeInit.

CVodeSStolerances

Call flag = CVodeSStolerances(cvode mem, reltol, abstol);

Description The function CVodeSStolerances specifies scalar relative and absolute tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSStolerances was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO MALLOC The allocation function CVodeInit has not been called.

CV ILL INPUT One of the input tolerances was negative.

CVodeSVtolerances

Call flag = CVodeSVtolerances(cvode mem, reltol, abstol);

Description The function CVodeSVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (N Vector) is the vector of absolute error tolerances.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSVtolerances was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO MALLOC The allocation function CVodeInit has not been called.

CV ILL INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.

CVodeWFtolerances

Call flag = CVodeWFtolerances(cvode mem, efun);

Description The function CVodeWFtolerances specifies a user-supplied function efun that sets the
multiplicative error weights Wi for use in the weighted RMS norm, which are normally
defined by Eq. (2.8).

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

efun (CVEwtFn) is the C function which defines the ewt vector (see §4.6.3).

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeWFtolerances was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.
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CV NO MALLOC The allocation function CVodeInit has not been called.

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol = 10−4

means that errors are controlled to .01%. We do not recommend using reltol larger than 10−3.
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 1.0E-15).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
cvsRoberts dns in the cvodes package, and the discussion of it in the cvodes Examples document
[43]. In that problem, the three components vary betwen 0 and 1, and have different noise levels;
hence the abstol vector. It is impossible to give any general advice on abstol values, because the
appropriate noise levels are completely problem-dependent. The user or modeler hopefully has some
idea as to what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservatively, because they control the
error committed on each individual time step. The final (global) errors are some sort of accumulation
of those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from
the actual desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol

= 10−6. But in any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried by
the solver are unaffected. Remember that a small negative value in y returned by cvodes, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s right-hand side routine f should never change a negative value in the solution vector
y to a non-negative value, as a ”solution” to this problem. This can cause instability. If the f routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log of it), then the
offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input y vector) for the purposes of computing f(t, y).

(4) Positivity and non-negativity constraints on components can be enforced by use of the recover-
able error return feature in the user-supplied right-hand side function. However, because this option
involves some extra overhead cost, it should only be exercised if the use of absolute tolerances to
control the computed values is unsuccessful.

4.5.3 Linear solver interface functions

As previously explained, if the nonlinear solver requires the solution of linear systems of the form (2.6)
(e.g., the default Newton iteration), there are two cvodes linear solver interfaces currently available
for this task: cvls and cvdiag.
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The first corresponds to the main linear solver interface in cvodes, that supports all valid sun-
linsol modules. Here, matrix-based sunlinsol modules utilize sunmatrix objects to store the
approximate Jacobian matrix J = ∂f/∂y, the Newton matrix M = I − γJ , and factorizations used
throughout the solution process. Conversely, matrix-free sunlinsol modules instead use iterative
methods to solve the Newton systems of equations, and only require the action of the matrix on a
vector, Mv. With most of these methods, preconditioning can be done on the left only, the right only,
on both the left and right, or not at all. The exceptions to this rule are spfgmr that supports right
preconditioning only and pcg that performs symmetric preconditioning. For the specification of a
preconditioner, see the iterative linear solver sections in §4.5.7 and §4.6.

If preconditioning is done, user-supplied functions define linear operators corresponding to left and
right preconditioner matrices P1 and P2 (either of which could be the identity matrix), such that the
product P1P2 approximates the matrix M = I − γJ of (2.7).

The cvdiag linear solver is also a direct linear solver, but it only uses a diagonal approximation
to J .

To specify a generic linear solver to cvodes, after the call to CVodeCreate but before any calls to
CVodes, the user’s program must create the appropriate SUNLinearSolver object and call the function
CVodeSetLinearSolver, as documented below. To create the SUNLinearSolver object, the user may
call one of the sundials-packaged sunlinsol module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of such constructor routines includes SUNLinSol Dense, SUNLinSol Band,
SUNLinSol LapackDense, SUNLinSol LapackBand, SUNLinSol KLU, SUNLinSol SuperLUMT,
SUNLinSol SPGMR, SUNLinSol SPFGMR, SUNLinSol SPBCGS, SUNLinSol SPTFQMR, and SUNLinSol PCG.

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use
of each of the generic linear solvers involves certain constants, functions and possibly some macros,
that are likely to be needed in the user code. These are available in the corresponding header file
associated with the specific sunmatrix or sunlinsol module in question, as described in Chapters
8 and 9.

Once this solver object has been constructed, the user should attach it to cvodes via a call to
CVodeSetLinearSolver. The first argument passed to this function is the cvodes memory pointer
returned by CVodeCreate; the second argument is the desired sunlinsol object to use for solving
linear systems. The third argument is an optional sunmatrix object to accompany matrix-based
sunlinsol inputs (for matrix-free linear solvers, the third argument should be NULL). A call to this
function initializes the cvls linear solver interface, linking it to the main cvodes integrator, and
allows the user to specify additional parameters and routines pertinent to their choice of linear solver.

To instead specify the cvodes-specific diagonal linear solver interface, the user’s program must
call CVDiag, as documented below. The first argument passed to this function is the cvodes memory
pointer returned by CVodeCreate.

CVodeSetLinearSolver

Call flag = CVodeSetLinearSolver(cvode mem, LS, J);

Description The function CVodeSetLinearSolver attaches a generic sunlinsol object LS and cor-
responding template Jacobian sunmatrix object J to cvodes, initializing the cvls
linear solver interface.

Arguments cvode mem (void *) pointer to the cvodes memory block.

LS (SUNLinearSolver) sunlinsol object to use for solving linear systems of
the form (2.6).

J (SUNMatrix) sunmatrix object for used as a template for the Jacobian (or
NULL if not applicable).

Return value The return value flag (of type int) is one of

CVLS SUCCESS The cvls initialization was successful.
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CVLS MEM NULL The cvode mem pointer is NULL.

CVLS ILL INPUT The cvls interface is not compatible with the LS or J input objects
or is incompatible with the current nvector module.

CVLS SUNLS FAIL A call to the LS object failed.

CVLS MEM FAIL A memory allocation request failed.

Notes If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used
in the solve process, so if additional storage is required within the sunmatrix object
(e.g. for factorization of a banded matrix), ensure that the input object is allocated
with sufficient size (see the documentation of the particular sunmatrix type in Chapter
8 for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so
that it includes the full sparsity pattern of the Newton system matrices M = I − γJ ,
even if J itself has zeros in nonzero locations of I. The reasoning for this is that M is
constructed in-place, on top of the user-specified values of J, so if the sparsity pattern
in J is insufficient to store M then it will need to be resized internally by cvode.

The previous routines CVDlsSetLinearSolver and CVSpilsSetLinearSolver are now
wrappers for this routine, and may still be used for backward-compatibility. However,
these will be deprecated in future releases, so we recommend that users transition to
the new routine name soon.

CVDiag

Call flag = CVDiag(cvode mem);

Description The function CVDiag selects the cvdiag linear solver.

The user’s main program must include the cvodes diag.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

Return value The return value flag (of type int) is one of:

CVDIAG SUCCESS The cvdiag initialization was successful.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG ILL INPUT The cvdiag solver is not compatible with the current nvector
module.

CVDIAG MEM FAIL A memory allocation request failed.

Notes The cvdiag solver is the simplest of all of the available cvodes linear solver interfaces.
The cvdiag solver uses an approximate diagonal Jacobian formed by way of a difference
quotient. The user does not have the option of supplying a function to compute an
approximate diagonal Jacobian.

4.5.4 Nonlinear solver interface function

By default cvodes uses the sunnonlinsol implementation of Newton’s method defined by the sun-
nonlinsol newton module (see §10.2). To specify a different nonlinear solver in cvodes, the user’s
program must create a sunnonlinsol object by calling the appropriate constructor routine. The user
must then attach the sunnonlinsol object by calling CVodeSetNonlinearSolver, as documented
below.

When changing the nonlinear solver in cvodes, CVodeSetNonlinearSolver must be called after
CVodeInit. If any calls to CVode have been made, then cvodes will need to be reinitialized by calling
CVodeReInit to ensure that the nonlinear solver is initialized correctly before any subsequent calls to
CVode.

The first argument passed to the routine CVodeSetNonlinearSolver is the cvodes memory
pointer returned by CVodeCreate and the second argument is the sunnonlinsol object to use for
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solving the nonlinear system (2.4) or (2.5). A call to this function attaches the nonlinear solver to the
main cvodes integrator.

CVodeSetNonlinearSolver

Call flag = CVodeSetNonlinearSolver(cvode mem, NLS);

Description The function CVodeSetNonLinearSolver attaches a sunnonlinsol object (NLS) to
cvodes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

NLS (SUNNonlinearSolver) sunnonlinsol object to use for solving nonlinear
systems (2.4) or (2.5).

Return value The return value flag (of type int) is one of

CV SUCCESS The nonlinear solver was successfully attached.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The sunnonlinsol object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual
function, convergence test function, or maximum number of nonlinear
iterations could not be set.

Notes When forward sensitivity analysis capabilities are enabled and the CV STAGGERED or
CV STAGGERED1 corrector method is used this function sets the nonlinear solver method
for correcting state variables (see §5.2.3 for more details).

4.5.5 Rootfinding initialization function

While solving the IVP, cvodes has the capability to find the roots of a set of user-defined functions.
To activate the root finding algorithm, call the following function. This is normally called only once,
prior to the first call to CVode, but if the rootfinding problem is to be changed during the solution,
CVodeRootInit can also be called prior to a continuation call to CVode.

CVodeRootInit

Call flag = CVodeRootInit(cvode mem, nrtfn, g);

Description The function CVodeRootInit specifies that the roots of a set of functions gi(t, y) are to
be found while the IVP is being solved.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

nrtfn (int) is the number of root functions gi.

g (CVRootFn) is the C function which defines the nrtfn functions gi(t, y)
whose roots are sought. See §4.6.4 for details.

Return value The return value flag (of type int) is one of

CV SUCCESS The call to CVodeRootInit was successful.

CV MEM NULL The cvode mem argument was NULL.

CV MEM FAIL A memory allocation failed.

CV ILL INPUT The function g is NULL, but nrtfn > 0.

Notes If a new IVP is to be solved with a call to CVodeReInit, where the new IVP has no
rootfinding problem but the prior one did, then call CVodeRootInit with nrtfn= 0.

4.5.6 CVODES solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One
of the input arguments (itask) specifies one of two modes as to where cvodes is to return a solution.
But these modes are modified if the user has set a stop time (with CVodeSetStopTime) or requested
rootfinding.
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CVode

Call flag = CVode(cvode mem, tout, yout, &tret, itask);

Description The function CVode integrates the ODE over an interval in t.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tout (realtype) the next time at which a computed solution is desired.

yout (N Vector) the computed solution vector.

tret (realtype) the time reached by the solver (output).

itask (int) a flag indicating the job of the solver for the next user step. The
CV NORMAL option causes the solver to take internal steps until it has reached
or just passed the user-specified tout parameter. The solver then interpo-
lates in order to return an approximate value of y(tout). The CV ONE STEP

option tells the solver to take just one internal step and then return the
solution at the point reached by that step.

Return value CVode returns a vector yout and a corresponding independent variable value t = tret,
such that yout is the computed value of y(t).

In CV NORMAL mode (with no errors), tret will be equal to tout and yout = y(tout).

The return value flag (of type int) will be one of the following:

CV SUCCESS CVode succeeded and no roots were found.

CV TSTOP RETURN CVode succeeded by reaching the stopping point specified through
the optional input function CVodeSetStopTime (see §4.5.7.1).

CV ROOT RETURN CVode succeeded and found one or more roots. In this case,
tret is the location of the root. If nrtfn> 1, call CVodeGetRootInfo
to see which gi were found to have a root.

CV MEM NULL The cvode mem argument was NULL.

CV NO MALLOC The cvodes memory was not allocated by a call to CVodeInit.

CV ILL INPUT One of the inputs to CVode was illegal, or some other input
to the solver was either illegal or missing. The latter cat-
egory includes the following situations: (a) The tolerances
have not been set. (b) A component of the error weight vec-
tor became zero during internal time-stepping. (c) The linear
solver initialization function (called by the user after calling
CVodeCreate) failed to set the linear solver-specific lsolve

field in cvode mem. (d) A root of one of the root functions was
found both at a point t and also very near t. In any case, the
user should see the error message for details.

CV TOO CLOSE The initial time t0 and the output time tout are too close to
each other and the user did not specify an initial step size.

CV TOO MUCH WORK The solver took mxstep internal steps but still could not reach
tout. The default value for mxstep is MXSTEP DEFAULT = 500.

CV TOO MUCH ACC The solver could not satisfy the accuracy demanded by the
user for some internal step.

CV ERR FAILURE Either error test failures occurred too many times (MXNEF =

7) during one internal time step, or with |h| = hmin.

CV CONV FAILURE Either convergence test failures occurred too many times (MXNCF
= 10) during one internal time step, or with |h| = hmin.

CV LINIT FAIL The linear solver interface’s initialization function failed.

CV LSETUP FAIL The linear solver interface’s setup function failed in an unre-
coverable manner.

CV LSOLVE FAIL The linear solver interface’s solve function failed in an unre-
coverable manner.
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CV CONSTR FAIL The inequality constraints were violated and the solver was
unable to recover.

CV RHSFUNC FAIL The right-hand side function failed in an unrecoverable man-
ner.

CV FIRST RHSFUNC FAIL The right-hand side function had a recoverable error at the
first call.

CV REPTD RHSFUNC ERR Convergence test failures occurred too many times due to re-
peated recoverable errors in the right-hand side function. This
flag will also be returned if the right-hand side function had
repeated recoverable errors during the estimation of an initial
step size.

CV UNREC RHSFUNC ERR The right-hand function had a recoverable error, but no re-
covery was possible. This failure mode is rare, as it can occur
only if the right-hand side function fails recoverably after an
error test failed while at order one.

CV RTFUNC FAIL The rootfinding function failed.

Notes The vector yout can occupy the same space as the vector y0 of initial conditions that
was passed to CVodeInit.

In the CV ONE STEP mode, tout is used only on the first call, and only to get the direction
and a rough scale of the independent variable.

If a stop time is enabled (through a call to CVodeSetStopTime), then CVode returns the
solution at tstop. Once the integrator returns at a stop time, any future testing for
tstop is disabled (and can be reenabled only though a new call to CVodeSetStopTime).

All failure return values are negative and so the test flag < 0 will trap all CVode

failures.

On any error return in which one or more internal steps were taken by CVode, the
returned values of tret and yout correspond to the farthest point reached in the inte-
gration. On all other error returns, tret and yout are left unchanged from the previous
CVode return.

4.5.7 Optional input functions

There are numerous optional input parameters that control the behavior of the cvodes solver. cvodes
provides functions that can be used to change these optional input parameters from their default
values. Table 4.2 lists all optional input functions in cvodes which are then described in detail in the
remainder of this section, begining with those for the main cvodes solver and continuing with those
for the linear solver interfaces. Note that the diagonal linear solver module has no optional inputs.
For the most casual use of cvodes, the reader can skip to §4.6.

We note that, on an error return, all of the optional input functions send an error message to the
error handler function. We also note that all error return values are negative, so the test flag < 0

will catch all errors.

4.5.7.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if either of the functions CVodeSetErrFile
or CVodeSetErrHandlerFn is to be called, that call should be first, in order to take effect for any later
error message.

CVodeSetErrFile

Call flag = CVodeSetErrFile(cvode mem, errfp);

Description The function CVodeSetErrFile specifies a pointer to the file where all cvodes messages
should be directed when the default cvodes error handler function is used.
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Table 4.2: Optional inputs for cvodes and cvls

Optional input Function name Default
CVODES main solver

Pointer to an error file CVodeSetErrFile stderr

Error handler function CVodeSetErrHandlerFn internal fn.
User data CVodeSetUserData NULL

Maximum order for BDF method CVodeSetMaxOrd 5
Maximum order for Adams method CVodeSetMaxOrd 12
Maximum no. of internal steps before tout CVodeSetMaxNumSteps 500
Maximum no. of warnings for tn + h = tn CVodeSetMaxHnilWarns 10
Flag to activate stability limit detection CVodeSetStabLimDet SUNFALSE

Initial step size CVodeSetInitStep estimated
Minimum absolute step size CVodeSetMinStep 0.0
Maximum absolute step size CVodeSetMaxStep ∞
Value of tstop CVodeSetStopTime undefined
Maximum no. of error test failures CVodeSetMaxErrTestFails 7
Maximum no. of nonlinear iterations CVodeSetMaxNonlinIters 3
Maximum no. of convergence failures CVodeSetMaxConvFails 10
Coefficient in the nonlinear convergence test CVodeSetNonlinConvCoef 0.1
Inequality constraints on solution CVodeSetConstraints NULL

Direction of zero-crossing CVodeSetRootDirection both
Disable rootfinding warnings CVodeSetNoInactiveRootWarn none

CVLS linear solver interface
Jacobian / preconditioner update frequency CVodeSetMaxStepsBetweenJac 50
Jacobian function CVodeSetJacFn DQ
Jacobian-times-vector functions CVodeSetJacTimes NULL, DQ
Preconditioner functions CVodeSetPreconditioner NULL, NULL
Ratio between linear and nonlinear tolerances CVodeSetEpsLin 0.05
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Arguments cvode mem (void *) pointer to the cvodes memory block.

errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value of NULL disables all future error message output (except for the case in
which the cvodes memory pointer is NULL). This use of CVodeSetErrFile is strongly
discouraged.

If CVodeSetErrFile is to be called, it should be called before any other optional input !

functions, in order to take effect for any later error message.

CVodeSetErrHandlerFn

Call flag = CVodeSetErrHandlerFn(cvode mem, ehfun, eh data);

Description The function CVodeSetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments cvode mem (void *) pointer to the cvodes memory block.

ehfun (CVErrHandlerFn) is the C error handler function (see §4.6.2).

eh data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of

CV SUCCESS The function ehfun and data pointer eh data have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes Error messages indicating that the cvodes solver memory is NULL will always be directed
to stderr.

CVodeSetUserData

Call flag = CVodeSetUserData(cvode mem, user data);

Description The function CVodeSetUserData specifies the user data block user data and attaches
it to the main cvodes memory block.

Arguments cvode mem (void *) pointer to the cvodes memory block.

user data (void *) pointer to the user data.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes If specified, the pointer to user data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user data is needed in user linear solver or preconditioner functions, the call to !

CVodeSetUserData must be made before the call to specify the linear solver.

CVodeSetMaxOrd

Call flag = CVodeSetMaxOrd(cvode mem, maxord);

Description The function CVodeSetMaxOrd specifies the maximum order of the linear multistep
method.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxord (int) value of the maximum method order. This must be positive.
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Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The specified value maxord is ≤ 0, or larger than its previous value.

Notes The default value is ADAMS Q MAX = 12 for the Adams-Moulton method and BDF Q MAX

= 5 for the BDF method. Since maxord affects the memory requirements for the internal
cvodes memory block, its value cannot be increased past its previous value.

An input value greater than the default will result in the default value.

CVodeSetMaxNumSteps

Call flag = CVodeSetMaxNumSteps(cvode mem, mxsteps);

Description The function CVodeSetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments cvode mem (void *) pointer to the cvodes memory block.

mxsteps (long int) maximum allowed number of steps.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes Passing mxsteps = 0 results in cvodes using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

CVodeSetMaxHnilWarns

Call flag = CVodeSetMaxHnilWarns(cvode mem, mxhnil);

Description The function CVodeSetMaxHnilWarns specifies the maximum number of messages issued
by the solver warning that t+ h = t on the next internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

mxhnil (int) maximum number of warning messages (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 10. A negative value for mxhnil indicates that no warning messages
should be issued.

CVodeSetStabLimDet

Call flag = CVodeSetstabLimDet(cvode mem, stldet);

Description The function CVodeSetStabLimDet indicates if the BDF stability limit detection algo-
rithm should be used. See §2.3 for further details.

Arguments cvode mem (void *) pointer to the cvodes memory block.

stldet (booleantype) flag controlling stability limit detection (SUNTRUE = on;
SUNFALSE = off).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The linear multistep method is not set to CV BDF.
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Notes The default value is SUNFALSE. If stldet = SUNTRUE when BDF is used and the method
order is greater than or equal to 3, then an internal function, CVsldet, is called to detect
a possible stability limit. If such a limit is detected, then the order is reduced.

CVodeSetInitStep

Call flag = CVodeSetInitStep(cvode mem, hin);

Description The function CVodeSetInitStep specifies the initial step size.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hin (realtype) value of the initial step size to be attempted. Pass 0.0 to use
the default value.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes By default, cvodes estimates the initial step size to be the solution h of the equation
‖0.5h2ÿ‖WRMS = 1, where ÿ is an estimated second derivative of the solution at t0.

CVodeSetMinStep

Call flag = CVodeSetMinStep(cvode mem, hmin);

Description The function CVodeSetMinStep specifies a lower bound on the magnitude of the step
size.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hmin (realtype) minimum absolute value of the step size (≥ 0.0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT Either hmin is nonpositive or it exceeds the maximum allowable step size.

Notes The default value is 0.0.

CVodeSetMaxStep

Call flag = CVodeSetMaxStep(cvode mem, hmax);

Description The function CVodeSetMaxStep specifies an upper bound on the magnitude of the step
size.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hmax (realtype) maximum absolute value of the step size (≥ 0.0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT Either hmax is nonpositive or it is smaller than the minimum allowable
step size.

Notes Pass hmax = 0.0 to obtain the default value ∞.
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CVodeSetStopTime

Call flag = CVodeSetStopTime(cvode mem, tstop);

Description The function CVodeSetStopTime specifies the value of the independent variable t past
which the solution is not to proceed.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tstop (realtype) value of the independent variable past which the solution should
not proceed.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The value of tstop is not beyond the current t value, tn.

Notes The default, if this routine is not called, is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and
can be reenabled only though a new call to CVodeSetStopTime).

CVodeSetMaxErrTestFails

Call flag = CVodeSetMaxErrTestFails(cvode mem, maxnef);

Description The function CVodeSetMaxErrTestFails specifies the maximum number of error test
failures permitted in attempting one step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxnef (int) maximum number of error test failures allowed on one step (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 7.

CVodeSetMaxNonlinIters

Call flag = CVodeSetMaxNonlinIters(cvode mem, maxcor);

Description The function CVodeSetMaxNonlinIters specifies the maximum number of nonlinear
solver iterations permitted per step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxcor (int) maximum number of nonlinear solver iterations allowed per step (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV MEM FAIL The sunnonlinsol module is NULL.

Notes The default value is 3.

CVodeSetMaxConvFails

Call flag = CVodeSetMaxConvFails(cvode mem, maxncf);

Description The function CVodeSetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures permitted during one step.

Arguments cvode mem (void *) pointer to the cvodes memory block.
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maxncf (int) maximum number of allowable nonlinear solver convergence failures
per step (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 10.

CVodeSetNonlinConvCoef

Call flag = CVodeSetNonlinConvCoef(cvode mem, nlscoef);

Description The function CVodeSetNonlinConvCoef specifies the safety factor used in the nonlinear
convergence test (see §2.1).

Arguments cvode mem (void *) pointer to the cvodes memory block.

nlscoef (realtype) coefficient in nonlinear convergence test (> 0.0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 0.1.

CVodeSetIterType

Call flag = CVodeSetIterType(cvode mem, iter);

Description The function CVodeSetIterType resets the nonlinear solver iteration type to iter.

Arguments cvode mem (void *) pointer to the cvodes memory block.

iter (int) specifies the type of nonlinear solver iteration and may be either
CV NEWTON or CV FUNCTIONAL.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The iter value passed is neither CV NEWTON nor CV FUNCTIONAL.

Notes The nonlinear solver iteration type is initially specified in the call to CVodeCreate (see
§4.5.1). This function call is needed only if iter is being changed from its value in the
prior call to CVodeCreate.

CVodeSetConstraints

Call flag = CVodeSetConstraints(cvode mem, constraints);

Description The function CVodeSetConstraints specifies a vector defining inequality constraints
for each component of the solution vector y.

Arguments cvode mem (void *) pointer to the cvodes memory block.

constraints (N Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on yi.

1.0 then yi will be constrained to be yi ≥ 0.0.

−1.0 then yi will be constrained to be yi ≤ 0.0.

2.0 then yi will be constrained to be yi > 0.0.

−2.0 then yi will be constrained to be yi < 0.0.

Return value The return value of flag (of type int) is one of
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CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The constraints vector contains illegal values or the simultaneous correc-
tor option has been selected when doing forward sensitivity analysis.

Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed. However, a call with 0.0 in all components
of constraints will result in an illegal input return. A NULL constraints vector will
disable constraint checking.

Constraint checking when doing forward sensitivity analysis with the simultaneous cor-
rector option is currently disallowed and will result in an illegal input return.

4.5.7.2 Linear solver interface optional input functions

The mathematical explanation of the linear solver methods available to cvodes is provided in §2.1.
We group the user-callable routines into four categories: general routines concerning the overall cvls
linear solver interface, optional inputs for matrix-based linear solvers, optional inputs for matrix-free
linear solvers, and optional inputs for iterative linear solvers. We note that the matrix-based and
matrix-free groups are mutually exclusive, whereas the “iterative” tag can apply to either case.

As discussed in §2.1, cvodes strives to reuse matrix and preconditioner data for as many solves
as possible to amortize the high costs of matrix construction and factorization. To that end, cvodes
provides a user-callable routine to modify this behavior. To this end, we recall that the Newton
system matrices are M(t, y) = I − γJ(t, y), where the right-hand side function has Jacobian matrix

J(t, y) = ∂f(t,y)
∂y .

The matrix or preconditioner for M can only be updated within a call to the linear solver ‘setup’
routine. In general, the frequency with which this setup routine is called may be controlled with the
msbj argument to CVodeSetMaxStepsBetweenJac.

CVodeSetMaxStepsBetweenJac

Call retval = CVodeSetMaxStepsBetweenJac(cvode mem, msbj);

Description The function CVodeSetMaxStepsBetweenJac specifies the maximum number of time
steps to wait before recomputation of the Jacobian or recommendation to update the
preconditioner.

Arguments cvode mem (void *) pointer to the cvodes memory block.

msbj (long int) maximum number of time steps to wait before Jacobian/pre-
conditioner reconstruction.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional value has been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver interface has not been initialized.

Notes If msbj is less than 1, the default value of 50 will be used.

This function must be called after the cvls linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

When using matrix-based linear solver modules, the cvls solver interface needs a function to
compute an approximation to the Jacobian matrix J(t, y). This function must be of type CVLsJacFn.
The user can supply a Jacobian function, or if using a dense or banded matrix J , can use the default
internal difference quotient approximation that comes with the cvls solver. To specify a user-supplied
Jacobian function jac, cvls provides the function CVodeSetJacFn. The cvls interface passes the
pointer user data to the Jacobian function. This allows the user to create an arbitrary structure
with relevant problem data and access it during the execution of the user-supplied Jacobian func-
tion, without using global data in the program. The pointer user data may be specified through
CVodeSetUserData.
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CVodeSetJacFn

Call flag = CVodeSetJacFn(cvode mem, jac);

Description The function CVodeSetJacFn specifies the Jacobian approximation function to be used
for a matrix-based solver within the cvls interface.

Arguments cvode mem (void *) pointer to the cvodes memory block.

jac (CVLsJacFn) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional value has been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver interface has not been initialized.

Notes This function must be called after the cvls linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

By default, cvls uses an internal difference quotient function for dense and band ma-
trices. If NULL is passed to jac, this default function is used. An error will occur if no
jac is supplied when using other matrix types.

The function type CVLsJacFn is described in §4.6.5.

The previous routine CVDlsSetJacFn is now a wrapper for this routine, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.

When using matrix-free linear solver modules, the cvls solver interface requires a function to compute
an approximation to the product between the Jacobian matrix J(t, y) and a vector v. The user can
supply a Jacobian-times-vector approximation function or use the default internal difference quotient
function that comes with the cvls interface. A user-defined Jacobian-vector function must be of
type CVLlsJacTimesVecFn and can be specified through a call to CVodeSetJacTimes (see §4.6.6 for
specification details). The evaluation and processing of any Jacobian-related data needed by the user’s
Jacobian-times-vector function is done in the optional user-supplied function jtsetup (see §4.6.7 for
specification details).

The pointer user data received through CVodeSetUserData (or a pointer to NULL if user data

was not specified) is passed to the Jacobian-times-vector setup and product functions, jtsetup and
jtimes, each time they are called. This allows the user to create an arbitrary structure with relevant
problem data and access it during the execution of the user-supplied functions without using global
data in the program.

CVodeSetJacTimes

Call flag = CVodeSetJacTimes(cvode mem, jtsetup, jtimes);

Description The function CVodeSetJacTimes specifies the Jacobian-vector setup and product func-
tions.

Arguments cvode mem (void *) pointer to the cvodes memory block.

jtsetup (CVLsJacTimesSetupFn) user-defined Jacobian-vector setup function. Pass
NULL if no setup is necessary.

jtimes (CVLsJacTimesVecFn) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional value has been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

CVLS SUNLS FAIL An error occurred when setting up the system matrix-times-vector
routines in the sunlinsol object used by the cvls interface.
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Notes The default is to use an internal finite difference quotient for jtimes and to omit
jtsetup. If NULL is passed to jtimes, these defaults are used. A user may specify
non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the cvls linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

The function type CVLsJacTimesSetupFn is described in §4.6.7.

The function type CVLsJacTimesVecFn is described in §4.6.6.

The previous routine CVSpilsSetJacTimes is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

When using an iterative linear solver, the user may supply a preconditioning operator to aid in solution
of the system. This operator consists of two user-supplied functions, psetup and psolve, that are
supplied to cvodes using the function CVodeSetPreconditioner. The psetup function supplied to
this routine should handle evaluation and preprocessing of any Jacobian data needed by the user’s
preconditioner solve function, psolve. The user data pointer received through CVodeSetUserData (or
a pointer to NULL if user data was not specified) is passed to the psetup and psolve functions. This
allows the user to create an arbitrary structure with relevant problem data and access it during the
execution of the user-supplied preconditioner functions without using global data in the program.

Also, as described in §2.1, the cvls interface requires that iterative linear solvers stop when the
norm of the preconditioned residual satisfies

‖r‖ ≤ εLε

10

where ε is the nonlinear solver tolerance, and the default εL = 0.05; this value may be modified by
the user through the CVodeSetEpsLin function.

CVodeSetPreconditioner

Call flag = CVodeSetPreconditioner(cvode mem, psetup, psolve);

Description The function CVodeSetPreconditioner specifies the preconditioner setup and solve
functions.

Arguments cvode mem (void *) pointer to the cvodes memory block.

psetup (CVLsPrecSetupFn) user-defined preconditioner setup function. Pass NULL

if no setup is necessary.

psolve (CVLsPrecSolveFn) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional values have been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

CVLS SUNLS FAIL An error occurred when setting up preconditioning in the sunlinsol
object used by the cvls interface.

Notes The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the cvls linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

The function type CVLsPrecSolveFn is described in §4.6.8.

The function type CVLsPrecSetupFn is described in §4.6.9.

The previous routine CVSpilsSetPreconditioner is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.
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CVodeSetEpsLin

Call flag = CVodeSetEpsLin(cvode mem, eplifac);

Description The function CVodeSetEpsLin specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the nonlinear solver test constant.

Arguments cvode mem (void *) pointer to the cvodes memory block.

eplifac (realtype) linear convergence safety factor (≥ 0.0).

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional value has been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

CVLS ILL INPUT The factor eplifac is negative.

Notes The default value is 0.05.

This function must be called after the cvls linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

If eplifac= 0.0 is passed, the default value is used.

The previous routine CVSpilsSetEpsLin is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

4.5.7.3 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm.

CVodeSetRootDirection

Call flag = CVodeSetRootDirection(cvode mem, rootdir);

Description The function CVodeSetRootDirection specifies the direction of zero-crossings to be
located and returned.

Arguments cvode mem (void *) pointer to the cvodes memory block.

rootdir (int *) state array of length nrtfn, the number of root functions gi, as spec-
ified in the call to the function CVodeRootInit. A value of 0 for rootdir[i]
indicates that crossing in either direction for gi should be reported. A value
of +1 or −1 indicates that the solver should report only zero-crossings where
gi is increasing or decreasing, respectively.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT rootfinding has not been activated through a call to CVodeRootInit.

Notes The default behavior is to monitor for both zero-crossing directions.

CVodeSetNoInactiveRootWarn

Call flag = CVodeSetNoInactiveRootWarn(cvode mem);

Description The function CVodeSetNoInactiveRootWarn disables issuing a warning if some root
function appears to be identically zero at the beginning of the integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.
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CV MEM NULL The cvode mem pointer is NULL.

Notes cvodes will not report the initial conditions as a possible zero-crossing (assuming that
one or more components gi are zero at the initial time). However, if it appears that
some gi is identically zero at the initial time (i.e., gi is zero at the initial time and after
the first step), cvodes will issue a warning which can be disabled with this optional
input function.

4.5.8 Interpolated output function

An optional function CVodeGetDky is available to obtain additional output values. This function
should only be called after a successful return from CVode as it provides interpolated values either of
y or of its derivatives (up to the current order of the integration method) interpolated to any value of
t in the last internal step taken by cvodes.

The call to the CVodeGetDky function has the following form:

CVodeGetDky

Call flag = CVodeGetDky(cvode mem, t, k, dky);

Description The function CVodeGetDky computes the k-th derivative of the function y at time t, i.e.
d(k)y/dt(k)(t), where tn−hu ≤ t ≤ tn, tn denotes the current internal time reached, and
hu is the last internal step size successfully used by the solver. The user may request k
= 0, 1, . . . , qu, where qu is the current order (optional output qlast).

Arguments cvode mem (void *) pointer to the cvodes memory block.

t (realtype) the value of the independent variable at which the derivative is
to be evaluated.

k (int) the derivative order requested.

dky (N Vector) vector containing the derivative. This vector must be allocated
by the user.

Return value The return value flag (of type int) is one of

CV SUCCESS CVodeGetDky succeeded.

CV BAD K k is not in the range 0, 1, . . . , qu.

CV BAD T t is not in the interval [tn − hu, tn].

CV BAD DKY The dky argument was NULL.

CV MEM NULL The cvode mem argument was NULL.

Notes It is only legal to call the function CVodeGetDky after a successful return from CVode.
See CVodeGetCurrentTime, CVodeGetLastOrder, and CVodeGetLastStep in the next
section for access to tn, qu, and hu, respectively.

4.5.9 Optional output functions

cvodes provides an extensive set of functions that can be used to obtain solver performance infor-
mation. Table 4.3 lists all optional output functions in cvodes, which are then described in detail in
the remainder of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining
how successful the cvodes solver is in doing its job. For example, the counters nsteps and nfevals

provide a rough measure of the overall cost of a given run, and can be compared among runs with
differing input options to suggest which set of options is most efficient. The ratio nniters/nsteps

measures the performance of the nonlinear solver in solving the nonlinear systems at each time step;
typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of a matrix-
based linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure
the overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian
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or preconditioner being used. Thus, for example, njevals/nniters can indicate if a user-supplied
Jacobian is inaccurate, if this ratio is larger than for the case of the corresponding internal Jacobian.
The ratio nliters/nniters measures the performance of the Krylov iterative linear solver, and thus
(indirectly) the quality of the preconditioner.

4.5.9.1 SUNDIALS version information

The following functions provide a way to get sundials version information at runtime.

SUNDIALSGetVersion

Call flag = SUNDIALSGetVersion(version, len);

Description The function SUNDIALSGetVersion fills a character array with sundials version infor-
mation.

Arguments version (char *) character array to hold the sundials version information.

len (int) allocated length of the version character array.

Return value If successful, SUNDIALSGetVersion returns 0 and version contains the sundials ver-
sion information. Otherwise, it returns −1 and version is not set (the input character
array is too short).

Notes A string of 25 characters should be sufficient to hold the version information. Any
trailing characters in the version array are removed.

SUNDIALSGetVersionNumber

Call flag = SUNDIALSGetVersionNumber(&major, &minor, &patch, label, len);

Description The function SUNDIALSGetVersionNumber set integers for the sundials major, minor,
and patch release numbers and fills a character array with the release label if applicable.

Arguments major (int) sundials release major version number.

minor (int) sundials release minor version number.

patch (int) sundials release patch version number.

label (char *) character array to hold the sundials release label.

len (int) allocated length of the label character array.

Return value If successful, SUNDIALSGetVersionNumber returns 0 and the major, minor, patch, and
label values are set. Otherwise, it returns −1 and the values are not set (the input
character array is too short).

Notes A string of 10 characters should be sufficient to hold the label information. If a label
is not used in the release version, no information is copied to label. Any trailing
characters in the label array are removed.

4.5.9.2 Main solver optional output functions

cvodes provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements, solver performance statistics,
as well as additional data from the cvodes memory block (a suggested tolerance scaling factor,
the error weight vector, and the vector of estimated local errors). Functions are also provided to
extract statistics related to the performance of the cvodes nonlinear solver used. As a convenience,
additional information extraction functions provide the optional outputs in groups. These optional
output functions are described next.
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Table 4.3: Optional outputs from cvodes, cvls, and cvdiag

Optional output Function name
CVODES main solver

Size of cvodes real and integer workspaces CVodeGetWorkSpace

Cumulative number of internal steps CVodeGetNumSteps

No. of calls to r.h.s. function CVodeGetNumRhsEvals

No. of calls to linear solver setup function CVodeGetNumLinSolvSetups

No. of local error test failures that have occurred CVodeGetNumErrTestFails

Order used during the last step CVodeGetLastOrder

Order to be attempted on the next step CVodeGetCurrentOrder

No. of order reductions due to stability limit detection CVodeGetNumStabLimOrderReds

Actual initial step size used CVodeGetActualInitStep

Step size used for the last step CVodeGetLastStep

Step size to be attempted on the next step CVodeGetCurrentStep

Current internal time reached by the solver CVodeGetCurrentTime

Suggested factor for tolerance scaling CVodeGetTolScaleFactor

Error weight vector for state variables CVodeGetErrWeights

Estimated local error vector CVodeGetEstLocalErrors

No. of nonlinear solver iterations CVodeGetNumNonlinSolvIters

No. of nonlinear convergence failures CVodeGetNumNonlinSolvConvFails

All cvodes integrator statistics CVodeGetIntegratorStats

cvodes nonlinear solver statistics CVodeGetNonlinSolvStats

Array showing roots found CVodeGetRootInfo

No. of calls to user root function CVodeGetNumGEvals

Name of constant associated with a return flag CVodeGetReturnFlagName

CVLS linear solver interface
Size of real and integer workspaces CVodeGetWorkSpace

No. of Jacobian evaluations CVodeGetNumJacEvals

No. of r.h.s. calls for finite diff. Jacobian[-vector] evals. CVodeGetNumLinRhsEvals

No. of linear iterations CVodeGetNumLinIters

No. of linear convergence failures CVodeGetNumLinConvFails

No. of preconditioner evaluations CVodeGetNumPrecEvals

No. of preconditioner solves CVodeGetNumPrecSolves

No. of Jacobian-vector setup evaluations CVodeGetNumJTSetupEvals

No. of Jacobian-vector product evaluations CVodeGetNumJtimesEvals

Last return from a linear solver function CVodeGetLastLinFlag

Name of constant associated with a return flag CVodeGetLinReturnFlagName

CVDIAG linear solver interface
Size of cvdiag real and integer workspaces CVDiagGetWorkSpace

No. of r.h.s. calls for finite diff. Jacobian evals. CVDiagGetNumRhsEvals

Last return from a cvdiag function CVDiagGetLastFlag

Name of constant associated with a return flag CVDiagGetReturnFlagName
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CVodeGetWorkSpace

Call flag = CVodeGetWorkSpace(cvode mem, &lenrw, &leniw);

Description The function CVodeGetWorkSpace returns the cvodes real and integer workspace sizes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrw (long int) the number of realtype values in the cvodes workspace.

leniw (long int) the number of integer values in the cvodes workspace.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes In terms of the problem size N , the maximum method order maxord, and the number
nrtfn of root functions (see §4.5.5), the actual size of the real workspace, in realtype

words, is given by the following:

• base value: lenrw = 96 + (maxord+5) ∗Nr + 3∗nrtfn;

• using CVodeSVtolerances: lenrw = lenrw +Nr;

• with constraint checking (see CVodeSetConstraints); lenrw = lenrw +Nr;

where Nr is the number of real words in one N Vector (≈ N).

The size of the integer workspace (without distinction between int and long int words)
is given by:

• base value: leniw = 40 + (maxord+5) ∗Ni + nrtfn;

• using CVodeSVtolerances: leniw = leniw +Ni;

• with constraint checking: lenrw = lenrw +Ni;

where Ni is the number of integer words in one N Vector (= 1 for nvector serial
and 2*npes for nvector parallel and npes processors).

For the default value of maxord, no rootfinding, no constraints, and without using
CVodeSVtolerances, these lengths are given roughly by:

• For the Adams method: lenrw = 96 + 17N and leniw = 57

• For the BDF method: lenrw = 96 + 10N and leniw = 50

Note that additional memory is allocated if quadratures and/or forward sensitivity
integration is enabled. See §4.7.1 and §5.2.1 for more details.

CVodeGetNumSteps

Call flag = CVodeGetNumSteps(cvode mem, &nsteps);

Description The function CVodeGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments cvode mem (void *) pointer to the cvodes memory block.

nsteps (long int) number of steps taken by cvodes.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.
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CVodeGetNumRhsEvals

Call flag = CVodeGetNumRhsEvals(cvode mem, &nfevals);

Description The function CVodeGetNumRhsEvals returns the number of calls to the user’s right-hand
side function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevals (long int) number of calls to the user’s f function.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The nfevals value returned by CVodeGetNumRhsEvals does not account for calls made
to f by a linear solver or preconditioner module.

CVodeGetNumLinSolvSetups

Call flag = CVodeGetNumLinSolvSetups(cvode mem, &nlinsetups);

Description The function CVodeGetNumLinSolvSetups returns the number of calls made to the
linear solver’s setup function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nlinsetups (long int) number of calls made to the linear solver setup function.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumErrTestFails

Call flag = CVodeGetNumErrTestFails(cvode mem, &netfails);

Description The function CVodeGetNumErrTestFails returns the number of local error test failures
that have occurred.

Arguments cvode mem (void *) pointer to the cvodes memory block.

netfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetLastOrder

Call flag = CVodeGetLastOrder(cvode mem, &qlast);

Description The function CVodeGetLastOrder returns the integration method order used during the
last internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

qlast (int) method order used on the last internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.
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CVodeGetCurrentOrder

Call flag = CVodeGetCurrentOrder(cvode mem, &qcur);

Description The function CVodeGetCurrentOrder returns the integration method order to be used
on the next internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

qcur (int) method order to be used on the next internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetLastStep

Call flag = CVodeGetLastStep(cvode mem, &hlast);

Description The function CVodeGetLastStep returns the integration step size taken on the last
internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hlast (realtype) step size taken on the last internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetCurrentStep

Call flag = CVodeGetCurrentStep(cvode mem, &hcur);

Description The function CVodeGetCurrentStep returns the integration step size to be attempted
on the next internal step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetActualInitStep

Call flag = CVodeGetActualInitStep(cvode mem, &hinused);

Description The function CVodeGetActualInitStep returns the value of the integration step size
used on the first step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to CVodeSetInitStep, this value might have been changed by cvodes to ensure
that the step size is within the prescribed bounds (hmin ≤ h0 ≤ hmax), or to satisfy the
local error test condition.
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CVodeGetCurrentTime

Call flag = CVodeGetCurrentTime(cvode mem, &tcur);

Description The function CVodeGetCurrentTime returns the current internal time reached by the
solver.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumStabLimOrderReds

Call flag = CVodeGetNumStabLimOrderReds(cvode mem, &nslred);

Description The function CVodeGetNumStabLimOrderReds returns the number of order reductions
dictated by the BDF stability limit detection algorithm (see §2.3).

Arguments cvode mem (void *) pointer to the cvodes memory block.

nslred (long int) number of order reductions due to stability limit detection.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes If the stability limit detection algorithm was not initialized (CVodeSetStabLimDet was
not called), then nslred = 0.

CVodeGetTolScaleFactor

Call flag = CVodeGetTolScaleFactor(cvode mem, &tolsfac);

Description The function CVodeGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tolsfac (realtype) suggested scaling factor for user-supplied tolerances.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetErrWeights

Call flag = CVodeGetErrWeights(cvode mem, eweight);

Description The function CVodeGetErrWeights returns the solution error weights at the current
time. These are the reciprocals of the Wi given by (2.8).

Arguments cvode mem (void *) pointer to the cvodes memory block.

eweight (N Vector) solution error weights at the current time.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The user must allocate memory for eweight.!
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CVodeGetEstLocalErrors

Call flag = CVodeGetEstLocalErrors(cvode mem, ele);

Description The function CVodeGetEstLocalErrors returns the vector of estimated local errors.

Arguments cvode mem (void *) pointer to the cvodes memory block.

ele (N Vector) estimated local errors.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The user must allocate memory for ele. !

The values returned in ele are valid only if CVode returned a non-negative value.

The ele vector, togther with the eweight vector from CVodeGetErrWeights, can be
used to determine how the various components of the system contributed to the es-
timated local error test. Specifically, that error test uses the RMS norm of a vector
whose components are the products of the components of these two vectors. Thus, for
example, if there were recent error test failures, the components causing the failures are
those with largest values for the products, denoted loosely as eweight[i]*ele[i].

CVodeGetIntegratorStats

Call flag = CVodeGetIntegratorStats(cvode mem, &nsteps, &nfevals,

&nlinsetups, &netfails, &qlast, &qcur,

&hinused, &hlast, &hcur, &tcur);

Description The function CVodeGetIntegratorStats returns the cvodes integrator statistics as a
group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nsteps (long int) number of steps taken by cvodes.

nfevals (long int) number of calls to the user’s f function.

nlinsetups (long int) number of calls made to the linear solver setup function.

netfails (long int) number of error test failures.

qlast (int) method order used on the last internal step.

qcur (int) method order to be used on the next internal step.

hinused (realtype) actual value of initial step size.

hlast (realtype) step size taken on the last internal step.

hcur (realtype) step size to be attempted on the next internal step.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV SUCCESS the optional output values have been successfully set.

CV MEM NULL the cvode mem pointer is NULL.

CVodeGetNumNonlinSolvIters

Call flag = CVodeGetNumNonlinSolvIters(cvode mem, &nniters);

Description The function CVodeGetNumNonlinSolvIters returns the number of nonlinear iterations
performed.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of
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CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV MEM FAIL The sunnonlinsol module is NULL.

CVodeGetNumNonlinSolvConvFails

Call flag = CVodeGetNumNonlinSolvConvFails(cvode mem, &nncfails);

Description The function CVodeGetNumNonlinSolvConvFails returns the number of nonlinear con-
vergence failures that have occurred.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNonlinSolvStats

Call flag = CVodeGetNonlinSolvStats(cvode mem, &nniters, &nncfails);

Description The function CVodeGetNonlinSolvStats returns the cvodes nonlinear solver statistics
as a group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nniters (long int) number of nonlinear iterations performed.

nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV MEM FAIL The sunnonlinsol module is NULL.

CVodeGetReturnFlagName

Call name = CVodeGetReturnFlagName(flag);

Description The function CVodeGetReturnFlagName returns the name of the cvodes constant cor-
responding to flag.

Arguments The only argument, of type int, is a return flag from a cvodes function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.9.3 Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

CVodeGetRootInfo

Call flag = CVodeGetRootInfo(cvode mem, rootsfound);

Description The function CVodeGetRootInfo returns an array showing which functions were found
to have a root.

Arguments cvode mem (void *) pointer to the cvodes memory block.

rootsfound (int *) array of length nrtfn with the indices of the user functions gi
found to have a root. For i = 0, . . . ,nrtfn−1, rootsfound[i] 6= 0 if gi has a
root, and = 0 if not.
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Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes Note that, for the components gi for which a root was found, the sign of rootsfound[i]
indicates the direction of zero-crossing. A value of +1 indicates that gi is increasing,
while a value of −1 indicates a decreasing gi.

The user must allocate memory for the vector rootsfound. !

CVodeGetNumGEvals

Call flag = CVodeGetNumGEvals(cvode mem, &ngevals);

Description The function CVodeGetNumGEvals returns the cumulative number of calls made to the
user-supplied root function g.

Arguments cvode mem (void *) pointer to the cvodes memory block.

ngevals (long int) number of calls made to the user’s function g thus far.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

4.5.9.4 cvls linear solver interface optional output functions

The following optional outputs are available from the cvls modules: workspace requirements, number
of calls to the Jacobian routine, number of calls to the right-hand side routine for finite-difference
Jacobian or Jacobian-vector product approximation, number of linear iterations, number of linear
convergence failures, number of calls to the preconditioner setup and solve routines, number of calls
to the Jacobian-vector setup and product routines, and last return value from a linear solver function.
Note that, where the name of an output would otherwise conflict with the name of an optional output
from the main solver, a suffix LS (for Linear Solver) has been added (e.g. lenrwLS).

CVodeGetLinWorkSpace

Call flag = CVodeGetLinWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVodeGetLinWorkSpace returns the sizes of the real and integer workspaces
used by the cvls linear solver interface.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrwLS (long int) the number of realtype values in the cvls workspace.

leniwLS (long int) the number of integer values in the cvls workspace.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional output values have been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within this interface and to memory allocated by the sunlinsol object attached
to it. The template Jacobian matrix allocated by the user outside of cvls is not included
in this report.

The previous routines CVDlsGetWorkspace and CVSpilsGetWorkspace are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these
will be deprecated in future releases, so we recommend that users transition to the new
routine name soon.
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CVodeGetNumJacEvals

Call flag = CVodeGetNumJacEvals(cvode mem, &njevals);

Description The function CVodeGetNumJacEvals returns the number of calls made to the cvls
Jacobian approximation function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

njevals (long int) the number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional output value has been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

Notes The previous routine CVDlsGetNumJacEvals is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

CVodeGetNumLinRhsEvals

Call flag = CVodeGetNumLinRhsEvals(cvode mem, &nfevalsLS);

Description The function CVodeGetNumLinRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference Jacobian approximation or
finite difference Jacobian-vector product approximation.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional output value has been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if one of the default internal difference quotient
functions is used.

The previous routines CVDlsGetNumRhsEvals and CVSpilsGetNumRhsEvals are now
wrappers for this routine, and may still be used for backward-compatibility. However,
these will be deprecated in future releases, so we recommend that users transition to
the new routine name soon.

CVodeGetNumLinIters

Call flag = CVodeGetNumLinIters(cvode mem, &nliters);

Description The function CVodeGetNumLinIters returns the cumulative number of linear iterations.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional output value has been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

Notes The previous routine CVSpilsGetNumLinIters is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.
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CVodeGetNumLinConvFails

Call flag = CVodeGetNumLinConvFails(cvode mem, &nlcfails);

Description The function CVodeGetNumLinConvFails returns the cumulative number of linear con-
vergence failures.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional output value has been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

Notes The previous routine CVSpilsGetNumConvFails is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

CVodeGetNumPrecEvals

Call flag = CVodeGetNumPrecEvals(cvode mem, &npevals);

Description The function CVodeGetNumPrecEvals returns the number of preconditioner evaluations,
i.e., the number of calls made to psetup with jok = SUNFALSE.

Arguments cvode mem (void *) pointer to the cvodes memory block.

npevals (long int) the current number of calls to psetup.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional output value has been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

Notes The previous routine CVSpilsGetNumPrecEvals is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

CVodeGetNumPrecSolves

Call flag = CVodeGetNumPrecSolves(cvode mem, &npsolves);

Description The function CVodeGetNumPrecSolves returns the cumulative number of calls made to
the preconditioner solve function, psolve.

Arguments cvode mem (void *) pointer to the cvodes memory block.

npsolves (long int) the current number of calls to psolve.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional output value has been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

Notes The previous routine CVSpilsGetNumPrecSolves is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.
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CVodeGetNumJTSetupEvals

Call flag = CVodeGetNumJTSetupEvals(cvode mem, &njtsetup);

Description The function CVodeGetNumJTSetupEvals returns the cumulative number of calls made
to the Jacobian-vector setup function jtsetup.

Arguments cvode mem (void *) pointer to the cvodes memory block.

njtsetup (long int) the current number of calls to jtsetup.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional output value has been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

Notes The previous routine CVSpilsGetNumJTSetupEvals is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

CVodeGetNumJtimesEvals

Call flag = CVodeGetNumJtimesEvals(cvode mem, &njvevals);

Description The function CVodeGetNumJtimesEvals returns the cumulative number of calls made
to the Jacobian-vector function jtimes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

njvevals (long int) the current number of calls to jtimes.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional output value has been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

Notes The previous routine CVSpilsGetNumJtimesEvals is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

CVodeGetLastLinFlag

Call flag = CVodeGetLastLinFlag(cvode mem, &lsflag);

Description The function CVodeGetLastFlag returns the last return value from a cvls routine.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lsflag (long int) the value of the last return flag from a cvls function.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional output value has been successfully set.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

Notes If the cvls setup function failed (i.e., CVode returned CV LSETUP FAIL) when using the
sunlinsol dense or sunlinsol band modules, then the value of lsflag is equal to the
column index (numbered from one) at which a zero diagonal element was encountered
during the LU factorization of the (dense or banded) Jacobian matrix.

If the cvls setup function failed when using another sunlinsol module, then lsflag

will be SUNLS PSET FAIL UNREC, SUNLS ASET FAIL UNREC, or
SUNLS PACKAGE FAIL UNREC.
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If the cvls solve function failed (i.e., CVode returned CV LSOLVE FAIL), then lsflag

contains the error return flag from the sunlinsol object, which will be one of:
SUNLS MEM NULL, indicating that the sunlinsol memory is NULL;
SUNLS ATIMES FAIL UNREC, indicating an unrecoverable failure in the Jv function;
SUNLS PSOLVE FAIL UNREC, indicating that the preconditioner solve function psolve

failed unrecoverably; SUNLS GS FAIL, indicating a failure in the Gram-Schmidt pro-
cedure (spgmr and spfgmr only); SUNLS QRSOL FAIL, indicating that the matrix R
was found to be singular during the QR solve phase (spgmr and spfgmr only); or
SUNLS PACKAGE FAIL UNREC, indicating an unrecoverable failure in an external iterative
linear solver package.

The previous routines CVDlsGetLastFlag and CVSpilsGetLastFlag are now wrappers
for this routine, and may still be used for backward-compatibility. However, these will
be deprecated in future releases, so we recommend that users transition to the new
routine name soon.

CVodeGetLinReturnFlagName

Call name = CVodeGetLinReturnFlagName(lsflag);

Description The function CVodeGetLinReturnFlagName returns the name of the cvls constant cor-
responding to lsflag.

Arguments The only argument, of type long int, is a return flag from a cvls function.

Return value The return value is a string containing the name of the corresponding constant.

If 1 ≤ lsflag ≤ N (LU factorization failed), this routine returns “NONE”.

Notes The previous routines CVDlsGetReturnFlagName and CVSpilsGetReturnFlagName are
now wrappers for this routine, and may still be used for backward-compatibility. How-
ever, these will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.

4.5.9.5 Diagonal linear solver interface optional output functions

The following optional outputs are available from the cvdiag module: workspace requirements, num-
ber of calls to the right-hand side routine for finite-difference Jacobian approximation, and last return
value from a cvdiag function. Note that, where the name of an output would otherwise conflict with
the name of an optional output from the main solver, a suffix LS (for Linear Solver) has been added
here (e.g. lenrwLS).

CVDiagGetWorkSpace

Call flag = CVDiagGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVDiagGetWorkSpace returns the cvdiag real and integer workspace sizes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrwLS (long int) the number of realtype values in the cvdiag workspace.

leniwLS (long int) the number of integer values in the cvdiag workspace.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output valus have been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes In terms of the problem size N , the actual size of the real workspace is roughly 3N
realtype words.
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CVDiagGetNumRhsEvals

Call flag = CVDiagGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVDiagGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference Jacobian approximation.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output value has been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes The number of diagonal approximate Jacobians formed is equal to the number of calls
made to the linear solver setup function (see CVodeGetNumLinSolvSetups).

CVDiagGetLastFlag

Call flag = CVDiagGetLastFlag(cvode mem, &lsflag);

Description The function CVDiagGetLastFlag returns the last return value from a cvdiag routine.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lsflag (long int) the value of the last return flag from a cvdiag function.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output value has been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes If the cvdiag setup function failed (CVode returned CV LSETUP FAIL), the value of
lsflag is equal to CVDIAG INV FAIL, indicating that a diagonal element with value zero
was encountered. The same value is also returned if the cvdiag solve function failed
(CVode returned CV LSOLVE FAIL).

CVDiagGetReturnFlagName

Call name = CVDiagGetReturnFlagName(lsflag);

Description The function CVDiagGetReturnFlagName returns the name of the cvdiag constant
corresponding to lsflag.

Arguments The only argument, of type long int, is a return flag from a cvdiag function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.10 CVODES reinitialization function

The function CVodeReInit reinitializes the main cvodes solver for the solution of a new problem,
where a prior call to CVodeInit been made. The new problem must have the same size as the
previous one. CVodeReInit performs the same input checking and initializations that CVodeInit

does, but does no memory allocation, as it assumes that the existing internal memory is sufficient
for the new problem. A call to CVodeReInit deletes the solution history that was stored internally
during the previous integration. Following a successful call to CVodeReInit, call CVode again for the
solution of the new problem.

The use of CVodeReInit requires that the maximum method order, denoted by maxord, be no
larger for the new problem than for the previous problem. This condition is automatically fulfilled
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if the multistep method parameter lmm is unchanged (or changed from CV ADAMS to CV BDF) and the
default value for maxord is specified.

If there are changes to the linear solver specifications, make the appropriate calls to either the
linear solver objects themselves, or to the cvls interface routines, as described in §4.5.3. Otherwise,
all solver inputs set previously remain in effect.

One important use of the CVodeReInit function is in the treating of jump discontinuities in the
RHS function. Except in cases of fairly small jumps, it is usually more efficient to stop at each point
of discontinuity and restart the integrator with a readjusted ODE model, using a call to CVodeReInit.
To stop when the location of the discontinuity is known, simply make that location a value of tout. To
stop when the location of the discontinuity is determined by the solution, use the rootfinding feature.
In either case, it is critical that the RHS function not incorporate the discontinuity, but rather have
a smooth extention over the discontinuity, so that the step across it (and subsequent rootfinding, if
used) can be done efficiently. Then use a switch within the RHS function (communicated through
user data) that can be flipped between the stopping of the integration and the restart, so that the
restarted problem uses the new values (which have jumped). Similar comments apply if there is to be
a jump in the dependent variable vector.

CVodeReInit

Call flag = CVodeReInit(cvode mem, t0, y0);

Description The function CVodeReInit provides required problem specifications and reinitializes
cvodes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInit was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO MALLOC Memory space for the cvodes memory block was not allocated through
a previous call to CVodeInit.

CV ILL INPUT An input argument to CVodeReInit has an illegal value.

Notes If an error occurred, CVodeReInit also sends an error message to the error handler
function.

4.6 User-supplied functions

The user-supplied functions consist of one function defining the ODE, (optionally) a function that
handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) one or two functions that provide Jacobian-related information for the linear solver, and
(optionally) one or two functions that define the preconditioner for use in any of the Krylov iterative
algorithms.

4.6.1 ODE right-hand side

The user must provide a function of type CVRhsFn defined as follows:

CVRhsFn

Definition typedef int (*CVRhsFn)(realtype t, N Vector y, N Vector ydot,

void *user data);
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Purpose This function computes the ODE right-hand side for a given value of the independent
variable t and state vector y.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

ydot is the output vector f(t, y).

user data is the user data pointer passed to CVodeSetUserData.

Return value A CVRhsFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CV RHSFUNC FAIL is returned).

Notes Allocation of memory for ydot is handled within cvodes.

A recoverable failure error return from the CVRhsFn is typically used to flag a value
of the dependent variable y that is “illegal” in some way (e.g., negative where only a
non-negative value is physically meaningful). If such a return is made, cvodes will
attempt to recover (possibly repeating the nonlinear solve, or reducing the step size) in
order to avoid this recoverable error return.

For efficiency reasons, the right-hand side function is not evaluated at the converged
solution of the nonlinear solver. Therefore, in general, a recoverable error in that con-
verged value cannot be corrected. (It may be detected when the right-hand side function
is called the first time during the following integration step, but a successful step can-
not be undone.) However, if the user program also includes quadrature integration, the
state variables can be checked for legality in the call to CVQuadRhsFn, which is called
at the converged solution of the nonlinear system, and therefore cvodes can be flagged
to attempt to recover from such a situation. Also, if sensitivity analysis is performed
with one of the staggered methods, the ODE right-hand side function is called at the
converged solution of the nonlinear system, and a recoverable error at that point can
be flagged, and cvodes will then try to correct it.

There are two other situations in which recovery is not possible even if the right-hand
side function returns a recoverable error flag. One is when this occurs at the very
first call to the CVRhsFn (in which case cvodes returns CV FIRST RHSFUNC ERR). The
other is when a recoverable error is reported by CVRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case cvodes returns
CV UNREC RHSFUNC ERR).

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed
to by errfp (see CVodeSetErrFile), the user may provide a function of type CVErrHandlerFn to
process any such messages. The function type CVErrHandlerFn is defined as follows:

CVErrHandlerFn

Definition typedef void (*CVErrHandlerFn)(int error code, const char *module,

const char *function, char *msg,

void *eh data);

Purpose This function processes error and warning messages from cvodes and its sub-modules.

Arguments error code is the error code.

module is the name of the cvodes module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.

eh data is a pointer to user data, the same as the eh data parameter passed to
CVodeSetErrHandlerFn.
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Return value A CVErrHandlerFn function has no return value.

Notes error code is negative for errors and positive (CV WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function
of type CVEwtFn to compute a vector ewt containing the weights in the WRMS norm ‖ v‖WRMS =√

(1/N)
∑N

1 (Wi · vi)2. These weights will be used in place of those defined by Eq. (2.8). The function

type CVEwtFn is defined as follows:

CVEwtFn

Definition typedef int (*CVEwtFn)(N Vector y, N Vector ewt, void *user data);

Purpose This function computes the WRMS error weights for the vector y.

Arguments y is the value of the dependent variable vector at which the weight vector is
to be computed.

ewt is the output vector containing the error weights.

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

Return value A CVEwtFn function type must return 0 if it successfully set the error weights and −1
otherwise.

Notes Allocation of memory for ewt is handled within cvodes.

The error weight vector must have all components positive. It is the user’s responsiblity !

to perform this test and return −1 if it is not satisfied.

4.6.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must
supply a C function of type CVRootFn, defined as follows:

CVRootFn

Definition typedef int (*CVRootFn)(realtype t, N Vector y, realtype *gout,

void *user data);

Purpose This function implements a vector-valued function g(t, y) such that the roots of the
nrtfn components gi(t, y) are sought.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

gout is the output array, of length nrtfn, with components gi(t, y).

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

Return value A CVRootFn should return 0 if successful or a non-zero value if an error occurred (in
which case the integration is halted and CVode returns CV RTFUNC FAIL).

Notes Allocation of memory for gout is automatically handled within cvodes.

4.6.5 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e., a non-NULL sunmatrix object was supplied to
CVodeSetLinearSolver), the user may provide a function of type CVLsJacFn defined as follows:
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CVLsJacFn

Definition typedef int (*CVLsJacFn)(realtype t, N Vector y, N Vector fy,

SUNMatrix Jac, void *user data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the Jacobian matrix J = ∂f/∂y (or an approximation to it).

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t, y).

Jac is the output Jacobian matrix (of type SUNMatrix).

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by a CVLsJacFn function as temporary storage or work space.

Return value A CVLsJacFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case cvodes will attempt to correct, while cvls sets last flag to
CVLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVodes returns CV LSETUP FAIL and cvls sets last flag

to CVLS JACFUNC UNRECVR).

Notes Information regarding the structure of the specific sunmatrix structure (e.g. number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific sunmatrix interface functions (see Chapter 8 for details).

Prior to calling the user-supplied Jacobian function, the Jacobian matrix J(t, y) is zeroed
out, so only nonzero elements need to be loaded into Jac.

If the user’s CVLsJacFn function uses difference quotient approximations, then it may
need to access quantities not in the argument list. These include the current step size,
the error weights, etc. To obtain these, the user will need to add a pointer to cv mem

to user data and then use the CVodeGet* functions described in §4.5.9.2. The unit
roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

dense:
A user-supplied dense Jacobian function must load the N by N dense matrix Jac with
an approximation to the Jacobian matrix J(t, y) at the point (t, y). The accessor
macros SM ELEMENT D and SM COLUMN D allow the user to read and write dense matrix
elements without making explicit references to the underlying representation of the sun-
matrix dense type. SM ELEMENT D(J, i, j) references the (i, j)-th element of the
dense matrix Jac (with i, j = 0 . . . N − 1). This macro is meant for small problems
for which efficiency of access is not a major concern. Thus, in terms of the indices
m and n ranging from 1 to N , the Jacobian element Jm,n can be set using the state-
ment SM ELEMENT D(J, m-1, n-1) = Jm,n. Alternatively, SM COLUMN D(J, j) returns
a pointer to the first element of the j-th column of Jac (with j = 0 . . . N− 1), and the
elements of the j-th column can then be accessed using ordinary array indexing. Con-
sequently, Jm,n can be loaded using the statements col n = SM COLUMN D(J, n-1);

col n[m-1] = Jm,n. For large problems, it is more efficient to use SM COLUMN D than to
use SM ELEMENT D. Note that both of these macros number rows and columns starting
from 0. The sunmatrix dense type and accessor macros are documented in §8.2.

banded:
A user-supplied banded Jacobian function must load the N by N banded matrix Jac

with the elements of the Jacobian J(t, y) at the point (t,y). The accessor macros
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SM ELEMENT B, SM COLUMN B, and SM COLUMN ELEMENT B allow the user to read and write
band matrix elements without making specific references to the underlying representa-
tion of the sunmatrix band type. SM ELEMENT B(J, i, j) references the (i, j)-th
element of the band matrix Jac, counting from 0. This macro is meant for use in small
problems for which efficiency of access is not a major concern. Thus, in terms of the
indices m and n ranging from 1 to N with (m,n) within the band defined by mupper and
mlower, the Jacobian element Jm,n can be loaded using the statement SM ELEMENT B(J,

m-1, n-1) = Jm,n. The elements within the band are those with -mupper ≤ m-n ≤
mlower. Alternatively, SM COLUMN B(J, j) returns a pointer to the diagonal element
of the j-th column of Jac, and if we assign this address to realtype *col j, then
the i-th element of the j-th column is given by SM COLUMN ELEMENT B(col j, i, j),
counting from 0. Thus, for (m,n) within the band, Jm,n can be loaded by setting col n

= SM COLUMN B(J, n-1); SM COLUMN ELEMENT B(col n, m-1, n-1) = Jm,n. The ele-
ments of the j-th column can also be accessed via ordinary array indexing, but this
approach requires knowledge of the underlying storage for a band matrix of type sun-
matrix band. The array col n can be indexed from −mupper to mlower. For large
problems, it is more efficient to use SM COLUMN B and SM COLUMN ELEMENT B than to
use the SM ELEMENT B macro. As in the dense case, these macros all number rows and
columns starting from 0. The sunmatrix band type and accessor macros are docu-
mented in §8.3.

sparse:
A user-supplied sparse Jacobian function must load the N by N compressed-sparse-
column or compressed-sparse-row matrix Jac with an approximation to the Jacobian
matrix J(t, y) at the point (t, y). Storage for Jac already exists on entry to this func-
tion, although the user should ensure that sufficient space is allocated in Jac to hold the
nonzero values to be set; if the existing space is insufficient the user may reallocate the
data and index arrays as needed. The amount of allocated space in a sunmatrix sparse
object may be accessed using the macro SM NNZ S or the routine SUNSparseMatrix NNZ.
The sunmatrix sparse type and accessor macros are documented in §8.4.

The previous function type CVDlsJacFn is identical to CVLsJacFn, and may still be used
for backward-compatibility. However, this will be deprecated in future releases, so we
recommend that users transition to the new function type name soon.

4.6.6 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued sunmatrix was supplied to
CVodeSetLinearSolver), the user may provide a function of type CVLsJacTimesVecFn in the following
form, to compute matrix-vector products Jv. If such a function is not supplied, the default is a
difference quotient approximation to these products.

CVLsJacTimesVecFn

Definition typedef int (*CVLsJacTimesVecFn)(N Vector v, N Vector Jv,

realtype t, N Vector y, N Vector fy,

void *user data, N Vector tmp);

Purpose This function computes the product Jv = (∂f/∂y)v (or an approximation to it).

Arguments v is the vector by which the Jacobian must be multiplied.

Jv is the output vector computed.

t is the current value of the independent variable.

y is the current value of the dependent variable vector.

fy is the current value of the vector f(t, y).

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.
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tmp is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.

Return value The value returned by the Jacobian-vector product function should be 0 if successful.
Any other return value will result in an unrecoverable error of the generic Krylov solver,
in which case the integration is halted.

Notes This function must return a value of J ∗ v that uses the current value of J , i.e. as
evaluated at the current (t, y).
If the user’s CVLsJacTimesVecFn function uses difference quotient approximations, it
may need to access quantities not in the argument list. These include the current step
size, the error weights, etc. To obtain these, the user will need to add a pointer to
cv mem to user data and then use the CVodeGet* functions described in §4.5.9.2. The
unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

The previous function type CVSpilsJacTimesVecFn is identical to CVLsJacTimesVecFn,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

4.6.7 Jacobian-vector product setup (matrix-free linear solvers)

If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed
or evaluated, then this needs to be done in a user-supplied function of type CVLsJacTimesSetupFn,
defined as follows:

CVLsJacTimesSetupFn

Definition typedef int (*CVLsJacTimesSetupFn)(realtype t, N Vector y,

N Vector fy, void *user data);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the Jacobian-
times-vector routine.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector.

fy is the current value of the vector f(t, y).

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the CVRhsFn

user function with the same (t,y) arguments. Thus, the setup function can use any
auxiliary data that is computed and saved during the evaluation of the ODE right-hand
side.

If the user’s CVLsJacTimesSetupFn function uses difference quotient approximations,
it may need to access quantities not in the argument list. These include the current
step size, the error weights, etc. To obtain these, the user will need to add a pointer to
cv mem to user data and then use the CVodeGet* functions described in §4.5.9.2. The
unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

The previous function type CVSpilsJacTimesSetupFn is identical to
CVLsJacTimesSetupFn, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.
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4.6.8 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a sunlinsol solver module, then the user must
provide a function to solve the linear system Pz = r, where P may be either a left or right pre-
conditioner matrix. Here P should approximate (at least crudely) the matrix M = I − γJ , where
J = ∂f/∂y. If preconditioning is done on both sides, the product of the two preconditioner matrices
should approximate M . This function must be of type CVLsPrecSolveFn, defined as follows:

CVLsPrecSolveFn

Definition typedef int (*CVLsPrecSolveFn)(realtype t, N Vector y, N Vector fy,

N Vector r, N Vector z, realtype gamma,

realtype delta, int lr, void *user data);

Purpose This function solves the preconditioned system Pz = r.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector.

fy is the current value of the vector f(t, y).

r is the right-hand side vector of the linear system.

z is the computed output vector.

gamma is the scalar γ appearing in the matrix given by M = I − γJ .

delta is an input tolerance to be used if an iterative method is employed in the
solution. In that case, the residual vector Res = r−Pz of the system should
be made less than delta in the weighted l2 norm, i.e.,

√∑
i(Resi · ewti)2 <

delta. To obtain the N Vector ewt, call CVodeGetErrWeights (see §4.5.9.2).

lr is an input flag indicating whether the preconditioner solve function is to
use the left preconditioner (lr = 1) or the right preconditioner (lr = 2);

user data is a pointer to user data, the same as the user data parameter passed to
the function CVodeSetUserData.

Return value The value returned by the preconditioner solve function is a flag indicating whether it
was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

Notes The previous function type CVSpilsPrecSolveFn is identical to CVLsPrecSolveFn, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new function type name soon.

4.6.9 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type CVLsPrecSetupFn, defined as follows:

CVLsPrecSetupFn

Definition typedef int (*CVLsPrecSetupFn)(realtype t, N Vector y, N Vector fy,

booleantype jok, booleantype *jcurPtr,

realtype gamma, void *user data);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t, y).
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jok is an input flag indicating whether the Jacobian-related data needs to be
updated. The jok argument provides for the reuse of Jacobian data in the
preconditioner solve function. jok = SUNFALSE means that the Jacobian-
related data must be recomputed from scratch. jok = SUNTRUE means that
the Jacobian data, if saved from the previous call to this function, can be
reused (with the current value of gamma). A call with jok = SUNTRUE can
only occur after a call with jok = SUNFALSE.

jcurPtr is a pointer to a flag which should be set to SUNTRUE if Jacobian data was
recomputed, or set to SUNFALSE if Jacobian data was not recomputed, but
saved data was still reused.

gamma is the scalar γ appearing in the matrix M = I − γJ .

user data is a pointer to user data, the same as the user data parameter passed to
the function CVodeSetUserData.

Return value The value returned by the preconditioner setup function is a flag indicating whether it
was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

Notes The operations performed by this function might include forming a crude approximate
Jacobian and performing an LU factorization of the resulting approximation to M =
I − γJ .

Each call to the preconditioner setup function is preceded by a call to the CVRhsFn user
function with the same (t,y) arguments. Thus, the preconditioner setup function can
use any auxiliary data that is computed and saved during the evaluation of the ODE
right-hand side.

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the nonlinear
solver.

If the user’s CVLsPrecSetupFn function uses difference quotient approximations, it may
need to access quantities not in the call list. These include the current step size, the
error weights, etc. To obtain these, the user will need to add a pointer to cv mem

to user data and then use the CVodeGet* functions described in §4.5.9.2. The unit
roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

The previous function type CVSpilsPrecSetupFn is identical to CVLsPrecSetupFn, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new function type name soon.

4.7 Integration of pure quadrature equations

cvodes allows the ODE system to include pure quadratures. In this case, it is more efficient to treat
the quadratures separately by excluding them from the nonlinear solution stage. To do this, begin by
excluding the quadrature variables from the vector y and excluding the quadrature equations from
within res. Thus a separate vector yQ of quadrature variables is to satisfy (d/dt)yQ = fQ(t, y). The
following is an overview of the sequence of calls in a user’s main program in this situation. Steps that
are unchanged from the skeleton program presented in §4.4 are grayed out.

1. Initialize parallel or multi-threaded environment, if appropriate

2. Set problem dimensions, etc.

Set the problem size N (excluding quadrature variables), and the number of quadrature variables
Nq.

If appropriate, set the local vector length Nlocal (excluding quadrature variables), and the local
number of quadrature variables Nqlocal.
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3. Set vector of initial values

4. Create cvodes object

5. Initialize cvodes solver

6. Specify integration tolerances

7. Create matrix object

8. Create linear solver object

9. Set linear solver optional inputs

10. Attach linear solver module

11. Set optional inputs

12. Attach nonlinear solver module

13. Set nonlinear solver optional inputs

14. Set vector yQ0 of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

15. Initialize quadrature integration

Call CVodeQuadInit to specify the quadrature equation right-hand side function and to allocate
internal memory related to quadrature integration. See §4.7.1 for details.

16. Set optional inputs for quadrature integration

Call CVodeSetQuadErrCon to indicate whether or not quadrature variables shoule be used in the
step size control mechanism, and to specify the integration tolerances for quadrature variables.
See §4.7.4 for details.

17. Advance solution in time

18. Extract quadrature variables

Call CVodeGetQuad to obtain the values of the quadrature variables at the current time. See §4.7.3
for details.

19. Get optional outputs

20. Get quadrature optional outputs

Call CVodeGetQuad* functions to obtain optional output related to the integration of quadratures.
See §4.7.5 for details.

21. Deallocate memory for solution vector and for the vector of quadrature variables

22. Free solver memory

23. Free nonlinear solver memory

24. Free linear solver and matrix memory

25. Finalize MPI, if used

CVodeQuadInit can be called and quadrature-related optional inputs (step 16 above) can be set
anywhere between steps 4 and 17.
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4.7.1 Quadrature initialization and deallocation functions

The function CVodeQuadInit activates integration of quadrature equations and allocates internal
memory related to these calculations. The form of the call to this function is as follows:

CVodeQuadInit

Call flag = CVodeQuadInit(cvode mem, fQ, yQ0);

Description The function CVodeQuadInit provides required problem specifications, allocates internal
memory, and initializes quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

fQ (CVQuadRhsFn) is the C function which computes fQ, the right-hand side
of the quadrature equations. This function has the form fQ(t, y, yQdot,

fQ data) (for full details see §4.7.6).

yQ0 (N Vector) is the initial value of yQ (typically yQ0 has all zero components).

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadInit was successful.

CV MEM NULL The cvodes memory was not initialized by a prior call to CVodeCreate.

CV MEM FAIL A memory allocation request failed.

Notes If an error occurred, CVodeQuadInit also sends an error message to the error handler
function.

In terms of the number of quadrature variables Nq and maximum method order maxord, the size of
the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)Nq

• If using CVodeSVtolerances (see CVodeSetQuadErrCon): lenrw = lenrw +Nq

the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)Nq

• If using CVodeSVtolerances: leniw = leniw +Nq

The function CVodeQuadReInit, useful during the solution of a sequence of problems of same size,
reinitializes the quadrature-related internal memory and must follow a call to CVodeQuadInit (and
maybe a call to CVodeReInit). The number Nq of quadratures is assumed to be unchanged from the
prior call to CVodeQuadInit. The call to the CVodeQuadReInit function has the following form:

CVodeQuadReInit

Call flag = CVodeQuadReInit(cvode mem, yQ0);

Description The function CVodeQuadReInit provides required problem specifications and reinitial-
izes the quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

yQ0 (N Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInit was successful.

CV MEM NULL The cvodes memory was not initialized by a prior call to CVodeCreate.

CV NO QUAD Memory space for the quadrature integration was not allocated by a prior
call to CVodeQuadInit.

Notes If an error occurred, CVodeQuadReInit also sends an error message to the error handler
function.
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CVodeQuadFree

Call CVodeQuadFree(cvode mem);

Description The function CVodeQuadFree frees the memory allocated for quadrature integration.

Arguments The argument is the pointer to the cvodes memory block (of type void *).

Return value The function CVodeQuadFree has no return value.

Notes In general, CVodeQuadFree need not be called by the user as it is invoked automatically
by CVodeFree.

4.7.2 CVODES solver function

Even if quadrature integration was enabled, the call to the main solver function CVode is exactly the
same as in §4.5.6. However, in this case the return value flag can also be one of the following:
CV QRHSFUNC FAIL The quadrature right-hand side function failed in an unrecoverable manner.

CV FIRST QRHSFUNC FAIL The quadrature right-hand side function failed at the first call.

CV REPTD QRHSFUNC ERR Convergence test failures occurred too many times due to repeated recov-
erable errors in the quadrature right-hand side function. This value will
also be returned if the quadrature right-hand side function had repeated
recoverable errors during the estimation of an initial step size (assuming
the quadrature variables are included in the error tests).

CV UNREC RHSFUNC ERR The quadrature right-hand function had a recoverable error, but no recov-
ery was possible. This failure mode is rare, as it can occur only if the
quadrature right-hand side function fails recoverably after an error test
failed while at order one.

4.7.3 Quadrature extraction functions

If quadrature integration has been initialized by a call to CVodeQuadInit, or reinitialized by a call
to CVodeQuadReInit, then cvodes computes both a solution and quadratures at time t. However,
CVode will still return only the solution y in yout. Solution quadratures can be obtained using the
following function:

CVodeGetQuad

Call flag = CVodeGetQuad(cvode mem, &tret, yQ);

Description The function CVodeGetQuad returns the quadrature solution vector after a successful
return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype) the time reached by the solver (output).

yQ (N Vector) the computed quadrature vector. This vector must be allocated
by the user.

Return value The return value flag of CVodeGetQuad is one of:

CV SUCCESS CVodeGetQuad was successful.

CV MEM NULL cvode mem was NULL.

CV NO QUAD Quadrature integration was not initialized.

CV BAD DKY yQ is NULL.

Notes In case of an error return, an error message is also sent to the error handler function.

The function CVodeGetQuadDky computes the k-th derivatives of the interpolating polynomials for the
quadrature variables at time t. This function is called by CVodeGetQuad with k = 0 and with the
current time at which CVode has returned, but may also be called directly by the user.
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CVodeGetQuadDky

Call flag = CVodeGetQuadDky(cvode mem, t, k, dkyQ);

Description The function CVodeGetQuadDky returns derivatives of the quadrature solution vector
after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

t (realtype) the time at which quadrature information is requested. The
time t must fall within the interval defined by the last successful step taken
by cvodes.

k (int) order of the requested derivative. This must be ≤ qlast.

dkyQ (N Vector) the vector containing the derivative. This vector must be allo-
cated by the user.

Return value The return value flag of CVodeGetQuadDky is one of:

CV SUCCESS CVodeGetQuadDky succeeded.

CV MEM NULL The pointer to cvode mem was NULL.

CV NO QUAD Quadrature integration was not initialized.

CV BAD DKY The vector dkyQ is NULL.

CV BAD K k is not in the range 0, 1, . . . , qlast.

CV BAD T The time t is not in the allowed range.

Notes In case of an error return, an error message is also sent to the error handler function.

4.7.4 Optional inputs for quadrature integration

cvodes provides the following optional input functions to control the integration of quadrature equa-
tions.

CVodeSetQuadErrCon

Call flag = CVodeSetQuadErrCon(cvode mem, errconQ);

Description The function CVodeSetQuadErrCon specifies whether or not the quadrature variables are
to be used in the step size control mechanism within cvodes. If they are, the user must
call CVodeQuadSStolerances or CVodeQuadSVtolerances to specify the integration
tolerances for the quadrature variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

errconQ (booleantype) specifies whether quadrature variables are included (SUNTRUE)
or not (SUNFALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.

Notes By default, errconQ is set to SUNFALSE.

It is illegal to call CVodeSetQuadErrCon before a call to CVodeQuadInit.!

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.

CVodeQuadSStolerances

Call flag = CVodeQuadSVtolerances(cvode mem, reltolQ, abstolQ);

Description The function CVodeQuadSStolerances specifies scalar relative and absolute tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block.
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reltolQ (realtype) is the scalar relative error tolerance.

abstolQ (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV NO QUAD Quadrature integration was not initialized.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT One of the input tolerances was negative.

CVodeQuadSVtolerances

Call flag = CVodeQuadSVtolerances(cvode mem, reltolQ, abstolQ);

Description The function CVodeQuadSVtolerances specifies scalar relative and vector absolute tol-
erances.

Arguments cvode mem (void *) pointer to the cvodes memory block.

reltolQ (realtype) is the scalar relative error tolerance.

abstolQ (N Vector) is the vector absolute error tolerance.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV NO QUAD Quadrature integration was not initialized.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT One of the input tolerances was negative.

4.7.5 Optional outputs for quadrature integration

cvodes provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

CVodeGetQuadNumRhsEvals

Call flag = CVodeGetQuadNumRhsEvals(cvode mem, &nfQevals);

Description The function CVodeGetQuadNumRhsEvals returns the number of calls made to the user’s
quadrature right-hand side function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfQevals (long int) number of calls made to the user’s fQ function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.

CVodeGetQuadNumErrTestFails

Call flag = CVodeGetQuadNumErrTestFails(cvode mem, &nQetfails);

Description The function CVodeGetQuadNumErrTestFails returns the number of local error test
failures due to quadrature variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.
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CVodeGetQuadErrWeights

Call flag = CVodeGetQuadErrWeights(cvode mem, eQweight);

Description The function CVodeGetQuadErrWeights returns the quadrature error weights at the
current time.

Arguments cvode mem (void *) pointer to the cvodes memory block.

eQweight (N Vector) quadrature error weights at the current time.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.

Notes The user must allocate memory for eQweight.!

If quadratures were not included in the error control mechanism (through a call to
CVodeSetQuadErrCon with errconQ = SUNTRUE), CVodeGetQuadErrWeights does not
set the eQweight vector.

CVodeGetQuadStats

Call flag = CVodeGetQuadStats(cvode mem, &nfQevals, &nQetfails);

Description The function CVodeGetQuadStats returns the cvodes integrator statistics as a group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfQevals (long int) number of calls to the user’s fQ function.

nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of

CV SUCCESS the optional output values have been successfully set.

CV MEM NULL the cvode mem pointer is NULL.

CV NO QUAD Quadrature integration has not been initialized.

4.7.6 User-supplied function for quadrature integration

For integration of quadrature equations, the user must provide a function that defines the right-hand
side of the quadrature equations (in other words, the integrand function of the integral that must be
evaluated). This function must be of type CVQuadRhsFn defined as follows:

CVQuadRhsFn

Definition typedef int (*CVQuadRhsFn)(realtype t, N Vector y,

N Vector yQdot, void *user data);

Purpose This function computes the quadrature equation right-hand side for a given value of the
independent variable t and state vector y.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

yQdot is the output vector fQ(t, y).

user data is the user data pointer passed to CVodeSetUserData.

Return value A CVQuadRhsFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case cvodes will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV QRHSFUNC FAIL is re-
turned).
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Notes Allocation of memory for yQdot is automatically handled within cvodes.

Both y and yQdot are of type N Vector, but they typically have different internal
representations. It is the user’s responsibility to access the vector data consistently
(including the use of the correct accessor macros from each nvector implementation).
For the sake of computational efficiency, the vector functions in the two nvector
implementations provided with cvodes do not perform any consistency checks with
respect to their N Vector arguments (see §7.2 and §7.3).

There are two situations in which recovery is not possible even if CVQuadRhsFn func-
tion returns a recoverable error flag. One is when this occurs at the very first call to
the CVQuadRhsFn (in which case cvodes returns CV FIRST QRHSFUNC ERR). The other
is when a recoverable error is reported by CVQuadRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case cvodes returns
CV UNREC QRHSFUNC ERR).

4.8 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, cvodes provides a banded preconditioner in the module cvbandpre and a
band-block-diagonal preconditioner module cvbbdpre.

4.8.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with iterative sunlinsol modules
through the cvls linear solver interface, in a serial setting. It uses difference quotients of the ODE
right-hand side function f to generate a band matrix of bandwidth ml + mu + 1, where the number
of super-diagonals (mu, the upper half-bandwidth) and sub-diagonals (ml, the lower half-bandwidth)
are specified by the user, and uses this to form a preconditioner for use with the Krylov linear
solver. Although this matrix is intended to approximate the Jacobian ∂f/∂y, it may be a very crude
approximation. The true Jacobian need not be banded, or its true bandwidth may be larger than
ml + mu + 1, as long as the banded approximation generated here is sufficiently accurate to speed
convergence as a preconditioner.

In order to use the cvbandpre module, the user need not define any additional functions. Aside
from the header files required for the integration of the ODE problem (see §4.3), to use the cvbandpre
module, the main program must include the header file cvodes bandpre.h which declares the needed
function prototypes. The following is a summary of the usage of this module. Steps that are unchanged
from the skeleton program presented in §4.4 are grayed out.

1. Initialize multi-threaded environment, if appropriate

2. Set problem dimensions etc.

3. Set vector of initial values

4. Create cvodes object

5. Initialize cvodes solver

6. Specify integration tolerances

7. Create linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC LEFT

or PREC RIGHT) to use.

8. Set linear solver optional inputs
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9. Attach linear solver module

10. Initialize the cvbandpre preconditioner module

Specify the upper and lower half-bandwidths (mu and ml, respectively) and call

flag = CVBandPrecInit(cvode mem, N, mu, ml);

to allocate memory and initialize the internal preconditioner data.

11. Set optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to the CVodeSetPreconditioner optional input function.

12. Create nonlinear solver object

13. Attach nonlinear solver module

14. Set nonlinear solver optional inputs

15. Specify rootfinding problem

16. Advance solution in time

17. Get optional outputs

Additional optional outputs associated with cvbandpre are available by way of two routines
described below, CVBandPrecGetWorkSpace and CVBandPrecGetNumRhsEvals.

18. Deallocate memory for solution vector

19. Free solver memory

20. Free nonlinear solver memory

21. Free linear solver memory

The cvbandpre preconditioner module is initialized and attached by calling the following function:

CVBandPrecInit

Call flag = CVBandPrecInit(cvode mem, N, mu, ml);

Description The function CVBandPrecInit initializes the cvbandpre preconditioner and allocates
required (internal) memory for it.

Arguments cvode mem (void *) pointer to the cvodes memory block.

N (sunindextype) problem dimension.

mu (sunindextype) upper half-bandwidth of the Jacobian approximation.

ml (sunindextype) lower half-bandwidth of the Jacobian approximation.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The call to CVBandPrecInit was successful.

CVLS MEM NULL The cvode mem pointer was NULL.

CVLS MEM FAIL A memory allocation request has failed.

CVLS LMEM NULL A cvls linear solver memory was not attached.

CVLS ILL INPUT The supplied vector implementation was not compatible with block
band preconditioner.

Notes The banded approximate Jacobian will have nonzero elements only in locations (i, j)
with −ml ≤ j − i ≤ mu.

The following three optional output functions are available for use with the cvbandpre module:
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CVBandPrecGetWorkSpace

Call flag = CVBandPrecGetWorkSpace(cvode mem, &lenrwBP, &leniwBP);

Description The function CVBandPrecGetWorkSpace returns the sizes of the cvbandpre real and
integer workspaces.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrwBP (long int) the number of realtype values in the cvbandpre workspace.

leniwBP (long int) the number of integer values in the cvbandpre workspace.

Return value The return value flag (of type int) is one of:

CVLS SUCCESS The optional output values have been successfully set.

CVLS PMEM NULL The cvbandpre preconditioner has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory al-
located within the cvbandpre module (the banded matrix approximation, banded
sunlinsol object, and temporary vectors).

The workspaces referred to here exist in addition to those given by the corresponding
function CVodeGetLinWorkSpace.

CVBandPrecGetNumRhsEvals

Call flag = CVBandPrecGetNumRhsEvals(cvode mem, &nfevalsBP);

Description The function CVBandPrecGetNumRhsEvals returns the number of calls made to the
user-supplied right-hand side function for the finite difference banded Jacobian approx-
imation used within the preconditioner setup function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevalsBP (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of:

CVLS SUCCESS The optional output value has been successfully set.

CVLS PMEM NULL The cvbandpre preconditioner has not been initialized.

Notes The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corre-
sponding function CVodeGetNumLinRhsEvals and nfevals returned by
CVodeGetNumRhsEvals. The total number of right-hand side function evaluations is the
sum of all three of these counters.

4.8.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver such as cvodes lies in the solution of partial
differential equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many
such problems is motivated by the nature of the underlying linear system of equations (2.6) that must
be solved at each time step. The linear algebraic system is large, sparse, and structured. However, if
a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to
be used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably
slow. Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [30] and is
included in a software module within the cvodes package. This module works with the parallel vector
module nvector parallel and is usable with any of the Krylov iterative linear solvers through the
cvls interface. It generates a preconditioner that is a block-diagonal matrix with each block being
a band matrix. The blocks need not have the same number of super- and sub-diagonals and these
numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module is called
cvbbdpre.
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One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping subdomains. Each of these subdomains is then
assigned to one of the M processes to be used to solve the ODE system. The basic idea is to isolate the
preconditioning so that it is local to each process, and also to use a (possibly cheaper) approximate
right-hand side function. This requires the definition of a new function g(t, y) which approximates
the function f(t, y) in the definition of the ODE system (2.1). However, the user may set g = f .
Corresponding to the domain decomposition, there is a decomposition of the solution vector y into
M disjoint blocks ym, and a decomposition of g into blocks gm. The block gm depends both on ym
and on components of blocks ym′ associated with neighboring subdomains (so-called ghost-cell data).
Let ȳm denote ym augmented with those other components on which gm depends. Then we have

g(t, y) = [g1(t, ȳ1), g2(t, ȳ2), . . . , gM (t, ȳM )]T (4.1)

and each of the blocks gm(t, ȳm) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[P1, P2, . . . , PM ] (4.2)

where
Pm ≈ I − γJm (4.3)

and Jm is a difference quotient approximation to ∂gm/∂ym. This matrix is taken to be banded, with
upper and lower half-bandwidths mudq and mldq defined as the number of non-zero diagonals above
and below the main diagonal, respectively. The difference quotient approximation is computed using
mudq + mldq +2 evaluations of gm, but only a matrix of bandwidth mukeep + mlkeep +1 is retained.
Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of g,
if smaller values provide a more efficient preconditioner. The solution of the complete linear system

Px = b (4.4)

reduces to solving each of the equations
Pmxm = bm (4.5)

and this is done by banded LU factorization of Pm followed by a banded backsolve.
Similar block-diagonal preconditioners could be considered with different treatments of the blocks

Pm. For example, incomplete LU factorization or an iterative method could be used instead of banded
LU factorization.

The cvbbdpre module calls two user-provided functions to construct P : a required function gloc

(of type CVLocalFn) which approximates the right-hand side function g(t, y) ≈ f(t, y) and which is
computed locally, and an optional function cfn (of type CVCommFn) which performs all interprocess
communication necessary to evaluate the approximate right-hand side g. These are in addition to the
user-supplied right-hand side function f. Both functions take as input the same pointer user data

that is passed by the user to CVodeSetUserData and that was passed to the user’s function f. The
user is responsible for providing space (presumably within user data) for components of y that are
communicated between processes by cfn, and that are then used by gloc, which should not do any
communication.

CVLocalFn

Definition typedef int (*CVLocalFn)(sunindextype Nlocal, realtype t, N Vector y,

N Vector glocal, void *user data);

Purpose This gloc function computes g(t, y). It loads the vector glocal as a function of t and
y.

Arguments Nlocal is the local vector length.

t is the value of the independent variable.

y is the dependent variable.
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glocal is the output vector.

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

Return value A CVLocalFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV LSETUP FAIL).

Notes This function must assume that all interprocess communication of data needed to cal-
culate glocal has already been done, and that this data is accessible within user data.

The case where g is mathematically identical to f is allowed.

CVCommFn

Definition typedef int (*CVCommFn)(sunindextype Nlocal, realtype t,

N Vector y, void *user data);

Purpose This cfn function performs all interprocess communication necessary for the execution
of the gloc function above, using the input vector y.

Arguments Nlocal is the local vector length.

t is the value of the independent variable.

y is the dependent variable.

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

Return value A CVCommFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV LSETUP FAIL).

Notes The cfn function is expected to save communicated data in space defined within the
data structure user data.

Each call to the cfn function is preceded by a call to the right-hand side function f

with the same (t, y) arguments. Thus, cfn can omit any communication done by f

if relevant to the evaluation of glocal. If all necessary communication was done in f,
then cfn = NULL can be passed in the call to CVBBDPrecInit (see below).

Besides the header files required for the integration of the ODE problem (see §4.3), to use the
cvbbdpre module, the main program must include the header file cvodes bbdpre.h which declares
the needed function prototypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from
the skeleton program presented in §4.4 are grayed out.

1. Initialize MPI environment

2. Set problem dimensions etc.

3. Set vector of initial values

4. Create cvodes object

5. Initialize cvodes solver

6. Specify integration tolerances

7. Create linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC LEFT

or PREC RIGHT) to use.

8. Set linear solver optional inputs
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9. Attach linear solver module

10. Initialize the cvbbdpre preconditioner module

Specify the upper and lower half-bandwidths mudq and mldq, and mukeep and mlkeep, and call

flag = CVBBDPrecInit(cvode mem, local N, mudq, mldq,

mukeep, mlkeep, dqrely, gloc, cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
CVBBDPrecInit are the two user-supplied functions described above.

11. Set optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to the CVodeSetPreconditioner optional input function.

12. Create nonlinear solver object

13. Attach nonlinear solver module

14. Set nonlinear solver optional inputs

15. Specify rootfinding problem

16. Advance solution in time

17. Get optional outputs

Additional optional outputs associated with cvbbdpre are available by way of two routines de-
scribed below, CVBBDPrecGetWorkSpace and CVBBDPrecGetNumGfnEvals.

18. Deallocate memory for solution vector

19. Free solver memory

20. Free nonlinear solver memory

21. Free linear solver memory

22. Finalize MPI

The user-callable functions that initialize (step 10 above) or re-initialize the cvbbdpre preconditioner
module are described next.

CVBBDPrecInit

Call flag = CVBBDPrecInit(cvode mem, local N, mudq, mldq,

mukeep, mlkeep, dqrely, gloc, cfn);

Description The function CVBBDPrecInit initializes and allocates (internal) memory for the cvbb-
dpre preconditioner.

Arguments cvode mem (void *) pointer to the cvodes memory block.

local N (sunindextype) local vector length.

mudq (sunindextype) upper half-bandwidth to be used in the difference quotient
Jacobian approximation.

mldq (sunindextype) lower half-bandwidth to be used in the difference quotient
Jacobian approximation.

mukeep (sunindextype) upper half-bandwidth of the retained banded approximate
Jacobian block.
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mlkeep (sunindextype) lower half-bandwidth of the retained banded approximate
Jacobian block.

dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely=

√
unit roundoff, which

can be specified by passing dqrely = 0.0.

gloc (CVLocalFn) the C function which computes the approximation g(t, y) ≈
f(t, y).

cfn (CVCommFn) the optional C function which performs all interprocess commu-
nication required for the computation of g(t, y).

Return value The return value flag (of type int) is one of

CVLS SUCCESS The call to CVBBDPrecInit was successful.

CVLS MEM NULL The cvode mem pointer was NULL.

CVLS MEM FAIL A memory allocation request has failed.

CVLS LMEM NULL A cvls linear solver was not attached.

CVLS ILL INPUT The supplied vector implementation was not compatible with block
band preconditioner.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference quotient cal-
culation of the approximate Jacobian is negative or exceeds the value local N−1, it is
replaced by 0 or local N−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The cvbbdpre module also provides a reinitialization function to allow solving a sequence of
problems of the same size, with the same linear solver choice, provided there is no change in local N,
mukeep, or mlkeep. After solving one problem, and after calling CVodeReInit to re-initialize cvodes
for a subsequent problem, a call to CVBBDPrecReInit can be made to change any of the following: the
half-bandwidths mudq and mldq used in the difference-quotient Jacobian approximations, the relative
increment dqrely, or one of the user-supplied functions gloc and cfn. If there is a change in any of
the linear solver inputs, an additional call to the “Set” routines provided by the sunlinsol module,
and/or one or more of the corresponding cvls “set” functions, must also be made (in the proper
order).

CVBBDPrecReInit

Call flag = CVBBDPrecReInit(cvode mem, mudq, mldq, dqrely);

Description The function CVBBDPrecReInit re-initializes the cvbbdpre preconditioner.

Arguments cvode mem (void *) pointer to the cvodes memory block.

mudq (sunindextype) upper half-bandwidth to be used in the difference quotient
Jacobian approximation.

mldq (sunindextype) lower half-bandwidth to be used in the difference quotient
Jacobian approximation.

dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely =

√
unit roundoff, which

can be specified by passing dqrely = 0.0.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The call to CVBBDPrecReInit was successful.

CVLS MEM NULL The cvode mem pointer was NULL.
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CVLS LMEM NULL A cvls linear solver memory was not attached.

CVLS PMEM NULL The function CVBBDPrecInit was not previously called.

Notes If one of the half-bandwidths mudq or mldq is negative or exceeds the value local N−1,
it is replaced by 0 or local N−1 accordingly.

The following two optional output functions are available for use with the cvbbdpre module:

CVBBDPrecGetWorkSpace

Call flag = CVBBDPrecGetWorkSpace(cvode mem, &lenrwBBDP, &leniwBBDP);

Description The function CVBBDPrecGetWorkSpace returns the local cvbbdpre real and integer
workspace sizes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

lenrwBBDP (long int) local number of realtype values in the cvbbdpre workspace.

leniwBBDP (long int) local number of integer values in the cvbbdpre workspace.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional output value has been successfully set.

CVLS MEM NULL The cvode mem pointer was NULL.

CVLS PMEM NULL The cvbbdpre preconditioner has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within the cvbbdpre module (the banded matrix approximation, banded sun-
linsol object, temporary vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding
function CVodeGetLinWorkSpace.

CVBBDPrecGetNumGfnEvals

Call flag = CVBBDPrecGetNumGfnEvals(cvode mem, &ngevalsBBDP);

Description The function CVBBDPrecGetNumGfnEvals returns the number of calls made to the user-
supplied gloc function due to the finite difference approximation of the Jacobian blocks
used within the preconditioner setup function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

ngevalsBBDP (long int) the number of calls made to the user-supplied gloc function.

Return value The return value flag (of type int) is one of

CVLS SUCCESS The optional output value has been successfully set.

CVLS MEM NULL The cvode mem pointer was NULL.

CVLS PMEM NULL The cvbbdpre preconditioner has not been initialized.

In addition to the ngevalsBBDP gloc evaluations, the costs associated with cvbbdpre also in-
clude nlinsetups LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and
nfevalsLS right-hand side function evaluations, where nlinsetups is an optional cvodes output and
npsolves and nfevalsLS are linear solver optional outputs (see §4.5.9).



Chapter 5

Using CVODES for Forward
Sensitivity Analysis

This chapter describes the use of cvodes to compute solution sensitivities using forward sensitivity
analysis. One of our main guiding principles was to design the cvodes user interface for forward
sensitivity analysis as an extension of that for IVP integration. Assuming a user main program and
user-defined support routines for IVP integration have already been defined, in order to perform
forward sensitivity analysis the user only has to insert a few more calls into the main program and
(optionally) define an additional routine which computes the right-hand side of the sensitivity systems
(2.12). The only departure from this philosophy is due to the CVRhsFn type definition (§4.6.1).
Without changing the definition of this type, the only way to pass values of the problem parameters
to the ODE right-hand side function is to require the user data structure f data to contain a pointer
to the array of real parameters p.

cvodes uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable routines and of the user-supplied routines that
were not already described in Chapter 4.

5.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) as an application of
cvodes. The user program is to have these steps in the order indicated, unless otherwise noted. For
the sake of brevity, we defer many of the details to the later sections. As in §4.4, most steps are
independent of the nvector, sunmatrix, sunlinsol, and sunnonlinsol implementations used.
For the steps that are not, refer to Chapters 7, 8, 9, and 10 for the specific name of the function to
be called or macro to be referenced.

Differences between the user main program in §4.4 and the one below start only at step (16). Steps
that are unchanged from the skeleton program presented in §4.4 are grayed out.

First, note that no additional header files need be included for forward sensitivity analysis beyond
those for IVP solution (§4.4).

1. Initialize parallel or multi-threaded environment, if appropriate

2. Set problem dimensions etc.

3. Set vector of initial values

4. Create cvodes object

5. Initialize cvodes solver
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6. Specify integration tolerances

7. Create matrix object

8. Create linear solver object

9. Set linear solver optional inputs

10. Attach linear solver module

11. Set optional inputs

12. Create nonlinear solver object

13. Attach nonlinear solver module

14. Set nonlinear solver optional inputs

15. Initialize quadrature problem, if not sensitivity-dependent

16. Define the sensitivity problem

•Number of sensitivities (required)

Set Ns = Ns, the number of parameters with respect to which sensitivities are to be computed.

•Problem parameters (optional)

If cvodes is to evaluate the right-hand sides of the sensitivity systems, set p, an array of
Np real parameters upon which the IVP depends. Only parameters with respect to which
sensitivities are (potentially) desired need to be included. Attach p to the user data structure
user data. For example, user data->p = p;

If the user provides a function to evaluate the sensitivity right-hand side, p need not be
specified.

•Parameter list (optional)

If cvodes is to evaluate the right-hand sides of the sensitivity systems, set plist, an array
of Ns integers to specify the parameters p with respect to which solution sensitivities are to
be computed. If sensitivities with respect to the j-th parameter p[j] are desired (0 ≤ j <
Np), set plisti = j, for some i = 0, . . . , Ns − 1.

If plist is not specified, cvodes will compute sensitivities with respect to the first Ns

parameters; i.e., plisti = i (i = 0, . . . , Ns − 1).

If the user provides a function to evaluate the sensitivity right-hand side, plist need not be
specified.

•Parameter scaling factors (optional)

If cvodes is to estimate tolerances for the sensitivity solution vectors (based on tolerances
for the state solution vector) or if cvodes is to evaluate the right-hand sides of the sensitivity
systems using the internal difference-quotient function, the results will be more accurate if
order of magnitude information is provided.

Set pbar, an array of Ns positive scaling factors. Typically, if pi 6= 0, the value p̄i = |pplisti |
can be used.

If pbar is not specified, cvodes will use p̄i = 1.0.

If the user provides a function to evaluate the sensitivity right-hand side and specifies toler-
ances for the sensitivity variables, pbar need not be specified.

Note that the names for p, pbar, plist, as well as the field p of user data are arbitrary, but they
must agree with the arguments passed to CVodeSetSensParams below.
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17. Set sensitivity initial conditions

Set the Ns vectors yS0[i] of initial values for sensitivities (for i = 0, . . . , Ns −1), using the
appropriate functions defined by the particular nvector implementation chosen.

First, create an array of Ns vectors by making the appropriate call

yS0 = N VCloneVectorArray ***(Ns, y0);

or

yS0 = N VCloneVectorArrayEmpty ***(Ns, y0);

Here the argument y0 serves only to provide the N Vector type for cloning.

Then, for each i = 0, . . . ,Ns −1, load initial values for the i-th sensitivity vector yS0[i].

18. Activate sensitivity calculations

Call flag = CVodeSensInit or CVodeSensInit1 to activate forward sensitivity computations and
allocate internal memory for cvodes related to sensitivity calculations (see §5.2.1).

19. Set sensitivity tolerances

Call CVodeSensSStolerances, CVodeSensSVtolerances or CVodeEEtolerances. (See §5.2.2).

20. Set sensitivity analysis optional inputs

Call CVodeSetSens* routines to change from their default values any optional inputs that control
the behavior of cvodes in computing forward sensitivities. (See §5.2.6.)

21. Create sensitivity nonlinear solver object (optional)

If using a non-default nonlinear solver (see §5.2.3), then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular sunnonlinsol imple-
mentation e.g.,

NLSSens = SUNNonlinSol_***Sens(...);

for the CV SIMULTANEOUS or CV STAGGERED options or

NLSSens = SUNNonlinSol_***(...);

for the CV STAGGERED1 option where *** is the name of the nonlinear solver and ... are con-
structor specific arguments (see Chapter 10 for details).

22. Attach the sensitvity nonlinear solver module (optional)

If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching
the nonlinear solver object by calling

ier = CVodeSetNonlinearSolverSensSim(cvode_mem, NLSSens);

when using the CV SIMULTANEOUS corrector method,

ier = CVodeSetNonlinearSolverSensStg(cvode_mem, NLSSens);

when using the CV STAGGERED corrector method, or

ier = CVodeSetNonlinearSolverSensStg1(cvode_mem, NLSSens);

when using the CV STAGGERED1 corrector method (see §5.2.3 for details).
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23. Set sensitivity nonlinear solver optional inputs (optional)

Call the appropriate set functions for the selected nonlinear solver module to change optional
inputs specific to that nonlinear solver. These must be called after CVodeSensInit if using the
default nonlinear solver or after attaching a new nonlinear solver to cvodes, otherwise the optional
inputs will be overridden by cvode defaults. See Chapter 10 for more information on optional
inputs.

24. Specify rootfinding

25. Advance solution in time

26. Extract sensitivity solution

After each successful return from CVode, the solution of the original IVP is available in the y

argument of CVode, while the sensitivity solution can be extracted into yS (which can be the
same as yS0) by calling one of the routines CVodeGetSens,CVodeGetSens1, CVodeGetSensDky, or
CVodeGetSensDky1 (see §5.2.5).

27. Get optional outputs

28. Deallocate memory for solution vector

29. Deallocate memory for sensitivity vectors

Upon completion of the integration, deallocate memory for the vectors yS0 using the appropriate
destructor:

N VDestroyVectorArray ***(yS0, Ns);

If yS was created from realtype arrays yS i, it is the user’s responsibility to also free the space
for the arrays yS0 i.

30. Free user data structure

31. Free solver memory

32. Free nonlinear solver memory

33. Free vector specification memory

34. Free linear solver and matrix memory

35. Finalize MPI, if used

5.2 User-callable routines for forward sensitivity analysis

This section describes the cvodes functions, in addition to those presented in §4.5, that are called by
the user to setup and solve a forward sensitivity problem.

5.2.1 Forward sensitivity initialization and deallocation functions

Activation of forward sensitivity computation is done by calling CVodeSensInit or CVodeSensInit1,
depending on whether the sensitivity right-hand side function returns all sensitivities at once or one
by one, respectively. The form of the call to each of these routines is as follows:

CVodeSensInit

Call flag = CVodeSensInit(cvode mem, Ns, ism, fS, yS0);
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Description The routine CVodeSensInit activates forward sensitivity computations and allocates
internal memory related to sensitivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

Ns (int) the number of sensitivities to be computed.

ism (int) a flag used to select the sensitivity solution method. Its value can be
CV SIMULTANEOUS or CV STAGGERED:

• In the CV SIMULTANEOUS approach, the state and sensitivity variables
are corrected at the same time. If the default Newton nonlinear solver
is used, this amounts to performing a modified Newton iteration on the
combined nonlinear system;

• In the CV STAGGERED approach, the correction step for the sensitivity
variables takes place at the same time for all sensitivity equations, but
only after the correction of the state variables has converged and the
state variables have passed the local error test;

fS (CVSensRhsFn) is the C function which computes all sensitivity ODE right-
hand sides at the same time. For full details see §5.3.

yS0 (N Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSensInit was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT An input argument to CVodeSensInit has an illegal value.

Notes Passing fS=NULL indicates using the default internal difference quotient sensitivity right-
hand side routine.

If an error occurred, CVodeSensInit also sends an error message to the error handler
function.

It is illegal here to use ism = CV STAGGERED1. This option requires a different type for !

fS and can therefore only be used with CVodeSensInit1 (see below).

CVodeSensInit1

Call flag = CVodeSensInit1(cvode mem, Ns, ism, fS1, yS0);

Description The routine CVodeSensInit1 activates forward sensitivity computations and allocates
internal memory related to sensitivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

Ns (int) the number of sensitivities to be computed.

ism (int) a flag used to select the sensitivity solution method. Its value can be
CV SIMULTANEOUS, CV STAGGERED, or CV STAGGERED1:

• In the CV SIMULTANEOUS approach, the state and sensitivity variables
are corrected at the same time. If the default Newton nonlinear solver
is used, this amounts to performing a modified Newton iteration on the
combined nonlinear system;

• In the CV STAGGERED approach, the correction step for the sensitivity
variables takes place at the same time for all sensitivity equations, but
only after the correction of the state variables has converged and the
state variables have passed the local error test;
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• In the CV STAGGERED1 approach, all corrections are done sequentially,
first for the state variables and then for the sensitivity variables, one
parameter at a time. If the sensitivity variables are not included in
the error control, this approach is equivalent to CV STAGGERED. Note
that the CV STAGGERED1 approach can be used only if the user-provided
sensitivity right-hand side function is of type CVSensRhs1Fn (see §5.3).

fS1 (CVSensRhs1Fn) is the C function which computes the right-hand sides of
the sensitivity ODE, one at a time. For full details see §5.3.

yS0 (N Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSensInit1 was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT An input argument to CVodeSensInit1 has an illegal value.

Notes Passing fS1=NULL indicates using the default internal difference quotient sensitivity
right-hand side routine.

If an error occurred, CVodeSensInit1 also sends an error message to the error handler
funciton.

In terms of the problem size N , number of sensitivity vectors Ns, and maximum method order maxord,
the size of the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)NsN

• With CVodeSensSVtolerances: lenrw = lenrw +NsN

the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)NsNi

• With CVodeSensSVtolerances: leniw = leniw +NsNi

where Ni is the number of integers in one N Vector.
The routine CVodeSensReInit, useful during the solution of a sequence of problems of same size,

reinitializes the sensitivity-related internal memory. The call to it must follow a call to CVodeSensInit

or CVodeSensInit1 (and maybe a call to CVodeReInit). The number Ns of sensitivities is assumed to
be unchanged since the call to the initialization function. The call to the CVodeSensReInit function
has the form:

CVodeSensReInit

Call flag = CVodeSensReInit(cvode mem, ism, yS0);

Description The routine CVodeSensReInit reinitializes forward sensitivity computations.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

ism (int) a flag used to select the sensitivity solution method. Its value can be
CV SIMULTANEOUS, CV STAGGERED, or CV STAGGERED1.

yS0 (N Vector *) a pointer to an array of Ns variables of type N Vector con-
taining the initial values of the sensitivities.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInit was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.
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CV NO SENS Memory space for sensitivity integration was not allocated through a
previous call to CVodeSensInit.

CV ILL INPUT An input argument to CVodeSensReInit has an illegal value.

CV MEM FAIL A memory allocation request has failed.

Notes All arguments of CVodeSensReInit are the same as those of the functions CVodeSensInit
and CVodeSensInit1.

If an error occurred, CVodeSensReInit also sends a message to the error handler func-
tion.

CVodeSensReInit potentially does some minimal memory allocation (for the sensitivity
absolute tolerance) and for arrays of counters used by the CV STAGGERED1 method.

The value of the input argument ism must be compatible with the type of the sensitivity !

ODE right-hand side function. Thus if the sensitivity module was initialized using
CVodeSensInit, then it is illegal to pass ism = CV STAGGERED1 to CVodeSensReInit.

To deallocate all forward sensitivity-related memory (allocated in a prior call to CVodeSensInit or
CVodeSensInit1), the user must call

CVodeSensFree

Call CVodeSensFree(cvode mem);

Description The function CVodeSensFree frees the memory allocated for forward sensitivity com-
putations by a previous call to CVodeSensInit or CVodeSensInit1.

Arguments The argument is the pointer to the cvodes memory block (of type void *).

Return value The function CVodeSensFree has no return value.

Notes In general, CVodeSensFree need not be called by the user, as it is invoked automatically
by CVodeFree.

After a call to CVodeSensFree, forward sensitivity computations can be reactivated only
by calling CVodeSensInit or CVodeSensInit1 again.

To activate and deactivate forward sensitivity calculations for successive cvodes runs, without having
to allocate and deallocate memory, the following function is provided:

CVodeSensToggleOff

Call CVodeSensToggleOff(cvode mem);

Description The function CVodeSensToggleOff deactivates forward sensitivity calculations. It does
not deallocate sensitivity-related memory.

Arguments cvode mem (void *) pointer to the memory previously returned by CVodeCreate.

Return value The return value flag of CVodeSensToggle is one of:

CV SUCCESS CVodeSensToggleOff was successful.

CV MEM NULL cvode mem was NULL.

Notes Since sensitivity-related memory is not deallocated, sensitivities can be reactivated at
a later time (using CVodeSensReInit).

5.2.2 Forward sensitivity tolerance specification functions

One of the following three functions must be called to specify the integration tolerances for sensitivities.
Note that this call must be made after the call to CVodeSensInit/CVodeSensInit1.
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CVodeSensSStolerances

Call flag = CVodeSensSStolerances(cvode mem, reltolS, abstolS);

Description The function CVodeSensSStolerances specifies scalar relative and absolute tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

reltolS (realtype) is the scalar relative error tolerance.

abstolS (realtype*) is a pointer to an array of length Ns containing the scalar
absolute error tolerances, one for each parameter.

Return value The return flag flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSStolerances was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO SENS The sensitivity allocation function (CVodeSensInit or CVodeSensInit1)
has not been called.

CV ILL INPUT One of the input tolerances was negative.

CVodeSensSVtolerances

Call flag = CVodeSensSVtolerances(cvode mem, reltolS, abstolS);

Description The function CVodeSensSVtolerances specifies scalar relative tolerance and vector ab-
solute tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

reltolS (realtype) is the scalar relative error tolerance.

abstolS (N Vector*) is an array of Ns variables of type N Vector. The N Vector

from abstolS[is] specifies the vector tolerances for is-th sensitivity.

Return value The return flag flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSVtolerances was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO SENS The allocation function for sensitivities has not been called.

CV ILL INPUT The relative error tolerance was negative or an absolute tolerance vector
had a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of any vector yS[i].

CVodeSensEEtolerances

Call flag = CVodeSensEEtolerances(cvode mem);

Description When CVodeSensEEtolerances is called, cvodes will estimate tolerances for sensitivity
variables based on the tolerances supplied for states variables and the scaling factors p̄.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

Return value The return flag flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSensEEtolerances was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO SENS The sensitivity allocation function has not been called.

Notes
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5.2.3 Forward sensitivity nonlinear solver interface functions

As in the pure ODE case, when computing solution sensitivities using forward sensitivitiy analysis
cvodes uses the sunnonlinsol implementation of Newton’s method defined by the sunnonlin-
sol newton module (see §10.2) by default. To specify a different nonlinear solver in cvodes, the
user’s program must create a sunnonlinsol object by calling the appropriate constructor routine.
The user must then attach the sunnonlinsol object to cvodes by calling
CVodeSetNonlinearSolverSensSim when using the CV SIMULTANEOUS corrector option, or
CVodeSetNonlinearSolver (see §4.5.4) and CVodeSetNonlinearSolverSensStg or
CVodeSetNonlinearSolverSensStg1 when using the CV STAGGERED or CV STAGGERED1 corrector
option respectively, as documented below.

When changing the nonlinear solver in cvodes, CVodeSetNonlinearSolver must be called af-
ter CVodeInit; similarly CVodeSetNonlinearSolverSensSim, CVodeSetNonlinearSolverStg, and
CVodeSetNonlinearSolverStg1 must be called after CVodeSensInit. If any calls to CVode have
been made, then cvodes will need to be reinitialized by calling CVodeReInit to ensure that the
nonlinear solver is initialized correctly before any subsequent calls to CVode.

The first argument passed to the routines CVodeSetNonlinearSolverSensSim,
CVodeSetNonlinearSolverSensStg, and CVodeSetNonlinearSolverSensStg1 is the cvodes mem-
ory pointer returned by CVodeCreate and the second argument is the sunnonlinsol object to use
for solving the nonlinear systems (2.4) or (2.5). A call to this function attaches the nonlinear solver
to the main cvodes integrator.

CVodeSetNonlinearSolverSensSim

Call flag = CVodeSetNonlinearSolverSensSim(cvode mem, NLS);

Description The function CVodeSetNonLinearSolverSensSim attaches a sunnonlinsol object (NLS)
to cvodes when using the CV SIMULTANEOUS approach to correct the state and sensi-
tivity variables at the same time.

Arguments cvode mem (void *) pointer to the cvodes memory block.

NLS (SUNNonlinearSolver) sunnonlinsol object to use for solving nonlinear
systems (2.4) or (2.5).

Return value The return value flag (of type int) is one of

CV SUCCESS The nonlinear solver was successfully attached.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The sunnonlinsol object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual
function, convergence test function, or maximum number of nonlinear
iterations could not be set.

CVodeSetNonlinearSolverSensStg

Call flag = CVodeSetNonlinearSolverSensStg(cvode mem, NLS);

Description The function CVodeSetNonLinearSolverSensStg attaches a sunnonlinsol object (NLS)
to cvodes when using the CV STAGGERED approach to correct all the sensitivity variables
after the correction of the state variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

NLS (SUNNonlinearSolver) sunnonlinsol object to use for solving nonlinear
systems.

Return value The return value flag (of type int) is one of

CV SUCCESS The nonlinear solver was successfully attached.

CV MEM NULL The cvode mem pointer is NULL.
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CV ILL INPUT The sunnonlinsol object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual
function, convergence test function, or maximum number of nonlinear
iterations could not be set.

Notes This function only attaches the sunnonlinsol object for correcting the sensitivity
variables. To attach a sunnonlinsol object for the state variable correction use
CVodeSetNonlinearSolver (see §4.5.4).

CVodeSetNonlinearSolverSensStg1

Call flag = CVodeSetNonlinearSolverSensStg1(cvode mem, NLS);

Description The function CVodeSetNonLinearSolverSensStg1 attaches a sunnonlinsol object
(NLS) to cvodes when using the CV STAGGERED1 approach to correct the sensitivity
variables one at a time after the correction of the state variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

NLS (SUNNonlinearSolver) sunnonlinsol object to use for solving nonlinear
systems.

Return value The return value flag (of type int) is one of

CV SUCCESS The nonlinear solver was successfully attached.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The sunnonlinsol object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual
function, convergence test function, or maximum number of nonlinear
iterations could not be set.

Notes This function only attaches the sunnonlinsol object for correcting the sensitivity
variables. To attach a sunnonlinsol object for the state variable correction use
CVodeSetNonlinearSolver (see §4.5.4).

5.2.4 CVODES solver function

Even if forward sensitivity analysis was enabled, the call to the main solver function CVode is exactly
the same as in §4.5.6. However, in this case the return value flag can also be one of the following:

CV SRHSFUNC FAIL The sensitivity right-hand side function failed in an unrecoverable manner.

CV FIRST SRHSFUNC ERR The sensitivity right-hand side function failed at the first call.

CV REPTD SRHSFUNC ERR Convergence tests occurred too many times due to repeated recoverable
errors in the sensitivity right-hand side function. This flag will also be
returned if the sensitivity right-hand side function had repeated recoverable
errors during the estimation of an initial step size.

CV UNREC SRHSFUNC ERR The sensitivity right-hand function had a recoverable error, but no recovery
was possible. This failure mode is rare, as it can occur only if the sensitivity
right-hand side function fails recoverably after an error test failed while at
order one.

5.2.5 Forward sensitivity extraction functions

If forward sensitivity computations have been initialized by a call to CVodeSensInit/CVodeSensInit1,
or reinitialized by a call to CVSensReInit, then cvodes computes both a solution and sensitivities
at time t. However, CVode will still return only the solution y in yout. Solution sensitivities can be
obtained through one of the following functions:
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CVodeGetSens

Call flag = CVodeGetSens(cvode mem, &tret, yS);

Description The function CVodeGetSens returns the sensitivity solution vectors after a successful
return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype *) the time reached by the solver (output).

yS (N Vector *) array of computed forward sensitivity vectors. This vector
array must be allocated by the user.

Return value The return value flag of CVodeGetSens is one of:

CV SUCCESS CVodeGetSens was successful.

CV MEM NULL cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV BAD DKY yS is NULL.

Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last CVode call.

The function CVodeGetSensDky computes the k-th derivatives of the interpolating polynomials for the
sensitivity variables at time t. This function is called by CVodeGetSens with k = 0, but may also be
called directly by the user.

CVodeGetSensDky

Call flag = CVodeGetSensDky(cvode mem, t, k, dkyS);

Description The function CVodeGetSensDky returns derivatives of the sensitivity solution vectors
after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by cvodes.

k (int) order of derivatives.

dkyS (N Vector *) array of Ns vectors containing the derivatives on output. The
space for dkyS must be allocated by the user.

Return value The return value flag of CVodeGetSensDky is one of:

CV SUCCESS CVodeGetSensDky succeeded.

CV MEM NULL cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV BAD DKY One of the vectors dkyS is NULL.

CV BAD K k is not in the range 0, 1, ..., qlast.

CV BAD T The time t is not in the allowed range.

Forward sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions CVodeGetSens1 and CVodeGetSensDky1, defined as follows:

CVodeGetSens1

Call flag = CVodeGetSens1(cvode mem, &tret, is, yS);

Description The function CVodeGetSens1 returns the is-th sensitivity solution vector after a suc-
cessful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype *) the time reached by the solver (output).
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is (int) specifies which sensitivity vector is to be returned (0 ≤is< Ns).

yS (N Vector) the computed forward sensitivity vector. This vector array must
be allocated by the user.

Return value The return value flag of CVodeGetSens1 is one of:

CV SUCCESS CVodeGetSens1 was successful.

CV MEM NULL cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV BAD IS The index is is not in the allowed range.

CV BAD DKY yS is NULL.

CV BAD T The time t is not in the allowed range.

Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last CVode call.

CVodeGetSensDky1

Call flag = CVodeGetSensDky1(cvode mem, t, k, is, dkyS);

Description The function CVodeGetSensDky1 returns the k-th derivative of the is-th sensitivity
solution vector after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by cvodes.

k (int) order of derivative.

is (int) specifies the sensitivity derivative vector to be returned (0 ≤is< Ns).

dkyS (N Vector) the vector containing the derivative. The space for dkyS must
be allocated by the user.

Return value The return value flag of CVodeGetSensDky1 is one of:

CV SUCCESS CVodeGetQuadDky1 succeeded.

CV MEM NULL The pointer to cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV BAD DKY dkyS or one of the vectors dkyS[i] is NULL.

CV BAD IS The index is is not in the allowed range.

CV BAD K k is not in the range 0, 1, ..., qlast.

CV BAD T The time t is not in the allowed range.

5.2.6 Optional inputs for forward sensitivity analysis

Optional input variables that control the computation of sensitivities can be changed from their default
values through calls to CVodeSetSens* functions. Table 5.1 lists all forward sensitivity optional input
functions in cvodes which are described in detail in the remainder of this section.

Table 5.1: Forward sensitivity optional inputs

Optional input Routine name Default
Sensitivity scaling factors CVodeSetSensParams NULL

DQ approximation method CVodeSetSensDQMethod centered/0.0
Error control strategy CVodeSetSensErrCon SUNFALSE

Maximum no. of nonlinear iterations CVodeSetSensMaxNonlinIters 3
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CVodeSetSensParams

Call flag = CVodeSetSensParams(cvode mem, p, pbar, plist);

Description The function CVodeSetSensParams specifies problem parameter information for sensi-
tivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block.

p (realtype *) a pointer to the array of real problem parameters used to
evaluate f(t, y, p). If non-NULL, p must point to a field in the user’s data
structure user data passed to the right-hand side function. (See §5.1).

pbar (realtype *) an array of Ns positive scaling factors. If non-NULL, pbar must
have all its components > 0.0. (See §5.1).

plist (int *) an array of Ns non-negative indices to specify which components
p[i] to use in estimating the sensitivity equations. If non-NULL, plist

must have all components ≥ 0. (See §5.1).

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV ILL INPUT An argument has an illegal value.

Notes This function must be preceded by a call to CVodeSensInit or CVodeSensInit1. !

CVodeSetSensDQMethod

Call flag = CVodeSetSensDQMethod(cvode mem, DQtype, DQrhomax);

Description The function CVodeSetSensDQMethod specifies the difference quotient strategy in the
case in which the right-hand side of the sensitivity equations are to be computed by
cvodes.

Arguments cvode mem (void *) pointer to the cvodes memory block.

DQtype (int) specifies the difference quotient type. Its value can be CV CENTERED

or CV FORWARD.

DQrhomax (realtype) positive value of the selection parameter used in deciding switch-
ing between a simultaneous or separate approximation of the two terms in
the sensitivity right-hand side.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT An argument has an illegal value.

Notes If DQrhomax = 0.0, then no switching is performed. The approximation is done simul-
taneously using either centered or forward finite differences, depending on the value of
DQtype. For values of DQrhomax ≥ 1.0, the simultaneous approximation is used when-
ever the estimated finite difference perturbations for states and parameters are within
a factor of DQrhomax, and the separate approximation is used otherwise. Note that a
value DQrhomax < 1.0 will effectively disable switching. See §2.6 for more details.

The default value are DQtype=CV CENTERED and DQrhomax= 0.0.

CVodeSetSensErrCon

Call flag = CVodeSetSensErrCon(cvode mem, errconS);

Description The function CVodeSetSensErrCon specifies the error control strategy for sensitivity
variables.
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Arguments cvode mem (void *) pointer to the cvodes memory block.

errconS (booleantype) specifies whether sensitivity variables are to be included
(SUNTRUE) or not (SUNFALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes By default, errconS is set to SUNFALSE. If errconS=SUNTRUE then both state variables
and sensitivity variables are included in the error tests. If errconS=SUNFALSE then
the sensitivity variables are excluded from the error tests. Note that, in any event, all
variables are considered in the convergence tests.

CVodeSetSensMaxNonlinIters

Call flag = CVodeSetSensMaxNonlinIters(cvode mem, maxcorS);

Description The function CVodeSetSensMaxNonlinIters specifies the maximum number of nonlin-
ear solver iterations for sensitivity variables per step.

Arguments cvode mem (void *) pointer to the cvodes memory block.

maxcorS (int) maximum number of nonlinear solver iterations allowed per step (> 0).

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV MEM FAIL The sunnonlinsol module is NULL.

Notes The default value is 3.

5.2.7 Optional outputs for forward sensitivity analysis

Optional output functions that return statistics and solver performance information related to forward
sensitivity computations are listed in Table 5.2 and described in detail in the remainder of this section.

CVodeGetSensNumRhsEvals

Call flag = CVodeGetSensNumRhsEvals(cvode mem, &nfSevals);

Description The function CVodeGetSensNumRhsEvals returns the number of calls to the sensitivity
right-hand side function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

Table 5.2: Forward sensitivity optional outputs

Optional output Routine name
No. of calls to sensitivity r.h.s. function CVodeGetSensNumRhsEvals

No. of calls to r.h.s. function for sensitivity CVodeGetNumRhsEvalsSens

No. of sensitivity local error test failures CVodeGetSensNumErrTestFails

No. of calls to lin. solv. setup routine for sens. CVodeGetSensNumLinSolvSetups

Error weight vector for sensitivity variables CVodeGetSensErrWeights

No. of sens. nonlinear solver iterations CVodeGetSensNumNonlinSolvIters

No. of sens. convergence failures CVodeGetSensNumNonlinSolvConvFails

No. of staggered nonlinear solver iterations CVodeGetStgrSensNumNonlinSolvIters

No. of staggered convergence failures CVodeGetStgrSensNumNonlinSolvConvFails
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nfSevals (long int) number of calls to the sensitivity right-hand side function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes In order to accommodate any of the three possible sensitivity solution methods, the
default internal finite difference quotient functions evaluate the sensitivity right-hand
sides one at a time. Therefore, nfSevals will always be a multiple of the number of
sensitivity parameters (the same as the case in which the user supplies a routine of type
CVSensRhs1Fn).

CVodeGetNumRhsEvalsSens

Call flag = CVodeGetNumRhsEvalsSens(cvode mem, &nfevalsS);

Description The function CVodeGetNumRhsEvalsSEns returns the number of calls to the user’s right-
hand side function due to the internal finite difference approximation of the sensitivity
right-hand sides.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfevalsS (long int) number of calls to the user’s ODE right-hand side function for
the evaluation of sensitivity right-hand sides.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the internal finite difference approximation routines
are used for the evaluation of the sensitivity right-hand sides.

CVodeGetSensNumErrTestFails

Call flag = CVodeGetSensNumErrTestFails(cvode mem, &nSetfails);

Description The function CVodeGetSensNumErrTestFails returns the number of local error test
failures for the sensitivity variables that have occurred.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSetfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the sensitivity variables have been included in the
error test (see CVodeSetSensErrCon in §5.2.6). Even in that case, this counter is not
incremented if the ism=CV SIMULTANEOUS sensitivity solution method has been used.

CVodeGetSensNumLinSolvSetups

Call flag = CVodeGetSensNumLinSolvSetups(cvode mem, &nlinsetupsS);

Description The function CVodeGetSensNumLinSolvSetups returns the number of calls to the linear
solver setup function due to forward sensitivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block.
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nlinsetupsS (long int) number of calls to the linear solver setup function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if a nonlinear solver requiring a linear solve has been
used and if either the ism = CV STAGGERED or the ism = CV STAGGERED1 sensitivity
solution method has been specified (see §5.2.1).

CVodeGetSensStats

Call flag = CVodeGetSensStats(cvode mem, &nfSevals, &nfevalsS, &nSetfails,

&nSetfails, &nlinsetupsS);

Description The function CVodeGetSensStats returns all of the above sensitivity-related solver
statistics as a group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nfSevals (long int) number of calls to the sensitivity right-hand side function.

nfevalsS (long int) number of calls to the ODE right-hand side function for sensi-
tivity evaluations.

nSetfails (long int) number of error test failures.

nlinsetupsS (long int) number of calls to the linear solver setup function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CVodeGetSensErrWeights

Call flag = CVodeGetSensErrWeights(cvode mem, eSweight);

Description The function CVodeGetSensErrWeights returns the sensitivity error weight vectors at
the current time. These are the reciprocals of the Wi of (2.8) for the sensitivity variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

eSweight (N Vector *) pointer to the array of error weight vectors.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes The user must allocate memory for eweightS.

CVodeGetSensNumNonlinSolvIters

Call flag = CVodeGetSensNumNonlinSolvIters(cvode mem, &nSniters);

Description The function CVodeGetSensNumNonlinSolvIters returns the number of nonlinear iter-
ations performed for sensitivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of:
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CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV MEM FAIL The sunnonlinsol module is NULL.

Notes This counter is incremented only if ism was CV STAGGERED or CV STAGGERED1 (see
§5.2.1).

In the CV STAGGERED1 case, the value of nSniters is the sum of the number of nonlinear
iterations performed for each sensitivity equation. These individual counters can be
obtained through a call to CVodeGetStgrSensNumNonlinSolvIters (see below).

CVodeGetSensNumNonlinSolvConvFails

Call flag = CVodeGetSensNumNonlinSolvConvFails(cvode mem, &nSncfails);

Description The function CVodeGetSensNumNonlinSolvConvFails returns the number of nonlinear
convergence failures that have occurred for sensitivity calculations.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if ism was CV STAGGERED or CV STAGGERED1 (see
§5.2.1).

In the CV STAGGERED1 case, the value of nSncfails is the sum of the number of non-
linear convergence failures that occurred for each sensitivity equation. These individual
counters can be obtained through a call to CVodeGetStgrSensNumNonlinConvFails

(see below).

CVodeGetSensNonlinSolvStats

Call flag = CVodeGetSensNonlinSolvStats(cvode mem, &nSniters, &nSncfails);

Description The function CVodeGetSensNonlinSolvStats returns the sensitivity-related nonlinear
solver statistics as a group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSniters (long int) number of nonlinear iterations performed.

nSncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV MEM FAIL The sunnonlinsol module is NULL.

CVodeGetStgrSensNumNonlinSolvIters

Call flag = CVodeGetStgrSensNumNonlinSolvIters(cvode mem, nSTGR1niters);

Description The function CVodeGetStgrSensNumNonlinSolvIters returns the number of nonlinear
iterations performed for each sensitivity equation separately, in the CV STAGGERED1 case.

Arguments cvode mem (void *) pointer to the cvodes memory block.
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nSTGR1niters (long int *) an array (of dimension Ns) which will be set with the
number of nonlinear iterations performed for each sensitivity system indi-
vidually.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes The user must allocate space for nSTGR1niters.!

CVodeGetStgrSensNumNonlinSolvConvFails

Call flag = CVodeGetStgrSensNumNonlinSolvConvFails(cvode mem, nSTGR1ncfails);

Description The function CVodeGetStgrSensNumNonlinSolvConvFails returns the number of non-
linear convergence failures that have occurred for each sensitivity equation separately,
in the CV STAGGERED1 case.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nSTGR1ncfails (long int *) an array (of dimension Ns) which will be set with the
number of nonlinear convergence failures for each sensitivity system indi-
vidually.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

Notes The user must allocate space for nSTGR1ncfails.!

5.3 User-supplied routines for forward sensitivity analysis

In addition to the required and optional user-supplied routines described in §4.6, when using cvodes
for forward sensitivity analysis, the user has the option of providing a routine that calculates the
right-hand side of the sensitivity equations (2.12).

By default, cvodes uses difference quotient approximation routines for the right-hand sides of the
sensitivity equations. However, cvodes allows the option for user-defined sensitivity right-hand side
routines (which also provides a mechanism for interfacing cvodes to routines generated by automatic
differentiation).

5.3.1 Sensitivity equations right-hand side (all at once)

If the CV SIMULTANEOUS or CV STAGGERED approach was selected in the call to CVodeSensInit or
CVodeSensInit1, the user may provide the right-hand sides of the sensitivity equations (2.12), for all
sensitivity parameters at once, through a function of type CVSensRhsFn defined by:

CVSensRhsFn

Definition typedef int (*CVSensRhsFn)(int Ns, realtype t,

N Vector y, N Vector ydot,

N Vector *yS, N Vector *ySdot,

void *user data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the sensitivity right-hand side for all sensitivity equations at
once. It must compute the vectors (∂f/∂y)si(t)+(∂f/∂pi) and store them in ySdot[i].
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Arguments Ns is the number of sensitivities.

t is the current value of the independent variable.

y is the current value of the state vector, y(t).

ydot is the current value of the right-hand side of the state equations.

yS contains the current values of the sensitivity vectors.

ySdot is the output of CVSensRhsFn. On exit it must contain the sensitivity right-
hand side vectors.

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

tmp1

tmp2 are N Vectors of length N which can be used as temporary storage.

Return value A CVSensRhsFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case cvodes will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV SRHSFUNC FAIL is re-
turned).

Notes A sensitivity right-hand side function of type CVSensRhsFn is not compatible with the !

CV STAGGERED1 approach.

Allocation of memory for ySdot is handled within cvodes.

There are two situations in which recovery is not possible even if CVSensRhsFn func-
tion returns a recoverable error flag. One is when this occurs at the very first call to
the CVSensRhsFn (in which case cvodes returns CV FIRST SRHSFUNC ERR). The other
is when a recoverable error is reported by CVSensRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case cvodes returns
CV UNREC SRHSFUNC ERR).

5.3.2 Sensitivity equations right-hand side (one at a time)

Alternatively, the user may provide the sensitivity right-hand sides, one sensitivity parameter at a
time, through a function of type CVSensRhs1Fn. Note that a sensitivity right-hand side function of
type CVSensRhs1Fn is compatible with any valid value of the argument ism to CVodeSensInit and
CVodeSensInit1, and is required if ism = CV STAGGERED1 in the call to CVodeSensInit1. The type
CVSensRhs1Fn is defined by

CVSensRhs1Fn

Definition typedef int (*CVSensRhs1Fn)(int Ns, realtype t,

N Vector y, N Vector ydot,

int iS, N Vector yS, N Vector ySdot,

void *user data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the sensitivity right-hand side for one sensitivity equation at a
time. It must compute the vector (∂f/∂y)si(t) + (∂f/∂pi) for i = iS and store it in
ySdot.

Arguments Ns is the number of sensitivities.

t is the current value of the independent variable.

y is the current value of the state vector, y(t).

ydot is the current value of the right-hand side of the state equations.

iS is the index of the parameter for which the sensitivity right-hand side must be
computed (0 ≤ iS < Ns).

yS contains the current value of the iS-th sensitivity vector.
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ySdot is the output of CVSensRhs1Fn. On exit it must contain the iS-th sensitivity
right-hand side vector.

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

tmp1

tmp2 are N Vectors of length N which can be used as temporary storage.

Return value A CVSensRhs1Fn should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case cvodes will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and CV SRHSFUNC FAIL is
returned).

Notes Allocation of memory for ySdot is handled within cvodes.

There are two situations in which recovery is not possible even if CVSensRhs1Fn func-
tion returns a recoverable error flag. One is when this occurs at the very first call to
the CVSensRhs1Fn (in which case cvodes returns CV FIRST SRHSFUNC ERR). The other
is when a recoverable error is reported by CVSensRhs1Fn after an error test failure,
while the linear multistep method order equal to 1 (in which case cvodes returns
CV UNREC SRHSFUNC ERR).

5.4 Integration of quadrature equations depending on forward
sensitivities

cvodes provides support for integration of quadrature equations that depends not only on the state
variables but also on forward sensitivities.

The following is an overview of the sequence of calls in a user’s main program in this situation.
Steps that are unchanged from the skeleton program presented in §5.1 are grayed out.

1. Initialize parallel or multi-threaded environment, if appropriate

2. Set problem dimensions etc.

3. Set vectors of initial values

4. Create cvodes object

5. Initialize cvodes solver

6. Specify integration tolerances

7. Create matrix object

8. Create linear solver object

9. Set linear solver optional inputs

10. Attach linear solver module

11. Set optional inputs

12. Create nonlinear solver object

13. Attach nonlinear solver module

14. Set nonlinear solver optional inputs

15. Initialize sensitivity-independent quadrature problem
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16. Define the sensitivity problem

17. Set sensitivity initial conditions

18. Activate sensitivity calculations

19. Set sensitivity tolerances

20. Set sensitivity analysis optional inputs

21. Create sensitivity nonlinear solver object

22. Attach the sensitvity nonlinear solver module

23. Set sensitivity nonlinear solver optional inputs

24. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to 0.

25. Initialize sensitivity-dependent quadrature integration

Call CVodeQuadSensInit to specify the quadrature equation right-hand side function and to
allocate internal memory related to quadrature integration. See §5.4.1 for details.

26. Set optional inputs for sensitivity-dependent quadrature integration

Call CVodeSetQuadSensErrCon to indicate whether or not quadrature variables should be used in
the step size control mechanism. If so, one of the CVodeQuadSens*tolerances functions must be
called to specify the integration tolerances for quadrature variables. See §5.4.4 for details.

27. Advance solution in time

28. Extract sensitivity-dependent quadrature variables

Call CVodeGetQuadSens, CVodeGetQuadSens1, CVodeGetQuadSensDky or CVodeGetQuadSensDky1
to obtain the values of the quadrature variables or their derivatives at the current time. See §5.4.3
for details.

29. Get optional outputs

30. Extract sensitivity solution

31. Get sensitivity-dependent quadrature optional outputs

Call CVodeGetQuadSens* functions to obtain desired optional output related to the integration of
sensitivity-dependent quadratures. See §5.4.5 for details.

32. Deallocate memory for solutions vector

33. Deallocate memory for sensitivity vectors

34. Deallocate memory for sensitivity-dependent quadrature variables

35. Free solver memory

36. Free nonlinear solver memory

37. Free vector specification memory

38. Free linear solver and matrix memory

39. Finalize MPI, if used
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Note: CVodeQuadSensInit (step 25 above) can be called and quadrature-related optional inputs (step
26 above) can be set anywhere between steps 16 and 27.

5.4.1 Sensitivity-dependent quadrature initialization and deallocation

The function CVodeQuadSensInit activates integration of quadrature equations depending on sensi-
tivities and allocates internal memory related to these calculations. If rhsQS is input as NULL, then
cvodes uses an internal function that computes difference quotient approximations to the functions
q̄i = qysi + qpi , in the notation of (2.10). The form of the call to this function is as follows:

CVodeQuadSensInit

Call flag = CVodeQuadSensInit(cvode mem, rhsQS, yQS0);

Description The function CVodeQuadSensInit provides required problem specifications, allocates
internal memory, and initializes quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

rhsQS (CVQuadSensRhsFn) is the C function which computes fQS , the right-hand
side of the sensitivity-dependent quadrature equations (for full details see
§5.4.6).

yQS0 (N Vector *) contains the initial values of sensitivity-dependent quadra-
tures.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadSensInit was successful.

CVODE MEM NULL The cvodes memory was not initialized by a prior call to CVodeCreate.

CVODE MEM FAIL A memory allocation request failed.

CV NO SENS The sensitivities were not initialized by a prior call to CVodeSensInit or
CVodeSensInit1.

CV ILL INPUT The parameter yQS0 is NULL.

Notes Before calling CVodeQuadSensInit, the user must enable the sensitivites by calling!

CVodeSensInit or CVodeSensInit1.

If an error occurred, CVodeQuadSensInit also sends an error message to the error
handler function.

In terms of the number of quadrature variables Nq and maximum method order maxord, the size of
the real workspace is increased as follows:

• Base value: lenrw = lenrw + (maxord+5)Nq

• If CVodeQuadSensSVtolerances is called: lenrw = lenrw +NqNs

and the size of the integer workspace is increased as follows:

• Base value: leniw = leniw + (maxord+5)Nq

• If CVodeQuadSensSVtolerances is called: leniw = leniw +NqNs

The function CVodeQuadSensReInit, useful during the solution of a sequence of problems of same
size, reinitializes quadrature-related internal memory and must follow a call to CVodeQuadSensInit.
The number Nq of quadratures as well as the number Ns of sensitivities are assumed to be unchanged
from the prior call to CVodeQuadSensInit. The call to the CVodeQuadSensReInit function has the
form:
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CVodeQuadSensReInit

Call flag = CVodeQuadSensReInit(cvode mem, yQS0);

Description The function CVodeQuadSensReInit provides required problem specifications and reini-
tializes the sensitivity-dependent quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

yQS0 (N Vector *) contains the initial values of sensitivity-dependent quadra-
tures.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadSensReInit was successful.

CVODE MEM NULL The cvodes memory was not initialized by a prior call to CVodeCreate.

CV NO SENS Memory space for the sensitivity calculation was not allocated by a
prior call to CVodeSensInit or CVodeSensInit1.

CV NO QUADSENS Memory space for the sensitivity quadratures integration was not al-
located by a prior call to CVodeQuadSensInit.

CV ILL INPUT The parameter yQS0 is NULL.

Notes If an error occurred, CVodeQuadSensReInit also sends an error message to the error
handler function.

CVodeQuadSensFree

Call CVodeQuadSensFree(cvode mem);

Description The function CVodeQuadSensFree frees the memory allocated for sensitivity quadrature
integration.

Arguments The argument is the pointer to the cvodes memory block (of type void *).

Return value The function CVodeQuadSensFree has no return value.

Notes In general, CVodeQuadSensFree need not be called by the user, as it is invoked auto-
matically by CVodeFree.

5.4.2 CVODES solver function

Even if quadrature integration was enabled, the call to the main solver function CVode is exactly the
same as in §4.5.6. However, in this case the return value flag can also be one of the following:

CV QSRHSFUNC ERR The sensitivity quadrature right-hand side function failed in an unrecover-
able manner.

CV FIRST QSRHSFUNC ERR The sensitivity quadrature right-hand side function failed at the first call.

CV REPTD QSRHSFUNC ERR Convergence test failures occurred too many times due to repeated recov-
erable errors in the quadrature right-hand side function. This flag will also
be returned if the quadrature right-hand side function had repeated recov-
erable errors during the estimation of an initial step size (assuming the
sensitivity quadrature variables are included in the error tests).

5.4.3 Sensitivity-dependent quadrature extraction functions

If sensitivity-dependent quadratures have been initialized by a call to CVodeQuadSensInit, or reini-
tialized by a call to CVodeQuadSensReInit, then cvodes computes a solution, sensitivity vectors, and
quadratures depending on sensitivities at time t. However, CVode will still return only the solution y.
Sensitivity-dependent quadratures can be obtained using one of the following functions:
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CVodeGetQuadSens

Call flag = CVodeGetQuadSens(cvode mem, &tret, yQS);

Description The function CVodeGetQuadSens returns the quadrature sensitivities solution vectors
after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype) the time reached by the solver (output).

yQS (N Vector *) array of Ns computed sensitivity-dependent quadrature vec-
tors. This vector array must be allocated by the user.

Return value The return value flag of CVodeGetQuadSens is one of:

CV SUCCESS CVodeGetQuadSens was successful.

CVODE MEM NULL cvode mem was NULL.

CV NO SENS Sensitivities were not activated.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

CV BAD DKY yQS or one of the yQS[i] is NULL.

The function CVodeGetQuadSensDky computes the k-th derivatives of the interpolating polynomials for
the sensitivity-dependent quadrature variables at time t. This function is called by CVodeGetQuadSens

with k = 0, but may also be called directly by the user.

CVodeGetQuadSensDky

Call flag = CVodeGetQuadSensDky(cvode mem, t, k, dkyQS);

Description The function CVodeGetQuadSensDky returns derivatives of the quadrature sensitivities
solution vectors after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

t (realtype) the time at which information is requested. The time t must
fall within the interval defined by the last successful step taken by cvodes.

k (int) order of the requested derivative.

dkyQS (N Vector *) array of Ns the vector containing the derivatives on output.
This vector array must be allocated by the user.

Return value The return value flag of CVodeGetQuadSensDky is one of:

CV SUCCESS CVodeGetQuadSensDky succeeded.

CVODE MEM NULL The pointer to cvode mem was NULL.

CV NO SENS Sensitivities were not activated.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

CV BAD DKY dkyQS or one of the vectors dkyQS[i] is NULL.

CV BAD K k is not in the range 0, 1, ..., qlast.

CV BAD T The time t is not in the allowed range.

Quadrature sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions CVodeGetQuadSens1 and CVodeGetQuadSensDky1, defined as follows:

CVodeGetQuadSens1

Call flag = CVodeGetQuadSens1(cvode mem, &tret, is, yQS);

Description The function CVodeGetQuadSens1 returns the is-th sensitivity of quadratures after a
successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype) the time reached by the solver (output).

is (int) specifies which sensitivity vector is to be returned (0 ≤ is < Ns).
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yQS (N Vector) the computed sensitivity-dependent quadrature vector. This
vector array must be allocated by the user.

Return value The return value flag of CVodeGetQuadSens1 is one of:

CV SUCCESS CVodeGetQuadSens1 was successful.

CVODE MEM NULL cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

CV BAD IS The index is is not in the allowed range.

CV BAD DKY yQS is NULL.

CVodeGetQuadSensDky1

Call flag = CVodeGetQuadSensDky1(cvode mem, t, k, is, dkyQS);

Description The function CVodeGetQuadSensDky1 returns the k-th derivative of the is-th sensitivity
solution vector after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by cvodes.

k (int) order of derivative.

is (int) specifies the sensitivity derivative vector to be returned (0 ≤is< Ns).

dkyQS (N Vector) the vector containing the derivative on output. The space for
dkyQS must be allocated by the user.

Return value The return value flag of CVodeGetQuadSensDky1 is one of:

CV SUCCESS CVodeGetQuadDky1 succeeded.

CVODE MEM NULL cvode mem was NULL.

CV NO SENS Forward sensitivity analysis was not initialized.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

CV BAD DKY dkyQS is NULL.

CV BAD IS The index is is not in the allowed range.

CV BAD K k is not in the range 0, 1, ..., qlast.

CV BAD T The time t is not in the allowed range.

5.4.4 Optional inputs for sensitivity-dependent quadrature integration

cvodes provides the following optional input functions to control the integration of sensitivity-
dependent quadrature equations.

CVodeSetQuadSensErrCon

Call flag = CVodeSetQuadSensErrCon(cvode mem, errconQS)

Description The function CVodeSetQuadSensErrCon specifies whether or not the quadrature vari-
ables are to be used in the step size control mechanism. If they are, the user must call
one of the functions CVodeQuadSensSStolerances, CVodeQuadSensSVtolerances, or
CVodeQuadSensEEtolerances to specify the integration tolerances for the quadrature
variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

errconQS (booleantype) specifies whether sensitivity quadrature variables are to be
included (SUNTRUE) or not (SUNFALSE) in the error control mechanism.
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Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CVODE MEM NULL cvode mem is NULL.

CV NO SENS Sensitivities were not activated.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

Notes By default, errconQS is set to SUNFALSE.

It is illegal to call CVodeSetQuadSensErrCon before a call to CVodeQuadSensInit.!

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.

CVodeQuadSensSStolerances

Call flag = CVodeQuadSensSVtolerances(cvode mem, reltolQS, abstolQS);

Description The function CVodeQuadSensSStolerances specifies scalar relative and absolute toler-
ances.

Arguments cvode mem (void *) pointer to the cvodes memory block.

reltolQS (realtype) is the scalar relative error tolerance.

abstolQS (realtype*) is a pointer to an array containing the Ns scalar absolute error
tolerances.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CVODE MEM NULL The cvode mem pointer is NULL.

CV NO SENS Sensitivities were not activated.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

CV ILL INPUT One of the input tolerances was negative.

CVodeQuadSensSVtolerances

Call flag = CVodeQuadSensSVtolerances(cvode mem, reltolQS, abstolQS);

Description The function CVodeQuadSensSVtolerances specifies scalar relative and vector absolute
tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block.

reltolQS (realtype) is the scalar relative error tolerance.

abstolQS (N Vector*) is an array of Ns variables of type N Vector. The N Vector

abstolS[is] specifies the vector tolerances for is-th quadrature sensitivity.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CV NO QUAD Quadrature integration was not initialized.

CVODE MEM NULL The cvode mem pointer is NULL.

CV NO SENS Sensitivities were not activated.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

CV ILL INPUT One of the input tolerances was negative.
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CVodeQuadSensEEtolerances

Call flag = CVodeQuadSensEEtolerances(cvode mem);

Description A call to the function CVodeQuadSensEEtolerances specifies that the tolerances for the
sensitivity-dependent quadratures should be estimated from those provided for the pure
quadrature variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional value has been successfully set.

CVODE MEM NULL The cvode mem pointer is NULL.

CV NO SENS Sensitivities were not activated.

CV NO QUADSENS Quadratures depending on the sensitivities were not activated.

Notes When CVodeQuadSensEEtolerances is used, before calling CVode, integration of pure
quadratures must be initialized (see 4.7.1) and tolerances for pure quadratures must be
also specified (see 4.7.4).

5.4.5 Optional outputs for sensitivity-dependent quadrature integration

cvodes provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

CVodeGetQuadSensNumRhsEvals

Call flag = CVodeGetQuadSensNumRhsEvals(cvode mem, &nrhsQSevals);

Description The function CVodeGetQuadSensNumRhsEvals returns the number of calls made to the
user’s quadrature right-hand side function.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nrhsQSevals (long int) number of calls made to the user’s rhsQS function.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CVODE MEM NULL The cvode mem pointer is NULL.

CV NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

CVodeGetQuadSensNumErrTestFails

Call flag = CVodeGetQuadSensNumErrTestFails(cvode mem, &nQSetfails);

Description The function CVodeGetQuadSensNumErrTestFails returns the number of local error
test failures due to quadrature variables.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nQSetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CVODE MEM NULL The cvode mem pointer is NULL.

CV NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.
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CVodeGetQuadSensErrWeights

Call flag = CVodeGetQuadSensErrWeights(cvode mem, eQSweight);

Description The function CVodeGetQuadSensErrWeights returns the quadrature error weights at
the current time.

Arguments cvode mem (void *) pointer to the cvodes memory block.

eQSweight (N Vector *) array of quadrature error weight vectors at the current time.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CVODE MEM NULL The cvode mem pointer is NULL.

CV NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

Notes The user must allocate memory for eQSweight.!

If quadratures were not included in the error control mechanism (through a call to
CVodeSetQuadSensErrCon with errconQS = SUNTRUE), then this function does not set
the eQSweight array.

CVodeGetQuadSensStats

Call flag = CVodeGetQuadSensStats(cvode mem, &nrhsQSevals, &nQSetfails);

Description The function CVodeGetQuadSensStats returns the cvodes integrator statistics as a
group.

Arguments cvode mem (void *) pointer to the cvodes memory block.

nrhsQSevals (long int) number of calls to the user’s rhsQS function.

nQSetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of

CV SUCCESS the optional output values have been successfully set.

CVODE MEM NULL the cvode mem pointer is NULL.

CV NO QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

5.4.6 User-supplied function for sensitivity-dependent quadrature integra-
tion

For the integration of sensitivity-dependent quadrature equations, the user must provide a function
that defines the right-hand side of those quadrature equations. For the sensitivities of quadratures
(2.10) with integrand q, the appropriate right-hand side functions are given by: q̄i = qysi + qpi . This
user function must be of type CVQuadSensRhsFn defined as follows:

CVQuadSensRhsFn

Definition typedef int (*CVQuadSensRhsFn)(int Ns, realtype t, N Vector y,

N Vector yS, N Vector yQdot,

N Vector *rhsvalQS, void *user data,

N Vector tmp1, N Vector tmp2)

Purpose This function computes the sensitivity quadrature equation right-hand side for a given
value of the independent variable t and state vector y.

Arguments Ns is the number of sensitivity vectors.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

yS is an array of Ns variables of type N Vector containing the dependent sen-
sitivity vectors si.
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yQdot is the current value of the quadrature right-hand side, q.

rhsvalQS array of Ns vectors to contain the right-hand sides.

user data is the user data pointer passed to CVodeSetUserData.

tmp1

tmp2 are N Vectors which can be used as temporary storage.

Return value A CVQuadSensRhsFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case cvodes will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV QRHS FAIL is returned).

Notes Allocation of memory for rhsvalQS is automatically handled within cvodes.

Here y is of type N Vector and yS is a pointer to an array containing Ns vectors of
type N Vector. It is the user’s responsibility to access the vector data consistently
(including the use of the correct accessor macros from each nvector implementation).
For the sake of computational efficiency, the vector functions in the two nvector
implementations provided with cvodes do not perform any consistency checks with
respect to their N Vector arguments (see §7.2 and §7.3).

There are two situations in which recovery is not possible even if CVQuadSensRhsFn

function returns a recoverable error flag. One is when this occurs at the very first call
to the CVQuadSensRhsFn (in which case cvodes returns CV FIRST QSRHSFUNC ERR). The
other is when a recoverable error is reported by CVQuadSensRhsFn after an error test
failure, while the linear multistep method order is equal to 1 (in which case cvodes
returns CV UNREC QSRHSFUNC ERR).

5.5 Note on using partial error control

For some problems, when sensitivities are excluded from the error control test, the behavior of cvodes
may appear at first glance to be erroneous. One would expect that, in such cases, the sensitivity
variables would not influence in any way the step size selection. A comparison of the solver diagnostics
reported for cvsdenx and the second run of the cvsfwddenx example in [43] indicates that this may
not always be the case.

The short explanation of this behavior is that the step size selection implemented by the er-
ror control mechanism in cvodes is based on the magnitude of the correction calculated by the
nonlinear solver. As mentioned in §5.2.1, even with partial error control selected (in the call to
CVodeSetSensErrCon), the sensitivity variables are included in the convergence tests of the nonlinear
solver.

When using the simultaneous corrector method (§2.6), the nonlinear system that is solved at
each step involves both the state and sensitivity equations. In this case, it is easy to see how the
sensitivity variables may affect the convergence rate of the nonlinear solver and therefore the step size
selection. The case of the staggered corrector approach is more subtle. After all, in this case (ism
= CV STAGGERED or CV STAGGERED1 in the call to CVodeSensInit/CVodeSensInit1), the sensitivity
variables at a given step are computed only once the solver for the nonlinear state equations has
converged. However, if the nonlinear system corresponding to the sensitivity equations has convergence
problems, cvodes will attempt to improve the initial guess by reducing the step size in order to provide
a better prediction of the sensitivity variables. Moreover, even if there are no convergence failures in
the solution of the sensitivity system, cvodes may trigger a call to the linear solver’s setup routine
which typically involves reevaluation of Jacobian information (Jacobian approximation in the case of
cvdense and cvband, or preconditioner data in the case of the Krylov solvers). The new Jacobian
information will be used by subsequent calls to the nonlinear solver for the state equations and, in
this way, potentially affect the step size selection.

When using the simultaneous corrector method it is not possible to decide whether nonlinear solver
convergence failures or calls to the linear solver setup routine have been triggered by convergence
problems due to the state or the sensitivity equations. When using one of the staggered corrector
methods however, these situations can be identified by carefully monitoring the diagnostic information
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provided through optional outputs. If there are no convergence failures in the sensitivity nonlinear
solver, and none of the calls to the linear solver setup routine were made by the sensitivity nonlinear
solver, then the step size selection is not affected by the sensitivity variables.

Finally, the user must be warned that the effect of appending sensitivity equations to a given
system of ODEs on the step size selection (through the mechanisms described above) is problem-
dependent and can therefore lead to either an increase or decrease of the total number of steps that
cvodes takes to complete the simulation. At first glance, one would expect that the impact of the
sensitivity variables, if any, would be in the direction of increasing the step size and therefore reducing
the total number of steps. The argument for this is that the presence of the sensitivity variables in
the convergence test of the nonlinear solver can only lead to additional iterations (and therefore a
smaller final iteration error), or to additional calls to the linear solver setup routine (and therefore
more up-to-date Jacobian information), both of which will lead to larger steps being taken by cvodes.
However, this is true only locally. Overall, a larger integration step taken at a given time may lead
to step size reductions at later times, due to either nonlinear solver convergence failures or error test
failures.



Chapter 6

Using CVODES for Adjoint
Sensitivity Analysis

This chapter describes the use of cvodes to compute sensitivities of derived functions using adjoint
sensitivity analysis. As mentioned before, the adjoint sensitivity module of cvodes provides the in-
frastructure for integrating backward in time any system of ODEs that depends on the solution of
the original IVP, by providing various interfaces to the main cvodes integrator, as well as several
supporting user-callable functions. For this reason, in the following sections we refer to the backward
problem and not to the adjoint problem when discussing details relevant to the ODEs that are inte-
grated backward in time. The backward problem can be the adjoint problem (2.20) or (2.23), and
can be augmented with some quadrature differential equations.

cvodes uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable functions and of the user-supplied functions
that were not already described in Chapter 4.

6.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program as an application of cvodes. The user program
is to have these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer
many of the details to the later sections. As in §4.4, most steps are independent of the nvector,
sunmatrix, sunlinsol, and sunnonlinsol implementations used. For the steps that are not, refer
to Chapters 7, 8, 9, and 10 for the specific name of the function to be called or macro to be referenced.

Steps that are unchanged from the skeleton programs presented in §4.4, §5.1, and §5.4, are grayed
out.

1. Include necessary header files

The cvodes.h header file also defines additional types, constants, and function prototypes for the
adjoint sensitivity module user-callable functions. In addition, the main program should include an
nvector implementation header file (for the particular implementation used), and, if a nonlinear
solver requiring a linear solver (e.g., the default Newton iteration) will be used, the header file of
the desired linear solver module.

2. Initialize parallel or multi-threaded environment, if appropriate

Forward problem

3. Set problem dimensions etc. for the forward problem
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4. Set initial conditions for the forward problem

5. Create cvodes object for the forward problem

6. Initialize cvodes for the forward problem

7. Specify integration tolerances for forward problem

8. Create matrix object for the forward problem

9. Create linear solver object for the forward problem

10. Set linear solver optional inputs for the forward problem

11. Attach linear solver module for the forward problem

12. Set optional inputs for the forward problem

13. Create nonlinear solver object for the forward problem

14. Attach nonlinear solver module for the forward problem

15. Set nonlinear solver optional inputs for the forward problem

16. Initialize quadrature problem or problems for forward problems, using CVodeQuadInit

and/or CVodeQuadSensInit.

17. Initialize forward sensitivity problem

18. Specify rootfinding

19. Allocate space for the adjoint computation

Call CVodeAdjInit() to allocate memory for the combined forward-backward problem (see §6.2.1
for details). This call requires Nd, the number of steps between two consecutive checkpoints.
CVodeAdjInit also specifies the type of interpolation used (see §2.7.1).

20. Integrate forward problem

Call CVodeF, a wrapper for the cvodes main integration function CVode, either in CV NORMAL

mode to the time tout or in CV ONE STEP mode inside a loop (if intermediate solutions of the
forward problem are desired (see §6.2.2)). The final value of tret is then the maximum allowable
value for the endpoint T of the backward problem.

Backward problem(s)

21. Set problem dimensions etc. for the backward problem

This generally includes the backward problem vector length NB, and possibly the local vector
length NBlocal.

22. Set initial values for the backward problem

Set the endpoint time tB0 = T , and set the corresponding vector yB0 at which the backward
problem starts.

23. Create the backward problem

Call CVodeCreateB, a wrapper for CVodeCreate, to create the cvodes memory block for the new
backward problem. Unlike CVodeCreate, the function CVodeCreateB does not return a pointer
to the newly created memory block (see §6.2.3). Instead, this pointer is attached to the internal
adjoint memory block (created by CVodeAdjInit) and returns an identifier called which that the
user must later specify in any actions on the newly created backward problem.
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24. Allocate memory for the backward problem

Call CVodeInitB (or CVodeInitBS, when the backward problem depends on the forward sensi-
tivities). The two functions are actually wrappers for CVodeInit and allocate internal memory,
specify problem data, and initialize cvodes at tB0 for the backward problem (see §6.2.3).

25. Specify integration tolerances for backward problem

Call CVodeSStolerancesB(...) or CVodeSVtolerancesB(...) to specify a scalar relative tol-
erance and scalar absolute tolerance or scalar relative tolerance and a vector of absolute toler-
ances, respectively. The functions are wrappers for CVodeSStolerances and CVodeSVtolerances,
but they require an extra argument which, the identifier of the backward problem returned by
CVodeCreateB. See §6.2.4 for more information.

26. Create matrix object for the backward problem

If a nonlinear solver requiring a linear solve will be used (e.g., the the default Newton iteration) and
the linear solver will be a direct linear solver, then a template Jacobian matrix must be created by
calling the appropriate constructor function defined by the particular sunmatrix implementation.

For the sundials-supplied sunmatrix implementations, the matrix object may be created using
a call of the form

SUNMatrix J = SUNBandMatrix(...);

or

SUNMatrix J = SUNDenseMatrix(...);

or

SUNMatrix J = SUNSparseMatrix(...);

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

Note also that it is not required to use the same matrix type for both the forward and the backward
problems.

27. Create linear solver object for the backward problem

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then the
desired linear solver object for the backward problem must be created by calling the appropriate
constructor function defined by the particular sunlinsol implementation.

For any of the sundials-supplied sunlinsol implementations, the linear solver object may be
created using a call of the form

SUNLinearSolver LS = SUNLinSol *(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §4.5.3 and
Chapter 9.

Note that it is not required to use the same linear solver module for both the forward and the
backward problems; for example, the forward problem could be solved with the sunlinsol dense
linear solver module and the backward problem with sunlinsol spgmr linear solver module.

28. Set linear solver interface optional inputs for the backward problem

Call *Set* functions from the selected linear solver module to change optional inputs specific to
that linear solver. See the documentation for each sunlinsol module in Chapter 9 for details.

29. Attach linear solver module for the backward problem

If a nonlinear solver requiring a linear solver is chosen for the backward problem (e.g., the default
Newton iteration), then initialize the cvls linear solver interface by attaching the linear solver
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object (and matrix object, if applicable) with the call (for details see §4.5.3):

ier = CVodeSetLinearSolverB(...);

Alternately, if the cvodes-specific diagonal linear solver module, cvdiag, is desired, initialize the
linear solver module and attach it to cvodes with the call

ier = CVDiagB(...);

30. Set optional inputs for the backward problem

Call CVodeSet*B functions to change from their default values any optional inputs that control
the behavior of cvodes. Unlike their counterparts for the forward problem, these functions take
an extra argument which, the identifier of the backward problem returned by CVodeCreateB (see
§6.2.8).

31. Create nonlinear solver object for the backward problem (optional)

If using a non-default nonlinear solver for the backward problem, then create the desired nonlinear
solver object by calling the appropriate constructor function defined by the particular sunnon-
linsol implementation (e.g., NLSB = SUNNonlinSol ***(...); where *** is the name of the
nonlinear solver (see Chapter 10 for details).

32. Attach nonlinear solver module for the backward problem (optional)

If using a non-default nonlinear solver for the backward problem, then initialize the nonlinear
solver interface by attaching the nonlinear solver object by calling
ier = CVodeSetNonlinearSolverB(cvode mem, NLSB); (see §4.5.4 for details).

33. Initialize quadrature calculation

If additional quadrature equations must be evaluated, call CVodeQuadInitB or CVodeQuadInitBS
(if quadrature depends also on the forward sensitivities) as shown in §6.2.10.1. These functions are
wrappers around CVodeQuadInit and can be used to initialize and allocate memory for quadra-
ture integration. Optionally, call CVodeSetQuad*B functions to change from their default values
optional inputs that control the integration of quadratures during the backward phase.

34. Integrate backward problem

Call CVodeB, a second wrapper around the cvodes main integration function CVode, to integrate
the backward problem from tB0 (see §6.2.6). This function can be called either in CV NORMAL or
CV ONE STEP mode. Typically, CVodeB will be called in CV NORMAL mode with an end time equal
to the initial time t0 of the forward problem.

35. Extract quadrature variables

If applicable, call CVodeGetQuadB, a wrapper around CVodeGetQuad, to extract the values of the
quadrature variables at the time returned by the last call to CVodeB. See §6.2.10.2.

36. Deallocate memory

Upon completion of the backward integration, call all necessary deallocation functions. These
include appropriate destructors for the vectors y and yB, a call to CVodeFree to free the cvodes
memory block for the forward problem. If one or more additional Adjoint Sensitivity Analyses
are to be done for this problem, a call to CVodeAdjFree (see §6.2.1) may be made to free and
deallocate memory allocated for the backward problems, followed by a call to CVodeAdjInit.

37. Free the nonlinear solver memory for the forward and backward problems

38. Free linear solver and matrix memory for the forward and backward problems

39. Finalize MPI, if used
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The above user interface to the adjoint sensitivity module in cvodes was motivated by the desire
to keep it as close as possible in look and feel to the one for ODE IVP integration. Note that if steps
(21)-(35) are not present, a program with the above structure will have the same functionality as one
described in §4.4 for integration of ODEs, albeit with some overhead due to the checkpointing scheme.

If there are multiple backward problems associated with the same forward problem, repeat steps
(21)-(35) above for each successive backward problem. In the process, each call to CVodeCreateB

creates a new value of the identifier which.

6.2 User-callable functions for adjoint sensitivity analysis

6.2.1 Adjoint sensitivity allocation and deallocation functions

After the setup phase for the forward problem, but before the call to CVodeF, memory for the combined
forward-backward problem must be allocated by a call to the function CVodeAdjInit. The form of
the call to this function is

CVodeAdjInit

Call flag = CVodeAdjInit(cvode mem, Nd, interpType);

Description The function CVodeAdjInit updates cvodes memory block by allocating the internal
memory needed for backward integration. Space is allocated for the Nd = Nd interpo-
lation data points, and a linked list of checkpoints is initialized.

Arguments cvode mem (void *) is the pointer to the cvodes memory block returned by a previ-
ous call to CVodeCreate.

Nd (long int) is the number of integration steps between two consecutive
checkpoints.

interpType (int) specifies the type of interpolation used and can be CV POLYNOMIAL

or CV HERMITE, indicating variable-degree polynomial and cubic Hermite
interpolation, respectively (see §2.7.1).

Return value The return value flag (of type int) is one of:

CV SUCCESS CVodeAdjInit was successful.

CV MEM FAIL A memory allocation request has failed.

CV MEM NULL cvode mem was NULL.

CV ILL INPUT One of the parameters was invalid: Nd was not positive or interpType

is not one of the CV POLYNOMIAL or CV HERMITE.

Notes The user must set Nd so that all data needed for interpolation of the forward problem
solution between two checkpoints fits in memory. CVodeAdjInit attempts to allocate
space for (2Nd+3) variables of type N Vector.

If an error occurred, CVodeAdjInit also sends a message to the error handler function.

CVodeAdjReInit

Call flag = CVodeAdjReInit(cvode mem);

Description The function CVodeAdjReInit reinitializes the cvodes memory block for ASA, assum-
ing that the number of steps between check points and the type of interpolation remain
unchanged.

Arguments cvode mem (void *) is the pointer to the cvodes memory block returned by a previous
call to CVodeCreate.

Return value The return value flag (of type int) is one of:

CV SUCCESS CVodeAdjReInit was successful.
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CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit was not previously called.

Notes The list of check points (and associated memory) is deleted.

The list of backward problems is kept. However, new backward problems can be added
to this list by calling CVodeCreateB. If a new list of backward problems is also needed,
then free the adjoint memory (by calling CVodeAdjFree) and reinitialize ASA with
CVodeAdjInit.

The cvodes memory for the forward and backward problems can be reinitialized sep-
arately by calling CVodeReInit and CVodeReInitB, respectively.

CVodeAdjFree

Call CVodeAdjFree(cvode mem);

Description The function CVodeAdjFree frees the memory related to backward integration allocated
by a previous call to CVodeAdjInit.

Arguments The only argument is the cvodes memory block pointer returned by a previous call to
CVodeCreate.

Return value The function CVodeAdjFree has no return value.

Notes This function frees all memory allocated by CVodeAdjInit. This includes workspace
memory, the linked list of checkpoints, memory for the interpolation data, as well as
the cvodes memory for the backward integration phase. Unless one or more further
calls to CVodeAdjInit are to be made, CVodeAdjFree should not be called by the user,
as it is invoked automatically by CVodeFree.

6.2.2 Forward integration function

The function CVodeF is very similar to the cvodes function CVode (see §4.5.6) in that it integrates
the solution of the forward problem and returns the solution in y. At the same time, however, CVodeF
stores checkpoint data every Nd integration steps. CVodeF can be called repeatedly by the user. Note
that CVodeF is used only for the forward integration pass within an Adjoint Sensitivity Analysis. It
is not for use in Forward Sensitivity Analysis; for that, see Chapter 5. The call to this function has
the form

CVodeF

Call flag = CVodeF(cvode mem, tout, yret, &tret, itask, &ncheck);

Description The function CVodeF integrates the forward problem over an interval in t and saves
checkpointing data.

Arguments cvode mem (void *) pointer to the cvodes memory block.

tout (realtype) the next time at which a computed solution is desired.

yret (N Vector) the computed solution vector y.

tret (realtype) the time reached by the solver (output).

itask (int) a flag indicating the job of the solver for the next step. The CV NORMAL

task is to have the solver take internal steps until it has reached or just passed
the user-specified tout parameter. The solver then interpolates in order to
return an approximate value of y(tout). The CV ONE STEP option tells the
solver to just take one internal step and return the solution at the point
reached by that step.

ncheck (int) the number of (internal) checkpoints stored so far.
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Return value On return, CVodeF returns the vector yret and a corresponding independent variable
value t = tret, such that yret is the computed value of y(t). Additionally, it returns
in ncheck the number of internal checkpoints saved; the total number of checkpoint
intervals is ncheck+1. The return value flag (of type int) will be one of the following.
For more details see §4.5.6.

CV SUCCESS CVodeF succeeded.

CV TSTOP RETURN CVodeF succeeded by reaching the optional stopping point.

CV ROOT RETURN CVodeF succeeded and found one or more roots. In this case, tret
is the location of the root. If nrtfn > 1, call CVodeGetRootInfo to
see which gi were found to have a root.

CV NO MALLOC The function CVodeInit has not been previously called.

CV ILL INPUT One of the inputs to CVodeF is illegal.

CV TOO MUCH WORK The solver took mxstep internal steps but could not reach tout.

CV TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

CV ERR FAILURE Error test failures occurred too many times during one internal time
step or occurred with |h| = hmin.

CV CONV FAILURE Convergence test failures occurred too many times during one inter-
nal time step or occurred with |h| = hmin.

CV LSETUP FAIL The linear solver’s setup function failed in an unrecoverable manner.

CV LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV MEM FAIL A memory allocation request has failed (in an attempt to allocate
space for a new checkpoint).

Notes All failure return values are negative and therefore a test flag< 0 will trap all CVodeF
failures.

At this time, CVodeF stores checkpoint information in memory only. Future versions
will provide for a safeguard option of dumping checkpoint data into a temporary file
as needed. The data stored at each checkpoint is basically a snapshot of the cvodes
internal memory block and contains enough information to restart the integration from
that time and to proceed with the same step size and method order sequence as during
the forward integration.

In addition, CVodeF also stores interpolation data between consecutive checkpoints so
that, at the end of this first forward integration phase, interpolation information is
already available from the last checkpoint forward. In particular, if no checkpoints were
necessary, there is no need for the second forward integration phase.

It is illegal to change the integration tolerances between consecutive calls to CVodeF, as !

this information is not captured in the checkpoint data.

6.2.3 Backward problem initialization functions

The functions CVodeCreateB and CVodeInitB (or CVodeInitBS) must be called in the order listed.
They instantiate a cvodes solver object, provide problem and solution specifications, and allocate
internal memory for the backward problem.

CVodeCreateB

Call flag = CVodeCreateB(cvode mem, lmmB, &which);

Description The function CVodeCreateB instantiates a cvodes solver object and specifies the solu-
tion method for the backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.
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lmmB (int) specifies the linear multistep method and may be one of two possible
values: CV ADAMS or CV BDF.

which (int) contains the identifier assigned by cvodes for the newly created back-
ward problem. Any call to CVode*B functions requires such an identifier.

Return value The return value flag (of type int) is one of:

CV SUCCESS The call to CVodeCreateB was successful.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV MEM FAIL A memory allocation request has failed.

There are two initialization functions for the backward problem – one for the case when the
backward problem does not depend on the forward sensitivities, and one for the case when it does.
These two functions are described next.

The function CVodeInitB initializes the backward problem when it does not depend on the forward
sensitivities. It is essentially a wrapper for CVodeInit with some particularization for backward
integration, as described below.

CVodeInitB

Call flag = CVodeInitB(cvode mem, which, rhsB, tB0, yB0);

Description The function CVodeInitB provides problem specification, allocates internal memory,
and initializes the backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

rhsB (CVRhsFnB) is the C function which computes fB, the right-hand side of
the backward ODE problem. This function has the form rhsB(t, y, yB,

yBdot, user dataB) (for full details see §6.3.1).

tB0 (realtype) specifies the endpoint T where final conditions are provided
for the backward problem, normally equal to the endpoint of the forward
integration.

yB0 (N Vector) is the initial value (at t = tB0) of the backward solution.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeInitB was successful.

CV NO MALLOC The function CVodeInit has not been previously called.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV BAD TB0 The final time tB0 was outside the interval over which the forward prob-
lem was solved.

CV ILL INPUT The parameter which represented an invalid identifier, or either yB0 or
rhsB was NULL.

Notes The memory allocated by CVodeInitB is deallocated by the function CVodeAdjFree.

For the case when backward problem also depends on the forward sensitivities, user must call
CVodeInitBS instead of CVodeInitB. Only the third argument of each function differs between these
two functions.

CVodeInitBS

Call flag = CVodeInitBS(cvode mem, which, rhsBS, tB0, yB0);

Description The function CVodeInitBS provides problem specification, allocates internal memory,
and initializes the backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.
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which (int) represents the identifier of the backward problem.

rhsBS (CVRhsFnBS) is the C function which computes fB, the right-hand side of
the backward ODE problem. This function has the form rhsBS(t, y, yS,

yB, yBdot, user dataB) (for full details see §6.3.2).

tB0 (realtype) specifies the endpoint T where final conditions are provided for
the backward problem.

yB0 (N Vector) is the initial value (at t = tB0) of the backward solution.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeInitB was successful.

CV NO MALLOC The function CVodeInit has not been previously called.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV BAD TB0 The final time tB0 was outside the interval over which the forward prob-
lem was solved.

CV ILL INPUT The parameter which represented an invalid identifier, either yB0 or
rhsBS was NULL, or sensitivities were not active during the forward inte-
gration.

Notes The memory allocated by CVodeInitBS is deallocated by the function CVodeAdjFree.

The function CVodeReInitB reinitializes cvodes for the solution of a series of backward prob-
lems, each identified by a value of the parameter which. CVodeReInitB is essentially a wrapper
for CVodeReInit, and so all details given for CVodeReInit in §4.5.10 apply here. Also note that
CVodeReInitB can be called to reinitialize the backward problem even it has been initialized with the
sensitivity-dependent version CVodeInitBS. Before calling CVodeReInitB for a new backward prob-
lem, call any desired solution extraction functions CVodeGet** associated with the previous backward
problem. The call to the CVodeReInitB function has the form

CVodeReInitB

Call flag = CVodeReInitB(cvode mem, which, tB0, yB0)

Description The function CVodeReInitB reinitializes a cvodes backward problem.

Arguments cvode mem (void *) pointer to cvodes memory block returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

tB0 (realtype) specifies the endpoint T where final conditions are provided for
the backward problem.

yB0 (N Vector) is the initial value (at t = tB0) of the backward solution.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInitB was successful.

CV NO MALLOC The function CVodeInit has not been previously called.

CV MEM NULL The cvode mem memory block pointer was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV BAD TB0 The final time tB0 is outside the interval over which the forward problem
was solved.

CV ILL INPUT The parameter which represented an invalid identifier, or yB0 was NULL.

6.2.4 Tolerance specification functions for backward problem

One of the following two functions must be called to specify the integration tolerances for the backward
problem. Note that this call must be made after the call to CVodeInitB or CVodeInitBS.
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CVodeSStolerancesB

Call flag = CVodeSStolerancesB(cvode mem, which, reltolB, abstolB);

Description The function CVodeSStolerancesB specifies scalar relative and absolute tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

reltolB (realtype) is the scalar relative error tolerance.

abstolB (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSStolerancesB was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO MALLOC The allocation function CVodeInit has not been called.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV ILL INPUT One of the input tolerances was negative.

CVodeSVtolerancesB

Call flag = CVodeSVtolerancesB(cvode mem, which, reltolB, abstolB);

Description The function CVodeSVtolerancesB specifies scalar relative tolerance and vector absolute
tolerances.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

reltol (realtype) is the scalar relative error tolerance.

abstol (N Vector) is the vector of absolute error tolerances.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSVtolerancesB was successful.

CV MEM NULL The cvodes memory block was not initialized through a previous call
to CVodeCreate.

CV NO MALLOC The allocation function CVodeInit has not been called.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV ILL INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.

6.2.5 Linear solver initialization functions for backward problem

All cvodes linear solver modules available for forward problems are available for the backward prob-
lem. They should be created as for the forward problem and then attached to the memory structure
for the backward problem using the following functions.

CVodeSetLinearSolverB

Call flag = CVodeSetLinearSolverB(cvode mem, which, LS, A);

Description The function CVodeSetLinearSolverB attaches a generic sunlinsol object LS and
corresponding template Jacobian sunmatrix object A to cvodes, initializing the cvls
linear solver interface for solution of the backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory block.
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which (int) represents the identifier of the backward problem returned by
CVodeCreateB.

LS (SUNLinearSolver) sunlinsol object to use for solving linear systems for
the backward problem.

A (SUNMatrix) sunmatrix object for used as a template for the Jacobian for
the backward problem (or NULL if not applicable).

Return value The return value flag (of type int) is one of

CVLS SUCCESS The cvls initialization was successful.

CVLS MEM NULL The cvode mem pointer is NULL.

CVLS ILL INPUT The cvls solver is not compatible with the current nvector module.

CVLS MEM FAIL A memory allocation request failed.

CVLS NO ADJ The function CVAdjInit has not been previously called.

CVLS ILL INPUT The parameter which represented an invalid identifier.

Notes If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used
in the solve process, so if additional storage is required within the sunmatrix object
(e.g., for factorization of a banded matrix), ensure that the input object is allocated
with sufficient size (see the documentation of the particular sunmatrix type in Chapter
8 for further information).

The previous routines CVDlsSetLinearSolverB and CVSpilsSetLinearSolverB are
now wrappers for this routine, and may still be used for backward-compatibility. How-
ever, these will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.

CVDiagB

Call flag = CVDiagB(cvode mem, which);

Description The function CVDiagB selects the cvdiag linear solver for the solution of the backward
problem.

The user’s main program must include the cvodes diag.h header file.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) represents the identifier of the backward problem returned by
CVodeCreateB.

Return value The return value flag (of type int) is one of:

CVDIAG SUCCESS The cvdiag initialization was successful.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG ILL INPUT The cvdiag solver is not compatible with the current nvector
module.

CVDIAG MEM FAIL A memory allocation request failed.

Notes The cvdiag solver is the simplest of all of the available cvodes linear solver interfaces.
The cvdiag solver uses an approximate diagonal Jacobian formed by way of a difference
quotient. The user does not have the option of supplying a function to compute an
approximate diagonal Jacobian.

6.2.6 Backward integration function

The function CVodeB performs the integration of the backward problem. It is essentially a wrapper
for the cvodes main integration function CVode and, in the case in which checkpoints were needed,
it evolves the solution of the backward problem through a sequence of forward-backward integration
pairs between consecutive checkpoints. The first run of each pair integrates the original IVP forward
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in time and stores interpolation data; the second run integrates the backward problem backward in
time and performs the required interpolation to provide the solution of the IVP to the backward
problem.

The function CVodeB does not return the solution yB itself. To obtain that, call the function
CVodeGetB, which is also described below.

The CVodeB function does not support rootfinding, unlike CVodeF, which supports the finding of
roots of functions of (t, y). If rootfinding was performed by CVodeF, then for the sake of efficiency, it
should be disabled for CVodeB by first calling CVodeRootInit with nrtfn = 0.

The call to CVodeB has the form

CVodeB

Call flag = CVodeB(cvode mem, tBout, itaskB);

Description The function CVodeB integrates the backward ODE problem.

Arguments cvode mem (void *) pointer to the cvodes memory returned by CVodeCreate.

tBout (realtype) the next time at which a computed solution is desired.

itaskB (int) a flag indicating the job of the solver for the next step. The CV NORMAL

task is to have the solver take internal steps until it has reached or just
passed the user-specified value tBout. The solver then interpolates in order
to return an approximate value of yB(tBout). The CV ONE STEP option tells
the solver to take just one internal step in the direction of tBout and return.

Return value The return value flag (of type int) will be one of the following. For more details see
§4.5.6.

CV SUCCESS CVodeB succeeded.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV NO BCK No backward problem has been added to the list of backward prob-
lems by a call to CVodeCreateB

CV NO FWD The function CVodeF has not been previously called.

CV ILL INPUT One of the inputs to CVodeB is illegal.

CV BAD ITASK The itaskB argument has an illegal value.

CV TOO MUCH WORK The solver took mxstep internal steps but could not reach tBout.

CV TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

CV ERR FAILURE Error test failures occurred too many times during one internal time
step.

CV CONV FAILURE Convergence test failures occurred too many times during one inter-
nal time step.

CV LSETUP FAIL The linear solver’s setup function failed in an unrecoverable manner.

CV SOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

CV BCKMEM NULL The solver memory for the backward problem was not created with
a call to CVodeCreateB.

CV BAD TBOUT The desired output time tBout is outside the interval over which the
forward problem was solved.

CV REIFWD FAIL Reinitialization of the forward problem failed at the first checkpoint
(corresponding to the initial time of the forward problem).

CV FWD FAIL An error occurred during the integration of the forward problem.

Notes All failure return values are negative and therefore a test flag< 0 will trap all CVodeB
failures.
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In the case of multiple checkpoints and multiple backward problems, a given call to
CVodeB in CV ONE STEP mode may not advance every problem one step, depending on
the relative locations of the current times reached. But repeated calls will eventually
advance all problems to tBout.

To obtain the solution yB to the backward problem, call the function CVodeGetB as follows:

CVodeGetB

Call flag = CVodeGetB(cvode mem, which, &tret, yB);

Description The function CVodeGetB provides the solution yB of the backward ODE problem.

Arguments cvode mem (void *) pointer to the cvodes memory returned by CVodeCreate.

which (int) the identifier of the backward problem.

tret (realtype) the time reached by the solver (output).

yB (N Vector) the backward solution at time tret.

Return value The return value flag (of type int) will be one of the following.

CV SUCCESS CVodeGetB was successful.

CV MEM NULL cvode mem is NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV ILL INPUT The parameter which is an invalid identifier.

Notes The user must allocate space for yB. !

To obtain the solution associated with a given backward problem at some other time
within the last integration step, first obtain a pointer to the proper cvodes memory
structure by calling CVodeGetAdjCVodeBmem and then use it to call CVodeGetDky.

6.2.7 Adjoint sensitivity optional input

At any time during the integration of the forward problem, the user can disable the checkpointing of
the forward sensitivities by calling the following function:

CVodeAdjSetNoSensi

Call flag = CVodeAdjSetNoSensi(cvode mem);

Description The function CVodeAdjSetNoSensi instructs CVodeF not to save checkpointing data for
forward sensitivities anymore.

Arguments cvode mem (void *) pointer to the cvodes memory block.

Return value The return value flag (of type int) is one of:

CV SUCCESS The call to CVodeCreateB was successful.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

6.2.8 Optional input functions for the backward problem

6.2.8.1 Main solver optional input functions

The adjoint module in cvodes provides wrappers for most of the optional input functions defined
in §4.5.7.1. The only difference is that the user must specify the identifier which of the backward
problem within the list managed by cvodes.

The optional input functions defined for the backward problem are:
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flag = CVodeSetNonlinearSolverB(cvode_mem, which, NLSB);

flag = CVodeSetUserDataB(cvode_mem, which, user_dataB);

flag = CVodeSetMaxOrdB(cvode_mem, which, maxordB);

flag = CVodeSetMaxNumStepsB(cvode_mem, which, mxstepsB);

flag = CVodeSetInitStepB(cvode_mem, which, hinB)

flag = CVodeSetMinStepB(cvode_mem, which, hminB);

flag = CVodeSetMaxStepB(cvode_mem, which, hmaxB);

flag = CVodeSetStabLimDetB(cvode_mem, which, stldetB);

flag = CVodeSetConstraintsB(cvode_mem, which, constraintsB);

Their return value flag (of type int) can have any of the return values of their counterparts, but it
can also be CV NO ADJ if CVodeAdjInit has not been called, or CV ILL INPUT if which was an invalid
identifier.

6.2.8.2 Linear solver interface optional input functions

When using matrix-based linear solver modules, the cvls solver interface needs a function to compute
an approximation to the Jacobian for the backward problem. This Jacobian evaluation function can
be attached through a call to either CVodeSetJacFnB or CVodeSetJacFnBS, with the second used when
the backward problem depends on the forwrad sensitivities.

CVodeSetJacFnB

Call flag = CVodeSetJacFnB(cvode mem, which, jacB);

Description The function CVodeSetJacFnB specifies the Jacobian approximation function to be used
for the backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

jacB (CVLsJacFnB) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of:

CVLS SUCCESS CVodeSetJacFnB succeeded.

CVLS MEM NULL cvode mem was NULL.

CVLS NO ADJ The function CVodeAdjInit has not been previously called.

CVLS LMEM NULL The linear solver has not been initialized with a call to
CVodeSetLinearSolverB.

CVLS ILL INPUT The parameter which represented an invalid identifier.

Notes The function type CVLsJacFnB is described in §6.3.5.

The previous routine CVDlsSetJacFnB is now a wrapper for this routine, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.

CVodeSetJacFnBS

Call flag = CVodeSetJacFnBS(cvode mem, which, jacBS);

Description The function CVodeSetJacFnBS specifies the Jacobian approximation function to be
used for the backward problem, in the case where the backward problem depends on
the forward sensitivities.

Arguments cvode mem (void *) pointer to the cvodes memory returned by CVodeCreate.

which (int) represents the identifier of the backward problem.

jacBS (CVLsJacFnBS) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of:



6.2 User-callable functions for adjoint sensitivity analysis 141

CVLS SUCCESS CVodeSetJacFnBS succeeded.

CVLS MEM NULL cvode mem was NULL.

CVLS NO ADJ The function CVodeAdjInit has not been previously called.

CVLS LMEM NULL The linear solver has not been initialized with a call to
CVodeSetLinearSolverB.

CVLS ILL INPUT The parameter which represented an invalid identifier.

Notes The function type CVLsJacFnBS is described in §6.3.5.

The previous routine CVDlsSetJacFnBS is now a wrapper for this routine, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.

CVodeSetJacTimesB

Call flag = CVodeSetJacTimesB(cvode mem, which, jsetupB, jtvB);

Description The function CVodeSetJacTimesB specifies the Jacobian-vector setup and product func-
tions to be used.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

jtsetupB (CVLsJacTimesSetupFnB) user-defined function to set up the Jacobian-vector
product. Pass NULL if no setup is necessary.

jtvB (CVLsJacTimesVecFnB) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of:

CVLS SUCCESS The optional value has been successfully set.

CVLS MEM NULL cvode mem was NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

CVLS NO ADJ The function CVodeAdjInit has not been previously called.

CVLS ILL INPUT The parameter which represented an invalid identifier.

Notes The function types CVLsJacTimesVecFnB and CVLsJacTimesSetupFnB are described in
§6.3.6.

The previous routine CVSpilsSetJacTimesB is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

CVodeSetJacTimesBS

Call flag = CVodeSetJacTimesBS(cvode mem, which, jtvBS);

Description The function CVodeSetJacTimesBS specifies the Jacobian-vector setup and product
functions to be used, in the case where the backward problem depends on the forward
sensitivities.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

jtsetupBS (CVLsJacTimesSetupFnBS) user-defined function to set up the Jacobian-
vector product. Pass NULL if no setup is necessary.

jtvBS (CVLsJacTimesVecFnBS) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of:

CVLS SUCCESS The optional value has been successfully set.

CVLS MEM NULL cvode mem was NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.
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CVLS NO ADJ The function CVodeAdjInit has not been previously called.

CVLS ILL INPUT The parameter which represented an invalid identifier.

Notes The function types CVLsJacTimesVecFnBS and CVLsJacTimesSetupFnBS are described
in §6.3.6.

The previous routine CVSpilsSetJacTimesBS is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

CVodeSetPreconditionerB

Call flag = CVodeSetPreconditionerB(cvode mem, which, psetupB, psolveB);

Description The function CVodeSetPrecSolveFnB specifies the preconditioner setup and solve func-
tions for the backward integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

psetupB (CVLPrecSetupFnB) user-defined preconditioner setup function.

psolveB (CVLsPrecSolveFnB) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of:

CVLS SUCCESS The optional value has been successfully set.

CVLS MEM NULL cvode mem was NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

CVLS NO ADJ The function CVodeAdjInit has not been previously called.

CVLS ILL INPUT The parameter which represented an invalid identifier.

Notes The function types CVLsPrecSolveFnB and CVLsPrecSetupFnB are described in §6.3.8
and §6.3.9, respectively. The psetupB argument may be NULL if no setup operation is
involved in the preconditioner.

The previous routine CVSpilsSetPrecSolveFnB is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

CVodeSetPreconditionerBS

Call flag = CVodeSetPreconditionerBS(cvode mem, which, psetupBS, psolveBS);

Description The function CVodeSetPrecSolveFnBS specifies the preconditioner setup and solve func-
tions for the backward integration, in the case where the backward problem depends on
the forward sensitivities.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

psetupBS (CVLsPrecSetupFnBS) user-defined preconditioner setup function.

psolveBS (CVLsPrecSolveFnBS) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of:

CVLS SUCCESS The optional value has been successfully set.

CVLS MEM NULL cvode mem was NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

CVLS NO ADJ The function CVodeAdjInit has not been previously called.

CVLS ILL INPUT The parameter which represented an invalid identifier.
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Notes The function types CVodePrecSolveFnBS and CVodePrecSetupFnBS are described in
§6.3.8 and §6.3.9, respectively. The psetupBS argument may be NULL if no setup oper-
ation is involved in the preconditioner.

The previous routine CVSpilsSetPrecSolveFnBS is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

CVodeSetEpsLinB

Call flag = CVodeSetEpsLinB(cvode mem, which, eplifacB);

Description The function CVodeSetEpsLinB specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the nonlinear iteration test constant. This
routine can be used in both the cases wherethe backward problem does and does not
depend on the forward sensitvities.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

eplifacB (realtype) value of the convergence test constant reduction factor (≥ 0.0).

Return value The return value flag (of type int) is one of:

CVLS SUCCESS The optional value has been successfully set.

CVLS MEM NULL cvode mem was NULL.

CVLS LMEM NULL The cvls linear solver has not been initialized.

CVLS NO ADJ The function CVodeAdjInit has not been previously called.

CVLS ILL INPUT The parameter which represented an invalid identifier, or eplifacB

was negative.

Notes The default value is 0.05. Passing a value eplifacB= 0.0 also indicates using the default
value.

The previous routine CVSpilsSetEpsLinB is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

6.2.9 Optional output functions for the backward problem

The user of the adjoint module in cvodes has access to any of the optional output functions described
in §4.5.9, both for the main solver and for the linear solver modules. The first argument of these
CVodeGet* and CVode*Get* functions is the pointer to the cvodes memory block for the backward
problem. In order to call any of these functions, the user must first call the following function to
obtain this pointer.

CVodeGetAdjCVodeBmem

Call cvode memB = CVodeGetAdjCVodeBmem(cvode mem, which);

Description The function CVodeGetAdjCVodeBmem returns a pointer to the cvodes memory block
for the backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory block created by CVodeCreate.

which (int) the identifier of the backward problem.

Return value The return value, cvode memB (of type void *), is a pointer to the cvodes memory for
the backward problem.

Notes The user should not modify cvode memB in any way. !

Optional output calls should pass cvode memB as the first argument; for example, to get
the number of integration steps: flag = CVodeGetNumSteps(cvodes memB, &nsteps).
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To get values of the forward solution during a backward integration, use the following function.
The input value of t would typically be equal to that at which the backward solution has just been
obtained with CVodeGetB. In any case, it must be within the last checkpoint interval used by CVodeB.

CVodeGetAdjY

Call flag = CVodeGetAdjY(cvode mem, t, y);

Description The function CVodeGetAdjY returns the interpolated value of the forward solution y
during a backward integration.

Arguments cvode mem (void *) pointer to the cvodes memory block created by CVodeCreate.

t (realtype) value of the independent variable at which y is desired (input).

y (N Vector) forward solution y(t).

Return value The return value flag (of type int) is one of:

CV SUCCESS CVodeGetAdjY was successful.

CV MEM NULL cvode mem was NULL.

CV GETY BADT The value of t was outside the current checkpoint interval.

Notes The user must allocate space for y.!

CVodeGetAdjCheckPointsInfo

Call flag = CVodeGetAdjCheckPointsInfo(cvode mem, CVadjCheckPointRec *ckpnt);

Description The function CVodeGetAdjCheckPointsInfo loads an array of ncheck+1 records of type
CVadjCheckPointRec. The user must allocate space for the array ckpnt.

Arguments cvode mem (void *) pointer to the cvodes memory block created by CVodeCreate.

ckpnt (CVadjCheckPointRec *) array of ncheck+1 checkpoint records, each of
type CVadjCheckPointRec.

Return value The return value is CV SUCCESS if successful, or CV MEM NULL if cvode mem is NULL, or
CV NO ADJ if ASA was not initialized.

Notes The members of each record ckpnt[i] are:

• ckpnt[i].my addr (void *) address of current checkpoint in
cvode mem->cv adj mem

• ckpnt[i].next addr (void *) address of next checkpoint

• ckpnt[i].t0 (realtype) start of checkpoint interval

• ckpnt[i].t1 (realtype) end of checkpoint interval

• ckpnt[i].nstep (long int) step counter at ckeckpoint t0

• ckpnt[i].order (int) method order at checkpoint t0

• ckpnt[i].step (realtype) step size at checkpoint t0

6.2.10 Backward integration of quadrature equations

Not only the backward problem but also the backward quadrature equations may or may not depend
on the forward sensitivities. Accordingly, either CVodeQuadInitB or CVodeQuadInitBS should be used
to allocate internal memory and to initialize backward quadratures. For any other operation (extrac-
tion, optional input/output, reinitialization, deallocation), the same function is callable regardless of
whether or not the quadratures are sensitivity-dependent.

6.2.10.1 Backward quadrature initialization functions

The function CVodeQuadInitB initializes and allocates memory for the backward integration of quadra-
ture equations that do not depend on forward sensitivities. It has the following form:
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CVodeQuadInitB

Call flag = CVodeQuadInitB(cvode mem, which, rhsQB, yQB0);

Description The function CVodeQuadInitB provides required problem specifications, allocates inter-
nal memory, and initializes backward quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

rhsQB (CVQuadRhsFnB) is the C function which computes fQB, the right-hand side
of the backward quadrature equations. This function has the form rhsQB(t,

y, yB, qBdot, user dataB) (see §6.3.3).

yQB0 (N Vector) is the value of the quadrature variables at tB0.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadInitB was successful.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT The parameter which is an invalid identifier.

The function CVodeQuadInitBS initializes and allocates memory for the backward integration of
quadrature equations that depends on the forward sensitivities.

CVodeQuadInitBS

Call flag = CVodeQuadInitBS(cvode mem, which, rhsQBS, yQBS0);

Description The function CVodeQuadInitBS provides required problem specifications, allocates in-
ternal memory, and initializes backward quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

rhsQBS (CVQuadRhsFnBS) is the C function which computes fQBS, the right-hand
side of the backward quadrature equations. This function has the form
rhsQBS(t, y, yS, yB, qBdot, user dataB) (see §6.3.4).

yQBS0 (N Vector) is the value of the sensitivity-dependent quadrature variables at
tB0.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadInitBS was successful.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT The parameter which is an invalid identifier.

The integration of quadrature equations during the backward phase can be re-initialized by calling
the following function. Before calling CVodeQuadReInitB for a new backward problem, call any desired
solution extraction functions CVodeGet** associated with the previous backward problem.

CVodeQuadReInitB

Call flag = CVodeQuadReInitB(cvode mem, which, yQB0);

Description The function CVodeQuadReInitB re-initializes the backward quadrature integration.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

yQB0 (N Vector) is the value of the quadrature variables at tB0.
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Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeQuadReInitB was successful.

CV MEM NULL cvode mem was NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV MEM FAIL A memory allocation request has failed.

CV NO QUAD Quadrature integration was not activated through a previous call to
CVodeQuadInitB.

CV ILL INPUT The parameter which is an invalid identifier.

Notes The function CVodeQuadReInitB can be called after a call to either CVodeQuadInitB or
CVodeQuadInitBS.

6.2.10.2 Backward quadrature extraction function

To extract the values of the quadrature variables at the last return time of CVodeB, cvodes provides
a wrapper for the function CVodeGetQuad (see §4.7.3). The call to this function has the form

CVodeGetQuadB

Call flag = CVodeGetQuadB(cvode mem, which, &tret, yQB);

Description The function CVodeGetQuadB returns the quadrature solution vector after a successful
return from CVodeB.

Arguments cvode mem (void *) pointer to the cvodes memory.

tret (realtype) the time reached by the solver (output).

yQB (N Vector) the computed quadrature vector.

Return value The return value flag of CVodeGetQuadB is one of:

CV SUCCESS CVodeGetQuadB was successful.

CV MEM NULL cvode mem is NULL.

CV NO ADJ The function CVodeAdjInit has not been previously called.

CV NO QUAD Quadrature integration was not initialized.

CV BAD DKY yQB was NULL.

CV ILL INPUT The parameter which is an invalid identifier.

Notes The user must allocate space for yQB.!

To obtain the quadratures associated with a given backward problem at some other time
within the last integration step, first obtain a pointer to the proper cvodes memory
structure by calling CVodeGetAdjCVodeBmem and then use it to call CVodeGetQuadDky.

6.2.10.3 Optional input/output functions for backward quadrature integration

Optional values controlling the backward integration of quadrature equations can be changed from
their default values through calls to one of the following functions which are wrappers for the corre-
sponding optional input functions defined in §4.7.4. The user must specify the identifier which of the
backward problem for which the optional values are specified.

flag = CVodeSetQuadErrConB(cvode_mem, which, errconQ);

flag = CVodeQuadSStolerancesB(cvode_mem, which, reltolQ, abstolQ);

flag = CVodeQuadSVtolerancesB(cvode_mem, which, reltolQ, abstolQ);

Their return value flag (of type int) can have any of the return values of its counterparts, but it
can also be CV NO ADJ if the function CVodeAdjInit has not been previously called or CV ILL INPUT

if the parameter which was an invalid identifier.
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Access to optional outputs related to backward quadrature integration can be obtained by call-
ing the corresponding CVodeGetQuad* functions (see §4.7.5). A pointer cvode memB to the cvodes
memory block for the backward problem, required as the first argument of these functions, can be
obtained through a call to the functions CVodeGetAdjCVodeBmem (see §6.2.9).

6.3 User-supplied functions for adjoint sensitivity analysis

In addition to the required ODE right-hand side function and any optional functions for the forward
problem, when using the adjoint sensitivity module in cvodes, the user must supply one function
defining the backward problem ODE and, optionally, functions to supply Jacobian-related information
and one or two functions that define the preconditioner (if an iterative sunlinsol module is selected)
for the backward problem. Type definitions for all these user-supplied functions are given below.

6.3.1 ODE right-hand side for the backward problem

If the backward problem does not depend on the forward sensitivities, the user must provide a rhsB

function of type CVRhsFnB defined as follows:

CVRhsFnB

Definition typedef int (*CVRhsFnB)(realtype t, N Vector y,

N Vector yB, N Vector yBdot, void *user dataB);

Purpose This function evaluates the right-hand side fB(t, y, yB) of the backward problem ODE
system. This could be either (2.20) or (2.23).

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

yBdot is the output vector containing the right-hand side fB of the backward
ODE problem.

user dataB is a pointer to user data, same as passed to CVodeSetUserDataB.

Return value A CVRhsFnB should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVodeB returns CV RHSFUNC FAIL).

Notes Allocation of memory for yBdot is handled within cvodes.

The y, yB, and yBdot arguments are all of type N Vector, but yB and yBdot typically
have different internal representations from y. It is the user’s responsibility to access
the vector data consistently (including the use of the correct accessor macros from
each nvector implementation). For the sake of computational efficiency, the vector
functions in the two nvector implementations provided with cvodes do not perform
any consistency checks with respect to their N Vector arguments (see §7.2 and §7.3).

The user dataB pointer is passed to the user’s rhsB function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s rhsB function, cvodes needs to evaluate (through interpola- !

tion) the values of the states from the forward integration. If an error occurs in the
interpolation, cvodes triggers an unrecoverable failure in the right-hand side function
which will halt the integration and CVodeB will return CV RHSFUNC FAIL.

6.3.2 ODE right-hand side for the backward problem depending on the
forward sensitivities

If the backward problem does depend on the forward sensitivities, the user must provide a rhsBS

function of type CVRhsFnBS defined as follows:
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CVRhsFnBS

Definition typedef int (*CVRhsFnBS)(realtype t, N Vector y, N Vector *yS,

N Vector yB, N Vector yBdot, void *user dataB);

Purpose This function evaluates the right-hand side fB(t, y, yB , s) of the backward problem ODE
system. This could be either (2.20) or (2.23).

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

yB is the current value of the backward dependent variable vector.

yBdot is the output vector containing the right-hand side fB of the backward
ODE problem.

user dataB is a pointer to user data, same as passed to CVodeSetUserDataB.

Return value A CVRhsFnBS should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvodes will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVodeB returns CV RHSFUNC FAIL).

Notes Allocation of memory for qBdot is handled within cvodes.

The y, yB, and yBdot arguments are all of type N Vector, but yB and yBdot typically
have different internal representations from y. Likewise for each yS[i]. It is the user’s
responsibility to access the vector data consistently (including the use of the correct
accessor macros from each nvector implementation). For the sake of computational
efficiency, the vector functions in the two nvector implementations provided with
cvodes do not perform any consistency checks with respect to their N Vector arguments
(see §7.2 and §7.3).

The user dataB pointer is passed to the user’s rhsBS function every time it is called
and can be the same as the user data pointer used for the forward problem.

Before calling the user’s rhsBS function, cvodes needs to evaluate (through interpo-!

lation) the values of the states from the forward integration. If an error occurs in the
interpolation, cvodes triggers an unrecoverable failure in the right-hand side function
which will halt the integration and CVodeB will return CV RHSFUNC FAIL.

6.3.3 Quadrature right-hand side for the backward problem

The user must provide an fQB function of type CVQuadRhsFnB defined by

CVQuadRhsFnB

Definition typedef int (*CVQuadRhsFnB)(realtype t, N Vector y, N Vector yB,

N Vector qBdot, void *user dataB);

Purpose This function computes the quadrature equation right-hand side for the backward prob-
lem.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

qBdot is the output vector containing the right-hand side fQB of the backward
quadrature equations.

user dataB is a pointer to user data, same as passed to CVodeSetUserDataB.

Return value A CVQuadRhsFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case cvodes will attempt to correct), or a negative value if
it failed unrecoverably (in which case the integration is halted and CVodeB returns
CV QRHSFUNC FAIL).
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Notes Allocation of memory for rhsvalBQ is handled within cvodes.

The y, yB, and qBdot arguments are all of type N Vector, but they typically do not
all have the same representation. It is the user’s responsibility to access the vector
data consistently (including the use of the correct accessor macros from each nvector
implementation). For the sake of computational efficiency, the vector functions in the
two nvector implementations provided with cvodes do not perform any consistency
checks with repsect to their N Vector arguments (see §7.2 and §7.3).

The user dataB pointer is passed to the user’s fQB function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s fQB function, cvodes needs to evaluate (through interpola- !

tion) the values of the states from the forward integration. If an error occurs in the
interpolation, cvodes triggers an unrecoverable failure in the quadrature right-hand
side function which will halt the integration and CVodeB will return CV QRHSFUNC FAIL.

6.3.4 Sensitivity-dependent quadrature right-hand side for the backward
problem

The user must provide an fQBS function of type CVQuadRhsFnBS defined by

CVQuadRhsFnBS

Definition typedef int (*CVQuadRhsFnBS)(realtype t, N Vector y, N Vector *yS,

N Vector yB, N Vector qBdot,

void *user dataB);

Purpose This function computes the quadrature equation right-hand side for the backward prob-
lem.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

yB is the current value of the backward dependent variable vector.

qBdot is the output vector containing the right-hand side fQBS of the backward
quadrature equations.

user dataB is a pointer to user data, same as passed to CVodeSetUserDataB.

Return value A CVQuadRhsFnBS should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case cvodes will attempt to correct), or a negative value if
it failed unrecoverably (in which case the integration is halted and CVodeB returns
CV QRHSFUNC FAIL).

Notes Allocation of memory for qBdot is handled within cvodes.

The y, yS, and qBdot arguments are all of type N Vector, but they typically do not
all have the same internal representation. Likewise for each yS[i]. It is the user’s
responsibility to access the vector data consistently (including the use of the correct
accessor macros from each nvector implementation). For the sake of computational
efficiency, the vector functions in the two nvector implementations provided with
cvodes do not perform any consistency checks with repsect to their N Vector arguments
(see §7.2 and §7.3).

The user dataB pointer is passed to the user’s fQBS function every time it is called and
can be the same as the user data pointer used for the forward problem.

Before calling the user’s fQBS function, cvodes needs to evaluate (through interpola- !

tion) the values of the states from the forward integration. If an error occurs in the
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interpolation, cvodes triggers an unrecoverable failure in the quadrature right-hand
side function which will halt the integration and CVodeB will return CV QRHSFUNC FAIL.

6.3.5 Jacobian construction for the backward problem (matrix-based lin-
ear solvers)

If a matrix-based linear solver module is used for the backward problem (i.e., a non-NULL sunmatrix
object was supplied to CVodeSetLinearSolverB), the user may provide a function of type CVLsJacFnB
or CVLsJacFnBS (see §6.2.8), defined as follows:

CVLsJacFnB

Definition typedef int (*CVLsJacFnB)(realtype t, N Vector y,

N Vector yB, N Vector fyB,

SUNMatrix JacB, void *user dataB,

N Vector tmp1B, N Vector tmp2B,

N Vector tmp3B);

Purpose This function computes the Jacobian of the backward problem (or an approximation to
it).

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fB .

JacB is the output approximate Jacobian matrix.

user dataB is a pointer to user data – the same as passed to CVodeSetUserDataB.

tmp1B

tmp2B

tmp3B are pointers to memory allocated for variables of type N Vector which can
be used by the CVLsJacFnB function as temporary storage or work space.

Return value A CVLsJacFnB should return 0 if successful, a positive value if a recoverable error
occurred (in which case cvodes will attempt to correct, while cvls sets last flag

to CVLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVodeB returns CV LSETUP FAIL and cvls sets last flag to
CVLS JACFUNC UNRECVR).

Notes A user-supplied Jacobian function must load the matrix JacB with an approximation
to the Jacobian matrix at the point (t,y,yB), where y is the solution of the original
IVP at time tt, and yB is the solution of the backward problem at the same time.
Information regarding the structure of the specific sunmatrix structure (e.g. number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific sunmatrix interface functions (see Chapter 8 for details). Only
nonzero elements need to be loaded into JacB as this matrix is set to zero before the
call to the Jacobian function.

Before calling the user’s CVLsJacFnB, cvodes needs to evaluate (through interpola-!

tion) the values of the states from the forward integration. If an error occurs in the
interpolation, cvodes triggers an unrecoverable failure in the Jacobian function which
will halt the integration (CVodeB returns CV LSETUP FAIL and cvls sets last flag to
CVLS JACFUNC UNRECVR).

The previous function type CVDlsJacFnB is identical to CVLsJacFnB, and may still be
used for backward-compatibility. However, this will be deprecated in future releases, so
we recommend that users transition to the new function type name soon.
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CVLsJacFnBS

Definition typedef int (*CVLsJacFnBS)(realtype t, N Vector y,

N Vector *yS, N Vector yB, N Vector fyB,

SUNMatrix JacB, void *user dataB,

N Vector tmp1B, N Vector tmp2B,

N Vector tmp3B);

Purpose This function computes the Jacobian of the backward problem (or an approximation to
it), in the case where the backward problem depends on the forward sensitivities.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fB .

JacB is the output approximate Jacobian matrix.

user dataB is a pointer to user data – the same as passed to CVodeSetUserDataB.

tmp1B

tmp2B

tmp3B are pointers to memory allocated for variables of type N Vector which can
be used by CVLsJacFnBS as temporary storage or work space.

Return value A CVLsJacFnBS should return 0 if successful, a positive value if a recoverable error
occurred (in which case cvodes will attempt to correct, while cvls sets last flag

to CVLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVodeB returns CV LSETUP FAIL and cvls sets last flag to
CVLS JACFUNC UNRECVR).

Notes A user-supplied Jacobian function must load the matrix JacB with an approximation to
the Jacobian matrix at the point (t,y,yS,yB), where y is the solution of the original IVP
at time tt, yS is the vector of forward sensitivities at time tt, and yB is the solution
of the backward problem at the same time. Information regarding the structure of the
specific sunmatrix structure (e.g. number of rows, upper/lower bandwidth, sparsity
type) may be obtained through using the implementation-specific sunmatrix interface
functions (see Chapter 8 for details). Only nonzero elements need to be loaded into
JacB as this matrix is set to zero before the call to the Jacobian function.

Before calling the user’s CVLsJacFnBS, cvodes needs to evaluate (through interpola- !

tion) the values of the states from the forward integration. If an error occurs in the
interpolation, cvodes triggers an unrecoverable failure in the Jacobian function which
will halt the integration (CVodeB returns CV LSETUP FAIL and cvls sets last flag to
CVLS JACFUNC UNRECVR).

The previous function type CVDlsJacFnBS is identical to CVLsJacFnBS, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new function type name soon.

6.3.6 Jacobian-vector product for the backward problem (matrix-free lin-
ear solvers)

If a matrix-free linear solver is to be used for the backward problem (i.e., a NULL-valued sunmatrix
was supplied to CVodeSetLinearSolverB in the steps described in §6.1), the user may provide a
function of type CVLsJacTimesVecFnB or CVLsJacTimesVecFnBS in the following form, to compute
matrix-vector products Jv. If such a function is not supplied, the default is a difference quotient
approximation to these products.
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CVLsJacTimesVecFnB

Definition typedef int (*CVLsJacTimesVecFnB)(N Vector vB, N Vector JvB,

realtype t, N Vector y, N Vector yB,

N Vector fyB, void *user dataB,

N Vector tmpB);

Purpose This function computes the action of the Jacobian JB for the backward problem on a
given vector vB.

Arguments vB is the vector by which the Jacobian must be multiplied to the right.

JvB is the computed output vector JB*vB.

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fB .

user dataB is a pointer to user data – the same as passed to CVodeSetUserDataB.

tmpB is a pointer to memory allocated for a variable of type N Vector which can
be used by CVLsJacTimesVecFn as temporary storage or work space.

Return value The return value of a function of type CVLsJacTimesVecFnB should be 0 if successful
or nonzero if an error was encountered, in which case the integration is halted.

Notes A user-supplied Jacobian-vector product function must load the vector JvB with the
product of the Jacobian of the backward problem at the point (t,y, yB) and the vector
vB. Here, y is the solution of the original IVP at time t and yB is the solution of the
backward problem at the same time. The rest of the arguments are equivalent to those
passed to a function of type CVLsJacTimesVecFn (see §4.6.6). If the backward problem
is the adjoint of ẏ = f(t, y), then this function is to compute −(∂f/∂y)T vB .

The previous function type CVSpilsJacTimesVecFnB is identical to
CVLsJacTimesVecFnB, and may still be used for backward-compatibility. However, this
will be deprecated in future releases, so we recommend that users transition to the new
function type name soon.

CVLsJacTimesVecFnBS

Definition typedef int (*CVLsJacTimesVecFnBS)(N Vector vB, N Vector JvB,

realtype t, N Vector y, N Vector *yS,

N Vector yB, N Vector fyB,

void *user dataB, N Vector tmpB);

Purpose This function computes the action of the Jacobian JB for the backward problem on
a given vector vB, in the case where the backward problem depends on the forward
sensitivities.

Arguments vB is the vector by which the Jacobian must be multiplied to the right.

JvB is the computed output vector JB*vB.

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yS is a pointer to an array containing the forward sensitivity vectors.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fB .

user dataB is a pointer to user data – the same as passed to CVodeSetUserDataB.

tmpB is a pointer to memory allocated for a variable of type N Vector which can
be used by CVLsJacTimesVecFn as temporary storage or work space.

Return value The return value of a function of type CVLsJacTimesVecFnBS should be 0 if successful
or nonzero if an error was encountered, in which case the integration is halted.
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Notes A user-supplied Jacobian-vector product function must load the vector JvB with the
product of the Jacobian of the backward problem at the point (t,y, yB) and the vector
vB. Here, y is the solution of the original IVP at time t and yB is the solution of the
backward problem at the same time. The rest of the arguments are equivalent to those
passed to a function of type CVLsJacTimesVecFn (see §4.6.6).

The previous function type CVSpilsJacTimesVecFnBS is identical to
CVLsJacTimesVecFnBS, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.

6.3.7 Jacobian-vector product setup for the backward problem (matrix-
free linear solvers)

If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed or
evaluated, then this needs to be done in a user-supplied function of type CVLsJacTimesSetupFnB or
CVLsJacTimesSetupFnBS, defined as follows:

CVLsJacTimesSetupFnB

Definition typedef int (*CVLsJacTimesSetupFnB)(realtype t,

N Vector y, N Vector yB,

N Vector fyB, void *user dataB);

Purpose This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine for the backward problem.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

yB is the current value of the backward dependent variable vector.

fyB is the current value of the right-hand-side for the backward problem.

user dataB is a pointer to user data — the same as the user dataB parameter passed
to CVSetUserDataB.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the backward
problem residual user function with the same (t,y, yB) arguments. Thus, the setup
function can use any auxiliary data that is computed and saved during the evaluation
of the right-hand-side function.

If the user’s CVLsJacTimesVecFnB function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, the user will need to add a pointer to cvode mem to
user dataB and then use the CVGet* functions described in §4.5.9.2. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.

The previous function type CVSpilsJacTimesSetupFnB is identical to
CVLsJacTimesSetupFnB, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.

CVLsJacTimesSetupFnBS
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Definition typedef int (*CVLsJacTimesSetupFnBS)(realtype t,

N Vector y, N Vector *yS,

N Vector yB, N Vector fyB,

void *user dataB);

Purpose This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine for the backward problem, in the case that the backward problem
depends on the forward sensitivities.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the right-hand-side function for the backward problem.

user dataB is a pointer to user data — the same as the user dataB parameter passed
to CVSetUserDataB.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the backward
problem residual user function with the same (t,y, yS, yB) arguments. Thus, the
setup function can use any auxiliary data that is computed and saved during the eval-
uation of the right-hand-side function.

If the user’s CVLsJacTimesVecFnBS function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, the user will need to add a pointer to cvode mem to
user dataB and then use the CVGet* functions described in §4.5.9.2. The unit roundoff
can be accessed as UNIT ROUNDOFF defined in sundials types.h.

The previous function type CVSpilsJacTimesSetupFnBS is identical to
CVLsJacTimesSetupFnBS, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.

6.3.8 Preconditioner solve for the backward problem (iterative linear solvers)

If a user-supplied preconditioner is to be used with a sunlinsol solver module, then the user must
provide a function to solve the linear system Pz = r, where P may be either a left or a right
preconditioner matrix. Here P should approximate (at least crudely) the matrix MB = I − γBJB ,
where JB = ∂fB/∂yB . If preconditioning is done on both sides, the product of the two preconditioner
matrices should approximate MB . This function must be of one of the following two types:

CVLsPrecSolveFnB

Definition typedef int (*CVLsPrecSolveFnB)(realtype t, N Vector y,

N Vector yB, N Vector fyB,

N Vector rvecB, N Vector zvecB,

realtype gammaB, realtype deltaB,

void *user dataB);

Purpose This function solves the preconditioning system Pz = r for the backward problem.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.
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fyB is the current value of the backward right-hand side function fB .

rvecB is the right-hand side vector r of the linear system to be solved.

zvecB is the computed output vector.

gammaB is the scalar appearing in the matrix, MB = I − γBJB .

deltaB is an input tolerance to be used if an iterative method is employed in the
solution.

user dataB is a pointer to user data — the same as the user dataB parameter passed
to CVodeSetUserDataB.

Return value The return value of a preconditioner solve function for the backward problem should be
0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

Notes The previous function type CVSpilsPrecSolveFnB is identical to CVLsPrecSolveFnB,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

CVLsPrecSolveFnBS

Definition typedef int (*CVLsPrecSolveFnBS)(realtype t, N Vector y, N Vector *yS,

N Vector yB, N Vector fyB,

N Vector rvecB, N Vector zvecB,

realtype gammaB, realtype deltaB,

void *user dataB);

Purpose This function solves the preconditioning system Pz = r for the backward problem, in
the case where the backward problem depends on the forward sensitivities.

Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.

yS is a pointer to an array containing the forward sensitivity vectors.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fB .

rvecB is the right-hand side vector r of the linear system to be solved.

zvecB is the computed output vector.

gammaB is the scalar appearing in the matrix, MB = I − γBJB .

deltaB is an input tolerance to be used if an iterative method is employed in the
solution.

user dataB is a pointer to user data — the same as the user dataB parameter passed
to CVodeSetUserDataB.

Return value The return value of a preconditioner solve function for the backward problem should be
0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

Notes The previous function type CVSpilsPrecSolveFnBS is identical to CVLsPrecSolveFnBS,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

6.3.9 Preconditioner setup for the backward problem (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of one of the following two types:
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CVLsPrecSetupFnB

Definition typedef int (*CVLsPrecSetupFnB)(realtype t, N Vector y,

N Vector yB, N Vector fyB,

booleantype jokB, booleantype *jcurPtrB,

realtype gammaB, void *user dataB);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner for the backward problem.

Arguments The arguments of a CVLsPrecSetupFnB are as follows:

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fB .

jokB is an input flag indicating whether Jacobian-related data needs to be recom-
puted (jokB=SUNFALSE) or information saved from a previous invokation
can be safely used (jokB=SUNTRUE).

jcurPtr is an output flag which must be set to SUNTRUE if Jacobian-relatd data was
recomputed or SUNFALSE otherwise.

gammaB is the scalar appearing in the matrix MB = I − γBJB .

user dataB is a pointer to user data — the same as the user dataB parameter passed
to CVodeSetUserDataB.

Return value The return value of a preconditioner setup function for the backward problem should
be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

Notes The previous function type CVSpilsPrecSetupFnB is identical to CVLsPrecSetupFnB,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

CVLsPrecSetupFnBS

Definition typedef int (*CVLsPrecSetupFnBS)(realtype t, N Vector y, N Vector *yS,

N Vector yB, N Vector fyB,

booleantype jokB, booleantype *jcurPtrB,

realtype gammaB, void *user dataB);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner for the backward problem, in the case where the backward problem depends
on the forward sensitivities.

Arguments The arguments of a CVLsPrecSetupFnBS are as follows:

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yS is a pointer to an array containing the forward sensitivity vectors.

yB is the current value of the backward dependent variable vector.

fyB is the current value of the backward right-hand side function fB .

jokB is an input flag indicating whether Jacobian-related data needs to be recom-
puted (jokB=SUNFALSE) or information saved from a previous invokation
can be safely used (jokB=SUNTRUE).

jcurPtr is an output flag which must be set to SUNTRUE if Jacobian-relatd data was
recomputed or SUNFALSE otherwise.

gammaB is the scalar appearing in the matrix MB = I − γBJB .
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user dataB is a pointer to user data — the same as the user dataB parameter passed
to CVodeSetUserDataB.

Return value The return value of a preconditioner setup function for the backward problem should
be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

Notes The previous function type CVSpilsPrecSetupFnBS is identical to CVLsPrecSetupFnBS,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

6.4 Using CVODES preconditioner modules for the backward
problem

As on the forward integration phase, the efficiency of Krylov iterative methods for the solution of linear
systems can be greatly enhanced through preconditioning. Both preconditioner modules provided
with sundials, the serial banded preconditioner cvbandpre and the parallel band-block-diagonal
preconditioner module cvbbdpre, provide interface functions through which they can be used on the
backward integration phase.

6.4.1 Using the banded preconditioner CVBANDPRE

The adjoint module in cvodes offers an interface to the banded preconditioner module cvbandpre
described in section §4.8.1. This preconditioner, usable only in a serial setting, provides a band matrix
preconditioner based on difference quotients of the backward problem right-hand side function fB. It
generates a banded approximation to the Jacobian with mlB sub-diagonals and muB super-diagonals
to be used with one of the Krylov linear solvers.

In order to use the cvbandpre module in the solution of the backward problem, the user need
not define any additional functions. Instead, after an iterative sunlinsol object has been attached
to cvodes via a call to CVodeSetLinearSolverB, the following call to the cvbandpre module ini-
tialization function must be made.

CVBandPrecInitB

Call flag = CVBandPrecInitB(cvode mem, which, nB, muB, mlB);

Description The function CVBandPrecInitB initializes and allocates memory for the cvbandpre
preconditioner for the backward problem. It creates, allocates, and stores (internally in
the cvodes solver block) a pointer to the newly created cvbandpre memory block.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

nB (sunindextype) backward problem dimension.

muB (sunindextype) upper half-bandwidth of the backward problem Jacobian
approximation.

mlB (sunindextype) lower half-bandwidth of the backward problem Jacobian
approximation.

Return value The return value flag (of type int) is one of:

CVLS SUCCESS The call to CVodeBandPrecInitB was successful.

CVLS MEM FAIL A memory allocation request has failed.

CVLS MEM NULL The cvode mem argument was NULL.

CVLS LMEM NULL No linear solver has been attached.

CVLS ILL INPUT An invalid parameter has been passed.

For more details on cvbandpre see §4.8.1.
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6.4.2 Using the band-block-diagonal preconditioner CVBBDPRE

The adjoint module in cvodes offers an interface to the band-block-diagonal preconditioner module
cvbbdpre described in section §4.8.2. This generates a preconditioner that is a block-diagonal matrix
with each block being a band matrix and can be used with one of the Krylov linear solvers and with
the MPI-parallel vector module nvector parallel.

In order to use the cvbbdpre module in the solution of the backward problem, the user must
define one or two additional functions, described at the end of this section.

6.4.2.1 Initialization of CVBBDPRE

The cvbbdpre module is initialized by calling the following function, after an iterative sunlinsol
object has been attached to cvodes via a call to CVodeSetLinearSolverB.

CVBBDPrecInitB

Call flag = CVBBDPrecInitB(cvode mem, which, NlocalB, mudqB, mldqB,

mukeepB, mlkeepB, dqrelyB, glocB, gcommB);

Description The function CVBBDPrecInitB initializes and allocates memory for the cvbbdpre pre-
conditioner for the backward problem. It creates, allocates, and stores (internally in
the cvodes solver block) a pointer to the newly created cvbbdpre memory block.

Arguments cvode mem (void *) pointer to the cvodes memory block.

which (int) the identifier of the backward problem.

NlocalB (sunindextype) local vector dimension for the backward problem.

mudqB (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldqB (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mukeepB (sunindextype) upper half-bandwidth of the retained banded approximate
Jacobian block.

mlkeepB (sunindextype) lower half-bandwidth of the retained banded approximate
Jacobian block.

dqrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations. The default is dqrelyB=

√
unit roundoff, which

can be specified by passing dqrely= 0.0.

glocB (CVBBDLocalFnB) the function which computes the function gB(t, y, yB) ap-
proximating the right-hand side of the backward problem.

gcommB (CVBBDCommFnB) the optional function which performs all interprocess com-
munication required for the computation of gB .

Return value The return value flag (of type int) is one of:

CVLS SUCCESS The call to CVodeBBDPrecInitB was successful.

CVLS MEM FAIL A memory allocation request has failed.

CVLS MEM NULL The cvode mem argument was NULL.

CVLS LMEM NULL No linear solver has been attached.

CVLS ILL INPUT An invalid parameter has been passed.

To reinitialize the cvbbdpre preconditioner module for the backward problem, possibly with changes
in mudqB, mldqB, or dqrelyB, call the following function:

CVBBDPrecReInitB

Call flag = CVBBDPrecReInitB(cvode mem, which, mudqB, mldqB, dqrelyB);
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Description The function CVBBDPrecReInitB reinitializes the cvbbdpre preconditioner for the
backward problem.

Arguments cvode mem (void *) pointer to the cvodes memory block returned by CVodeCreate.

which (int) the identifier of the backward problem.

mudqB (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldqB (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

dqrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations.

Return value The return value flag (of type int) is one of:

CVLS SUCCESS The call to CVodeBBDPrecReInitB was successful.

CVLS MEM FAIL A memory allocation request has failed.

CVLS MEM NULL The cvode mem argument was NULL.

CVLS PMEM NULL The CVodeBBDPrecInitB has not been previously called.

CVLS LMEM NULL No linear solver has been attached.

CVLS ILL INPUT An invalid parameter has been passed.

For more details on cvbbdpre see §4.8.2.

6.4.2.2 User-supplied functions for CVBBDPRE

To use the cvbbdpre module, the user must supply one or two functions which the module calls to
construct the preconditioner: a required function glocB (of type CVBBDLocalFnB) which approximates
the right-hand side of the backward problem and which is computed locally, and an optional function
gcommB (of type CVBBDCommFnB) which performs all interprocess communication necessary to evaluate
this approximate right-hand side (see §4.8.2). The prototypes for these two functions are described
below.

CVBBDLocalFnB

Definition typedef int (*CVBBDLocalFnB)(sunindextype NlocalB, realtype t, N Vector y,

N Vector yB, N Vector gB, void *user dataB);

Purpose This glocB function loads the vector gB, an approximation to the right-hand side fB of
the backward problem, as a function of t, y, and yB.

Arguments NlocalB is the local vector length for the backward problem.

t is the value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

gB is the output vector, gB(t, y, yB).

user dataB is a pointer to user data — the same as the user dataB parameter passed
to CVodeSetUserDataB.

Return value An CVBBDLocalFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case cvodes will attempt to correct), or a negative value if
it failed unrecoverably (in which case the integration is halted and CVodeB returns
CV LSETUP FAIL).

Notes This routine must assume that all interprocess communication of data needed to calcu-
late gB has already been done, and this data is accessible within user dataB.

Before calling the user’s CVBBDLocalFnB, cvodes needs to evaluate (through interpo- !

lation) the values of the states from the forward integration. If an error occurs in
the interpolation, cvodes triggers an unrecoverable failure in the preconditioner setup
function which will halt the integration (CVodeB returns CV LSETUP FAIL).
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CVBBDCommFnB

Definition typedef int (*CVBBDCommFnB)(sunindextype NlocalB, realtype t, N Vector y,

N Vector yB, void *user dataB);

Purpose This gcommB function must perform all interprocess communications necessary for the
execution of the glocB function above, using the input vectors y and yB.

Arguments NlocalB is the local vector length.

t is the value of the independent variable.

y is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

user dataB is a pointer to user data — the same as the user dataB parameter passed
to CVodeSetUserDataB.

Return value An CVBBDCommFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case cvodes will attempt to correct), or a negative value if
it failed unrecoverably (in which case the integration is halted and CVodeB returns
CV LSETUP FAIL).

Notes The gcommB function is expected to save communicated data in space defined within
the structure user dataB.

Each call to the gcommB function is preceded by a call to the function that evaluates the
right-hand side of the backward problem with the same t, y, and yB, arguments. If there
is no additional communication needed, then pass gcommB = NULL to CVBBDPrecInitB.



Chapter 7

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vec-
tors (of type N Vector) through a set of operations defined by the particular nvector implemen-
tation. Users can provide their own specific implementation of the nvector module, or use one of
the implementations provided with sundials. The generic operations are described below and the
implementations provided with sundials are described in the following sections.

The generic N Vector type is a pointer to a structure that has an implementation-dependent
content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector_ID (*nvgetvectorid)(N_Vector);

N_Vector (*nvclone)(N_Vector);

N_Vector (*nvcloneempty)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, sunindextype *, sunindextype *);

realtype* (*nvgetarraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);
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realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);

realtype (*nvwl2norm)(N_Vector, N_Vector);

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

int (*nvlinearcombination)(int, realtype*, N_Vector*, N_Vector);

int (*nvscaleaddmulti)(int, realtype*, N_Vector, N_Vector*, N_Vector*);

int (*nvdotprodmulti)(int, N_Vector, N_Vector*, realtype*);

int (*nvlinearsumvectorarray)(int, realtype, N_Vector*, realtype,

N_Vector*, N_Vector*);

int (*nvscalevectorarray)(int, realtype*, N_Vector*, N_Vector*);

int (*nvconstvectorarray)(int, realtype, N_Vector*);

int (*nvwrmsnomrvectorarray)(int, N_Vector*, N_Vector*, realtype*);

int (*nvwrmsnomrmaskvectorarray)(int, N_Vector*, N_Vector*, N_Vector,

realtype*);

int (*nvscaleaddmultivectorarray)(int, int, realtype*, N_Vector*,

N_Vector**, N_Vector**);

int (*nvlinearcombinationvectorarray)(int, int, realtype*, N_Vector**,

N_Vector*);

};

The generic nvector module defines and implements the vector operations acting on an N Vector.
These routines are nothing but wrappers for the vector operations defined by a particular nvector
implementation, which are accessed through the ops field of the N Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic nvector
module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Table 7.2 contains a complete list of all standard vector operations defined by the generic nvector
module. Tables 7.3 and 7.4 list optional fused and vector array operations respectively.

Fused and vector array operations are intended to increase data reuse, reduce parallel commu-
nication on distributed memory systems, and lower the number of kernel launches on systems with
accelerators. If a particular nvector implementation defines a fused or vector array operation as
NULL, the generic nvector module will automatically call standard vector operations as necessary
to complete the desired operation. Currently, all fused and vector array operations are disabled by
default however, sundials provided nvector implementations define additional user-callable func-
tions to enable/disable any or all of the fused and vector array operations. See the following sections
for the implementation specific functions to enable/disable operations.

Finally, note that the generic nvector module defines the functions N VCloneVectorArray and
N VCloneVectorArrayEmpty. Both functions create (by cloning) an array of count variables of type
N Vector, each of the same type as an existing N Vector. Their prototypes are

N_Vector *N_VCloneVectorArray(int count, N_Vector w);

N_Vector *N_VCloneVectorArrayEmpty(int count, N_Vector w);

and their definitions are based on the implementation-specific N VClone and N VCloneEmpty opera-
tions, respectively.

An array of variables of type N Vector can be destroyed by calling N VDestroyVectorArray, whose
prototype is
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Table 7.1: Vector Identifications associated with vector kernels supplied with sundials.

Vector ID Vector type ID Value
SUNDIALS NVEC SERIAL Serial 0
SUNDIALS NVEC PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS NVEC OPENMP OpenMP shared memory parallel 2
SUNDIALS NVEC PTHREADS PThreads shared memory parallel 3
SUNDIALS NVEC PARHYP hypre ParHyp parallel vector 4
SUNDIALS NVEC PETSC petsc parallel vector 5
SUNDIALS NVEC OPENMPDEV OpenMP shared memory parallel with device offloading 6
SUNDIALS NVEC TRILINOS Trilinos Tpetra vector 7
SUNDIALS NVEC CUSTOM User-provided custom vector 8

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one nvector module (each
with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N Vector.

Each nvector implementation included in sundials has a unique identifier specified in enumer-
ation and shown in Table 7.1. It is recommended that a user-supplied nvector implementation use
the SUNDIALS NVEC CUSTOM identifier.
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Table 7.2: Description of the NVECTOR operations

Name Usage and Description

N VGetVectorID id = N VGetVectorID(w);

Returns the vector type identifier for the vector w. It is used to determine
the vector implementation type (e.g. serial, parallel,. . . ) from the abstract
N Vector interface. Returned values are given in Table 7.1.

N VClone v = N VClone(w);

Creates a new N Vector of the same type as an existing vector w and sets
the ops field. It does not copy the vector, but rather allocates storage for
the new vector.

N VCloneEmpty v = N VCloneEmpty(w);

Creates a new N Vector of the same type as an existing vector w and sets
the ops field. It does not allocate storage for data.

N VDestroy N VDestroy(v);

Destroys the N Vector v and frees memory allocated for its internal data.

N VSpace N VSpace(nvSpec, &lrw, &liw);

Returns storage requirements for one N Vector. lrw contains the number
of realtype words and liw contains the number of integer words. This
function is advisory only, for use in determining a user’s total space re-
quirements; it could be a dummy function in a user-supplied nvector
module if that information is not of interest.

N VGetArrayPointer vdata = N VGetArrayPointer(v);

Returns a pointer to a realtype array from the N Vector v. Note that
this assumes that the internal data in N Vector is a contiguous array of
realtype. This routine is only used in the solver-specific interfaces to the
dense and banded (serial) linear solvers, the sparse linear solvers (serial
and threaded), and in the interfaces to the banded (serial) and band-block-
diagonal (parallel) preconditioner modules provided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);

Overwrites the data in an N Vector with a given array of realtype. Note
that this assumes that the internal data in N Vector is a contiguous array
of realtype. This routine is only used in the interfaces to the dense
(serial) linear solver, hence need not exist in a user-supplied nvector
module for a parallel environment.

continued on next page
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continued from last page

Name Usage and Description

N VLinearSum N VLinearSum(a, x, b, y, z);

Performs the operation z = ax+ by, where a and b are realtype scalars
and x and y are of type N Vector: zi = axi + byi, i = 0, . . . , n− 1.

N VConst N VConst(c, z);

Sets all components of the N Vector z to realtype c: zi = c, i = 0, . . . , n−
1.

N VProd N VProd(x, y, z);

Sets the N Vector z to be the component-wise product of the N Vector

inputs x and y: zi = xiyi, i = 0, . . . , n− 1.

N VDiv N VDiv(x, y, z);

Sets the N Vector z to be the component-wise ratio of the N Vector inputs
x and y: zi = xi/yi, i = 0, . . . , n − 1. The yi may not be tested for 0
values. It should only be called with a y that is guaranteed to have all
nonzero components.

N VScale N VScale(c, x, z);

Scales the N Vector x by the realtype scalar c and returns the result in
z: zi = cxi, i = 0, . . . , n− 1.

N VAbs N VAbs(x, z);

Sets the components of the N Vector z to be the absolute values of the
components of the N Vector x: yi = |xi|, i = 0, . . . , n− 1.

N VInv N VInv(x, z);

Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine may
not check for division by 0. It should be called only with an x which is
guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);

Adds the realtype scalar b to all components of x and returns the result
in the N Vector z: zi = xi + b, i = 0, . . . , n− 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1
i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);

Returns the maximum norm of the N Vector x: m = maxi |xi|.

continued on next page
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continued from last page

Name Usage and Description

N VWrmsNorm m = N VWrmsNorm(x, w)

Returns the weighted root-mean-square norm of the N Vector x with

realtype weight vector w: m =

√(∑n−1
i=0 (xiwi)2

)
/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);

Returns the weighted root mean square norm of the N Vector x with
realtype weight vector w built using only the elements of x corresponding
to positive elements of the N Vector id:

m =

√(∑n−1
i=0 (xiwiH(idi))2

)
/n, where H(α) =

{
1 α > 0

0 α ≤ 0

N VMin m = N VMin(x);

Returns the smallest element of the N Vector x: m = mini xi.

N VWL2Norm m = N VWL2Norm(x, w);

Returns the weighted Euclidean `2 norm of the N Vector x with realtype

weight vector w: m =
√∑n−1

i=0 (xiwi)2.

N VL1Norm m = N VL1Norm(x);

Returns the `1 norm of the N Vector x: m =
∑n−1
i=0 |xi|.

N VCompare N VCompare(c, x, z);

Compares the components of the N Vector x to the realtype scalar c

and returns an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0
otherwise.

N VInvTest t = N VInvTest(x, z);

Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x, with prior testing for zero values: zi = 1.0/xi, i =
0, . . . , n − 1. This routine returns a boolean assigned to SUNTRUE if all
components of x are nonzero (successful inversion) and returns SUNFALSE
otherwise.

N VConstrMask t = N VConstrMask(c, x, m);

Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if ci = 1,
xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint on xi if ci = 0.
This routine returns a boolean assigned to SUNFALSE if any element failed
the constraint test and assigned to SUNTRUE if all passed. It also sets a
mask vector m, with elements equal to 1.0 where the constraint test failed,
and 0.0 where the test passed. This routine is used only for constraint
checking.

continued on next page



167

continued from last page

Name Usage and Description

N VMinQuotient minq = N VMinQuotient(num, denom);

This routine returns the minimum of the quotients obtained by term-wise
dividing numi by denomi. A zero element in denom will be skipped. If no
such quotients are found, then the large value BIG REAL (defined in the
header file sundials types.h) is returned.

Table 7.3: Description of the NVECTOR fused operations

Name Usage and Description

N VLinearCombination ier = N VLinearCombination(nv, c, X, z);

This routine computes the linear combination of nv vectors with n
elements:

zi =

nv−1∑
j=0

cjxj,i, i = 0, . . . , n− 1,

where c is an array of nv scalars (type realtype*), X is an array of nv
vectors (type N Vector*), and z is the output vector (type N Vector).
If the output vector z is one of the vectors in X, then it must be the
first vector in the vector array. The operation returns 0 for success and
a non-zero value otherwise.

N VScaleAddMulti ier = N VScaleAddMulti(nv, c, x, Y, Z);

This routine scales and adds one vector to nv vectors with n elements:

zj,i = cjxi + yj,i, j = 0, . . . , nv − 1 i = 0, . . . , n− 1,

where c is an array of nv scalars (type realtype*), x is the vector (type
N Vector) to be scaled and added to each vector in the vector array
of nv vectors Y (type N Vector*), and Z (type N Vector*) is a vector
array of nv output vectors. The operation returns 0 for success and a
non-zero value otherwise.

continued on next page
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continued from last page

Name Usage and Description

N VDotProdMulti ier = N VDotProdMulti(nv, x, Y, d);

This routine computes the dot product of a vector with nv other vectors:

dj =

n−1∑
i=0

xiyj,i, j = 0, . . . , nv − 1,

where d (type realtype*) is an array of nv scalars containing the dot
products of the vector x (type N Vector) with each of the nv vectors
in the vector array Y (type N Vector*). The operation returns 0 for
success and a non-zero value otherwise.

Table 7.4: Description of the NVECTOR vector array operations

Name Usage and Description

N VLinearSumVectorArray ier = N VLinearSumVectorArray(nv, a, X, b, Y,

Z);

This routine comuptes the linear sum of two vector arrays
containing nv vectors of n elements:

zj,i = axj,i + byj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where a and b are realtype scalars and X, Y , and Z
are arrays of nv vectors (type N Vector*). The operation
returns 0 for success and a non-zero value otherwise.

N VScaleVectorArray ier = N VScaleVectorArray(nv, c, X, Z);

This routine scales each vector of n elements in a vector
array of nv vectors by a potentially different constant:

zj,i = cjxj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of nv scalars (type realtype*) and
X and Z are arrays of nv vectors (type N Vector*).
The operation returns 0 for success and a non-zero value
otherwise.

continued on next page



169

continued from last page

Name Usage and Description

N VConstVectorArray ier = N VConstVectorArray(nv, c, X);

This routine sets each element in a vector of n elements
in a vector array of nv vectors to the same value:

zj,i = c, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is a realtype scalar and X is an array of nv
vectors (type N Vector*). The operation returns 0 for
success and a non-zero value otherwise.

N VWrmsNormVectorArray ier = N VWrmsNormVectorArray(nv, X, W, m);

This routine computes the weighted root mean square
norm of nv vectors with n elements:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,i)
2

)1/2

, j = 0, . . . , nv − 1,

where m (type realtype*) contains the nv norms of the
vectors in the vector array X (type N Vector*) with corre-
sponding weight vectors W (type N Vector*). The opera-
tion returns 0 for success and a non-zero value otherwise.

N VWrmsNormMaskVectorArray ier = N VWrmsNormMaskVectorArray(nv, X, W, id,

m);

This routine computes the masked weighted root mean
square norm of nv vectors with n elements:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,iH(idi))
2

)1/2

, j = 0, . . . , nv − 1,

H(idi) = 1 for idi > 0 and is zero otherwise, m (type
realtype*) contains the nv norms of the vectors in
the vector array X (type N Vector*) with corresponding
weight vectors W (type N Vector*) and mask vector id
(type N Vector). The operation returns 0 for success and
a non-zero value otherwise.

continued on next page
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continued from last page

Name Usage and Description

N VScaleAddMultiVectorArray ier = N VScaleAddMultiVectorArray(nv, ns, c, X,

YY, ZZ);

This routine scales and adds a vector in a vector array of
nv vectors to the corresponding vector in ns vector arrays:

zj,i =

ns−1∑
k=0

ckxk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of ns scalars (type realtype*), X
is a vector array of nv vectors (type idN Vector*) to be
scaled and added to the corresponding vector in each of
the ns vector arrays in the array of vector arrays Y Y (type
N Vector**) and stored in the output array of vector ar-
rays ZZ (type N Vector**). The operation returns 0 for
success and a non-zero value otherwise.

N VLinearCombinationVectorArray ier = N VLinearCombinationVectorArray(nv, ns, c,

XX, Z);

This routine computes the linear combination of ns vector
arrays containing nv vectors with n elements:

zj,i =

ns−1∑
k=0

ckxk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of ns scalars (type realtype*), XX
(type N Vector**) is an array of ns vector arrays each
containing nv vectors to be summed into the output vector
array of nv vectors Z (type N Vector*). If the output
vector array Z is one of the vector arrays in XX, then
it must be the first vector array in XX. The operation
returns 0 for success and a non-zero value otherwise.

7.1 NVECTOR functions used by CVODES

In Table 7.5 below, we list the vector functions in the nvector module used within the cvodes
package. The table also shows, for each function, which of the code modules uses the function.
The cvodes column shows function usage within the main integrator module, while the remaining
columns show function usage within each of the cvodes linear solver interfaces, the cvbandpre
and cvbbdpre preconditioner modules, and the cvodes adjoint sensitivity module (denoted here by
cvodea). Here cvls stands for the generic linear solver interface in cvodes, and cvdiag stands for
the diagonal linear solver interface in cvodes.

At this point, we should emphasize that the cvodes user does not need to know anything about
the usage of vector functions by the cvodes code modules in order to use cvodes. The information
is presented as an implementation detail for the interested reader.

Special cases (numbers match markings in table):

1. These routines are only required if an internal difference-quotient routine for constructing dense
or band Jacobian matrices is used.

2. This routine is optional, and is only used in estimating space requirements for cvodes modules
for user feedback.
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3. The optional function N VDotProdMulti is only used in the sunnonlinsol fixedpoint module,
or when Classical Gram-Schmidt is enabled with spgmr or spfgmr.

Each sunlinsol object may require additional nvector routines not listed in the table above.
Please see the the relevant descriptions of these modules in Sections 9.5-9.15 for additional detail on
their nvector requirements.

The remaining operations from Tables 7.3 and 7.4 not listed above are unused and a user-
supplied nvector module for cvode could omit these operations. The functions N MinQuotient,
N VConstrMask, and N VCompare are only used when constraint checking is enabled and may be omit-
ted if this feature is not used.

7.2 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own data which specifies the ownership of
data.

struct _N_VectorContent_Serial {

sunindextype length;

booleantype own_data;

realtype *data;

};

The header file to include when using this module is nvector serial.h. The installed module
library to link to is libsundials nvecserial.lib where .lib is typically .so for shared libraries
and .a for static libraries.

7.2.1 NVECTOR SERIAL accessor macros

The following macros are provided to access the content of an nvector serial vector. The suffix S

in the names denotes the serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial)(v->content) )

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component of
the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component array
of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )
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• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

7.2.2 NVECTOR SERIAL functions

The nvector serial module defines serial implementations of all vector operations listed in Tables
7.2, 7.3, and 7.4. Their names are obtained from those in Tables 7.2, 7.3, and 7.4 by appending
the suffix Serial (e.g. N VDestroy Serial). All the standard vector operations listed in 7.2 with
the suffix Serial appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g.
FN VDestroy Serial).

The module nvector serial provides the following additional user-callable routines:

N VNew Serial

Prototype N Vector N VNew Serial(sunindextype vec length);

Description This function creates and allocates memory for a serial N Vector. Its only argument is
the vector length.

F2003 Name This function is callable as FN VNew Serial when using the Fortran 2003 interface mod-
ule.

N VNewEmpty Serial

Prototype N Vector N VNewEmpty Serial(sunindextype vec length);

Description This function creates a new serial N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty Serial when using the Fortran 2003 interface
module.

N VMake Serial

Prototype N Vector N VMake Serial(sunindextype vec length, realtype *v data);

Description This function creates and allocates memory for a serial vector with user-provided data
array.

(This function does not allocate memory for v data itself.)

F2003 Name This function is callable as FN VMake Serial when using the Fortran 2003 interface
module.

N VCloneVectorArray Serial

Prototype N Vector *N VCloneVectorArray Serial(int count, N Vector w);

Description This function creates (by cloning) an array of count serial vectors.

N VCloneVectorArrayEmpty Serial

Prototype N Vector *N VCloneVectorArrayEmpty Serial(int count, N Vector w);

Description This function creates (by cloning) an array of count serial vectors, each with an empty
(NULL) data array.
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N VDestroyVectorArray Serial

Prototype void N VDestroyVectorArray Serial(N Vector *vs, int count);

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Serial or with
N VCloneVectorArrayEmpty Serial.

N VGetLength Serial

Prototype sunindextype N VGetLength Serial(N Vector v);

Description This function returns the number of vector elements.

F2003 Name This function is callable as FN VGetLength Serial when using the Fortran 2003 interface
module.

N VPrint Serial

Prototype void N VPrint Serial(N Vector v);

Description This function prints the content of a serial vector to stdout.

F2003 Name This function is callable as FN VPrint Serial when using the Fortran 2003 interface
module.

N VPrintFile Serial

Prototype void N VPrintFile Serial(N Vector v, FILE *outfile);

Description This function prints the content of a serial vector to outfile.

By default all fused and vector array operations are disabled in the nvector serial module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Serial, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Serial

will have the default settings for the nvector serial module.

N VEnableFusedOps Serial

Prototype int N VEnableFusedOps Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Serial

Prototype int N VEnableLinearCombination Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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N VEnableScaleAddMulti Serial

Prototype int N VEnableScaleAddMulti Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the serial vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Serial

Prototype int N VEnableDotProdMulti Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearSumVectorArray Serial

Prototype int N VEnableLinearSumVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Serial

Prototype int N VEnableScaleVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Serial

Prototype int N VEnableConstVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableWrmsNormVectorArray Serial

Prototype int N VEnableWrmsNormVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Serial

Prototype int N VEnableWrmsNormMaskVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the serial vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.
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N VEnableScaleAddMultiVectorArray Serial

Prototype int N VEnableScaleAddMultiVectorArray Serial(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the serial vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Serial

Prototype int N VEnableLinearCombinationVectorArray Serial(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the serial vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• N VNewEmpty Serial, N VMake Serial, and N VCloneVectorArrayEmpty Serial set the field !

own data = SUNFALSE. N VDestroy Serial and N VDestroyVectorArray Serial will not at-
tempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector serial implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.2.3 NVECTOR SERIAL Fortran interfaces

The nvector serial module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fnvector serial mod Fortran module defines interfaces to all nvector serial C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N VNew Serial is
interfaced as FN VNew Serial.

The Fortran 2003 nvector serial interface module can be accessed with the use statement,
i.e. use fnvector serial mod, and linking to the library libsundials fnvectorserial mod.lib in
addition to the C library. For details on where the library and module file fnvector serial mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fnvectorserial mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the nvector serial module also includes a
Fortran-callable function FNVINITS(code, NEQ, IER), to initialize this nvector serial module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); and IER is an error return flag equal 0 for
success and -1 for failure.
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7.3 The NVECTOR PARALLEL implementation

The nvector parallel implementation of the nvector module provided with sundials is based on
MPI. It defines the content field of N Vector to be a structure containing the global and local lengths
of the vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, and
a boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

sunindextype local_length;

sunindextype global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The header file to include when using this module is nvector parallel.h. The installed module
library to link to is libsundials nvecparallel.lib where .lib is typically .so for shared libraries
and .a for static libraries.

7.3.1 NVECTOR PARALLEL accessor macros

The following macros are provided to access the content of a nvector parallel vector. The suffix
P in the names denotes the distributed memory parallel version.

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector content
structure of type struct N VectorContent Parallel.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel)(v->content) )

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part of
v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the vector
v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vectors.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )
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• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n− 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

7.3.2 NVECTOR PARALLEL functions

The nvector parallel module defines parallel implementations of all vector operations listed in
Tables 7.2, 7.3, and 7.4. Their names are obtained from those in Tables 7.2, 7.3, and 7.4 by appending
the suffix Parallel (e.g. N VDestroy Parallel). The module nvector parallel provides the
following additional user-callable routines:

N VNew Parallel

Prototype N Vector N VNew Parallel(MPI Comm comm, sunindextype local length,

sunindextype global length);

Description This function creates and allocates memory for a parallel vector.

N VNewEmpty Parallel

Prototype N Vector N VNewEmpty Parallel(MPI Comm comm, sunindextype local length,

sunindextype global length);

Description This function creates a new parallel N Vector with an empty (NULL) data array.

N VMake Parallel

Prototype N Vector N VMake Parallel(MPI Comm comm, sunindextype local length,

sunindextype global length, realtype *v data);

Description This function creates and allocates memory for a parallel vector with user-provided data
array. This function does not allocate memory for v data itself.

N VCloneVectorArray Parallel

Prototype N Vector *N VCloneVectorArray Parallel(int count, N Vector w);

Description This function creates (by cloning) an array of count parallel vectors.

N VCloneVectorArrayEmpty Parallel

Prototype N Vector *N VCloneVectorArrayEmpty Parallel(int count, N Vector w);

Description This function creates (by cloning) an array of count parallel vectors, each with an empty
(NULL) data array.

N VDestroyVectorArray Parallel

Prototype void N VDestroyVectorArray Parallel(N Vector *vs, int count);

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Parallel or with
N VCloneVectorArrayEmpty Parallel.
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N VGetLength Parallel

Prototype sunindextype N VGetLength Parallel(N Vector v);

Description This function returns the number of vector elements (global vector length).

N VGetLocalLength Parallel

Prototype sunindextype N VGetLocalLength Parallel(N Vector v);

Description This function returns the local vector length.

N VPrint Parallel

Prototype void N VPrint Parallel(N Vector v);

Description This function prints the local content of a parallel vector to stdout.

N VPrintFile Parallel

Prototype void N VPrintFile Parallel(N Vector v, FILE *outfile);

Description This function prints the local content of a parallel vector to outfile.

By default all fused and vector array operations are disabled in the nvector parallel module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Parallel, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone with that vector.
This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors
inherit the same enable/disable options as the vector they are cloned from while vectors created with
N VNew Parallel will have the default settings for the nvector parallel module.

N VEnableFusedOps Parallel

Prototype int N VEnableFusedOps Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Parallel

Prototype int N VEnableLinearCombination Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Parallel

Prototype int N VEnableScaleAddMulti Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the parallel vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.
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N VEnableDotProdMulti Parallel

Prototype int N VEnableDotProdMulti Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Parallel

Prototype int N VEnableLinearSumVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Parallel

Prototype int N VEnableScaleVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Parallel

Prototype int N VEnableConstVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableWrmsNormVectorArray Parallel

Prototype int N VEnableWrmsNormVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Parallel

Prototype int N VEnableWrmsNormMaskVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the parallel vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Parallel

Prototype int N VEnableScaleAddMultiVectorArray Parallel(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector
array to multiple vector arrays operation in the parallel vector. The return value is 0

for success and -1 if the input vector or its ops structure are NULL.
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N VEnableLinearCombinationVectorArray Parallel

Prototype int N VEnableLinearCombinationVectorArray Parallel(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the parallel vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the local
component array via v data = NV DATA P(v) and then access v data[i] within the loop than
it is to use NV Ith P(v,i) within the loop.

• N VNewEmpty Parallel, N VMake Parallel, and N VCloneVectorArrayEmpty Parallel set the!

field own data = SUNFALSE. N VDestroy Parallel and N VDestroyVectorArray Parallel will
not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector parallel implementation that have!

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.3.3 NVECTOR PARALLEL Fortran interfaces

For solvers that include a Fortran 77 interface module, the nvector parallel module also in-
cludes a Fortran-callable function FNVINITP(COMM, code, NLOCAL, NGLOBAL, IER), to initialize
this nvector parallel module. Here COMM is the MPI communicator, code is an input solver
id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NLOCAL and NGLOBAL are the local and
global vector sizes, respectively (declared so as to match C type long int); and IER is an error
return flag equal 0 for success and -1 for failure. NOTE: If the header file sundials config.h de-!

fines SUNDIALS MPI COMM F2C to be 1 (meaning the MPI implementation used to build sundials
includes the MPI Comm f2c function), then COMM can be any valid MPI communicator. Otherwise,
MPI COMM WORLD will be used, so just pass an integer value as a placeholder.

7.4 The NVECTOR OPENMP implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-
tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The OpenMP nvector implementation provided with sundials, nvector openmp, defines the
content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using OpenMP.

struct _N_VectorContent_OpenMP {

sunindextype length;

booleantype own_data;

realtype *data;

int num_threads;

};
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The header file to include when using this module is nvector openmp.h. The installed module
library to link to is libsundials nvecopenmp.lib where .lib is typically .so for shared libraries
and .a for static libraries. The Fortran module file to use when using the Fortran 2003 interface
to this module is fnvector openmp mod.mod.

7.4.1 NVECTOR OPENMP accessor macros

The following macros are provided to access the content of an nvector openmp vector. The suffix
OMP in the names denotes the OpenMP version.

• NV CONTENT OMP

This routine gives access to the contents of the OpenMP vector N Vector.

The assignment v cont = NV CONTENT OMP(v) sets v cont to be a pointer to the OpenMP
N Vector content structure.

Implementation:

#define NV_CONTENT_OMP(v) ( (N_VectorContent_OpenMP)(v->content) )

• NV OWN DATA OMP, NV DATA OMP, NV LENGTH OMP, NV NUM THREADS OMP

These macros give individual access to the parts of the content of a OpenMP N Vector.

The assignment v data = NV DATA OMP(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA OMP(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH OMP(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH OMP(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS OMP(v) sets v num threads to be the num-
ber of threads from v. On the other hand, the call NV NUM THREADS OMP(v) = num threads v

sets the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_OMP(v) ( NV_CONTENT_OMP(v)->own_data )

#define NV_DATA_OMP(v) ( NV_CONTENT_OMP(v)->data )

#define NV_LENGTH_OMP(v) ( NV_CONTENT_OMP(v)->length )

#define NV_NUM_THREADS_OMP(v) ( NV_CONTENT_OMP(v)->num_threads )

• NV Ith OMP

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith OMP(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) ( NV_DATA_OMP(v)[i] )

7.4.2 NVECTOR OPENMP functions

The nvector openmp module defines OpenMP implementations of all vector operations listed in
Tables 7.2, 7.3, and 7.4. Their names are obtained from those in Tables 7.2, 7.3, and 7.4 by appending
the suffix OpenMP (e.g. N VDestroy OpenMP). All the standard vector operations listed in 7.2 with
the suffix OpenMP appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g.
FN VDestroy OpenMP).

The module nvector openmp provides the following additional user-callable routines:



182 Description of the NVECTOR module

N VNew OpenMP

Prototype N Vector N VNew OpenMP(sunindextype vec length, int num threads)

Description This function creates and allocates memory for a OpenMP N Vector. Arguments are
the vector length and number of threads.

F2003 Name This function is callable as FN VNew OpenMP when using the Fortran 2003 interface mod-
ule.

N VNewEmpty OpenMP

Prototype N Vector N VNewEmpty OpenMP(sunindextype vec length, int num threads)

Description This function creates a new OpenMP N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty OpenMP when using the Fortran 2003 interface
module.

N VMake OpenMP

Prototype N Vector N VMake OpenMP(sunindextype vec length, realtype *v data,

int num threads);

Description This function creates and allocates memory for a OpenMP vector with user-provided
data array. This function does not allocate memory for v data itself.

F2003 Name This function is callable as FN VMake OpenMP when using the Fortran 2003 interface
module.

N VCloneVectorArray OpenMP

Prototype N Vector *N VCloneVectorArray OpenMP(int count, N Vector w)

Description This function creates (by cloning) an array of count OpenMP vectors.

N VCloneVectorArrayEmpty OpenMP

Prototype N Vector *N VCloneVectorArrayEmpty OpenMP(int count, N Vector w)

Description This function creates (by cloning) an array of count OpenMP vectors, each with an
empty (NULL) data array.

N VDestroyVectorArray OpenMP

Prototype void N VDestroyVectorArray OpenMP(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray OpenMP or with N VCloneVectorArrayEmpty OpenMP.

N VGetLength OpenMP

Prototype sunindextype N VGetLength OpenMP(N Vector v)

Description This function returns number of vector elements.

F2003 Name This function is callable as FN VGetLength OpenMP when using the Fortran 2003 interface
module.
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N VPrint OpenMP

Prototype void N VPrint OpenMP(N Vector v)

Description This function prints the content of an OpenMP vector to stdout.

F2003 Name This function is callable as FN VPrint OpenMP when using the Fortran 2003 interface
module.

N VPrintFile OpenMP

Prototype void N VPrintFile OpenMP(N Vector v, FILE *outfile)

Description This function prints the content of an OpenMP vector to outfile.

By default all fused and vector array operations are disabled in the nvector openmp module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew OpenMP, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew OpenMP

will have the default settings for the nvector openmp module.

N VEnableFusedOps OpenMP

Prototype int N VEnableFusedOps OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearCombination OpenMP

Prototype int N VEnableLinearCombination OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti OpenMP

Prototype int N VEnableScaleAddMulti OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the OpenMP vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti OpenMP

Prototype int N VEnableDotProdMulti OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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N VEnableLinearSumVectorArray OpenMP

Prototype int N VEnableLinearSumVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

N VEnableScaleVectorArray OpenMP

Prototype int N VEnableScaleVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableConstVectorArray OpenMP

Prototype int N VEnableConstVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormVectorArray OpenMP

Prototype int N VEnableWrmsNormVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray OpenMP

Prototype int N VEnableWrmsNormMaskVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the OpenMP vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray OpenMP

Prototype int N VEnableScaleAddMultiVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the OpenMP vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray OpenMP

Prototype int N VEnableLinearCombinationVectorArray OpenMP(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.



7.5 The NVECTOR PTHREADS implementation 185

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA OMP(v) and then access v data[i] within the loop
than it is to use NV Ith OMP(v,i) within the loop.

• N VNewEmpty OpenMP, N VMake OpenMP, and N VCloneVectorArrayEmpty OpenMP set the field !

own data = SUNFALSE. N VDestroy OpenMP and N VDestroyVectorArray OpenMP will not at-
tempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector openmp implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.4.3 NVECTOR OPENMP Fortran interfaces

The nvector openmp module provides a Fortran 2003 module as well as Fortran 77 style inter-
face functions for use from Fortran applications.

FORTRAN 2003 interface module

The nvector openmp mod Fortran module defines interfaces to most nvector openmp C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N VNew OpenMP is
interfaced as FN VNew OpenMP.

The Fortran 2003 nvector openmp interface module can be accessed with the use statement,
i.e. use fnvector openmp mod, and linking to the library libsundials fnvectoropenmp mod.lib in
addition to the C library. For details on where the library and module file fnvector openmp mod.mod

are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the nvector openmp module also includes
a Fortran-callable function FNVINITOMP(code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

7.5 The NVECTOR PTHREADS implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-
tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The Pthreads nvector implementation provided with sundials, denoted nvector pthreads,
defines the content field of N Vector to be a structure containing the length of the vector, a pointer
to the beginning of a contiguous data array, a boolean flag own data which specifies the ownership
of data, and the number of threads. Operations on the vector are threaded using POSIX threads
(Pthreads).
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struct _N_VectorContent_Pthreads {

sunindextype length;

booleantype own_data;

realtype *data;

int num_threads;

};

The header file to include when using this module is nvector pthreads.h. The installed module
library to link to is libsundials nvecpthreads.lib where .lib is typically .so for shared libraries
and .a for static libraries.

7.5.1 NVECTOR PTHREADS accessor macros

The following macros are provided to access the content of an nvector pthreads vector. The suffix
PT in the names denotes the Pthreads version.

• NV CONTENT PT

This routine gives access to the contents of the Pthreads vector N Vector.

The assignment v cont = NV CONTENT PT(v) sets v cont to be a pointer to the Pthreads
N Vector content structure.

Implementation:

#define NV_CONTENT_PT(v) ( (N_VectorContent_Pthreads)(v->content) )

• NV OWN DATA PT, NV DATA PT, NV LENGTH PT, NV NUM THREADS PT

These macros give individual access to the parts of the content of a Pthreads N Vector.

The assignment v data = NV DATA PT(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA PT(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH PT(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH PT(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS PT(v) sets v num threads to be the number
of threads from v. On the other hand, the call NV NUM THREADS PT(v) = num threads v sets
the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_PT(v) ( NV_CONTENT_PT(v)->own_data )

#define NV_DATA_PT(v) ( NV_CONTENT_PT(v)->data )

#define NV_LENGTH_PT(v) ( NV_CONTENT_PT(v)->length )

#define NV_NUM_THREADS_PT(v) ( NV_CONTENT_PT(v)->num_threads )

• NV Ith PT

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith PT(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) ( NV_DATA_PT(v)[i] )
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7.5.2 NVECTOR PTHREADS functions

The nvector pthreads module defines Pthreads implementations of all vector operations listed in
Tables 7.2, 7.3, and 7.4. Their names are obtained from those in Tables 7.2, 7.3, and 7.4 by appending
the suffix Pthreads (e.g. N VDestroy Pthreads). All the standard vector operations listed in 7.2
are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g. FN VDestroy Pthreads). The
module nvector pthreads provides the following additional user-callable routines:

N VNew Pthreads

Prototype N Vector N VNew Pthreads(sunindextype vec length, int num threads)

Description This function creates and allocates memory for a Pthreads N Vector. Arguments are
the vector length and number of threads.

F2003 Name This function is callable as FN VNew Pthreads when using the Fortran 2003 interface
module.

N VNewEmpty Pthreads

Prototype N Vector N VNewEmpty Pthreads(sunindextype vec length, int num threads)

Description This function creates a new Pthreads N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty Pthreads when using the Fortran 2003 inter-
face module.

N VMake Pthreads

Prototype N Vector N VMake Pthreads(sunindextype vec length, realtype *v data,

int num threads);

Description This function creates and allocates memory for a Pthreads vector with user-provided
data array. This function does not allocate memory for v data itself.

F2003 Name This function is callable as FN VMake Pthreads when using the Fortran 2003 interface
module.

N VCloneVectorArray Pthreads

Prototype N Vector *N VCloneVectorArray Pthreads(int count, N Vector w)

Description This function creates (by cloning) an array of count Pthreads vectors.

N VCloneVectorArrayEmpty Pthreads

Prototype N Vector *N VCloneVectorArrayEmpty Pthreads(int count, N Vector w)

Description This function creates (by cloning) an array of count Pthreads vectors, each with an
empty (NULL) data array.

N VDestroyVectorArray Pthreads

Prototype void N VDestroyVectorArray Pthreads(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Pthreads or with
N VCloneVectorArrayEmpty Pthreads.
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N VGetLength Pthreads

Prototype sunindextype N VGetLength Pthreads(N Vector v)

Description This function returns the number of vector elements.

F2003 Name This function is callable as FN VGetLength Pthreads when using the Fortran 2003 in-
terface module.

N VPrint Pthreads

Prototype void N VPrint Pthreads(N Vector v)

Description This function prints the content of a Pthreads vector to stdout.

F2003 Name This function is callable as FN VPrint Pthreads when using the Fortran 2003 interface
module.

N VPrintFile Pthreads

Prototype void N VPrintFile Pthreads(N Vector v, FILE *outfile)

Description This function prints the content of a Pthreads vector to outfile.

By default all fused and vector array operations are disabled in the nvector pthreads module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Pthreads, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Pthreads

will have the default settings for the nvector pthreads module.

N VEnableFusedOps Pthreads

Prototype int N VEnableFusedOps Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearCombination Pthreads

Prototype int N VEnableLinearCombination Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Pthreads

Prototype int N VEnableScaleAddMulti Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the Pthreads vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.
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N VEnableDotProdMulti Pthreads

Prototype int N VEnableDotProdMulti Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Pthreads

Prototype int N VEnableLinearSumVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

N VEnableScaleVectorArray Pthreads

Prototype int N VEnableScaleVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableConstVectorArray Pthreads

Prototype int N VEnableConstVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormVectorArray Pthreads

Prototype int N VEnableWrmsNormVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Pthreads

Prototype int N VEnableWrmsNormMaskVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the Pthreads vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Pthreads

Prototype int N VEnableScaleAddMultiVectorArray Pthreads(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the Pthreads vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.
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N VEnableLinearCombinationVectorArray Pthreads

Prototype int N VEnableLinearCombinationVectorArray Pthreads(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA PT(v) and then access v data[i] within the loop than
it is to use NV Ith PT(v,i) within the loop.

• N VNewEmpty Pthreads, N VMake Pthreads, and N VCloneVectorArrayEmpty Pthreads set the!

field own data = SUNFALSE. N VDestroy Pthreads and N VDestroyVectorArray Pthreads will
not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector pthreads implementation that have!

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.5.3 NVECTOR PTHREADS Fortran interfaces

The nvector pthreads module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The nvector pthreads mod Fortran module defines interfaces to most nvector pthreads C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N VNew Pthreads is
interfaced as FN VNew Pthreads.

The Fortran 2003 nvector pthreads interface module can be accessed with the use statement,
i.e. use fnvector pthreads mod, and linking to the library libsundials fnvectorpthreads mod.lib
in addition to the C library. For details on where the library and module file fnvector pthreads mod.mod

are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the nvector pthreads module also includes
a Fortran-callable function FNVINITPTS(code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

7.6 The NVECTOR PARHYP implementation

The nvector parhyp implementation of the nvector module provided with sundials is a wrapper
around hypre’s ParVector class. Most of the vector kernels simply call hypre vector operations. The
implementation defines the content field of N Vector to be a structure containing the global and local
lengths of the vector, a pointer to an object of type HYPRE ParVector, an MPI communicator, and a
boolean flag own parvector indicating ownership of the hypre parallel vector object x.
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struct _N_VectorContent_ParHyp {

sunindextype local_length;

sunindextype global_length;

booleantype own_parvector;

MPI_Comm comm;

HYPRE_ParVector x;

};

The header file to include when using this module is nvector parhyp.h. The installed module library
to link to is libsundials nvecparhyp.lib where .lib is typically .so for shared libraries and .a

for static libraries.

Unlike native sundials vector types, nvector parhyp does not provide macros to access its
member variables. Note that nvector parhyp requires sundials to be built with MPI support.

7.6.1 NVECTOR PARHYP functions

The nvector parhyp module defines implementations of all vector operations listed in Tables 7.2,
7.3, and 7.4, except for N VSetArrayPointer and N VGetArrayPointer, because accessing raw vector
data is handled by low-level hypre functions. As such, this vector is not available for use with sundials
Fortran interfaces. When access to raw vector data is needed, one should extract the hypre vector first,
and then use hypre methods to access the data. Usage examples of nvector parhyp are provided in
the cvAdvDiff non ph.c example program for cvode [29] and the ark diurnal kry ph.c example
program for arkode [39].

The names of parhyp methods are obtained from those in Tables 7.2, 7.3, and 7.4 by appending
the suffix ParHyp (e.g. N VDestroy ParHyp). The module nvector parhyp provides the following
additional user-callable routines:

N VNewEmpty ParHyp

Prototype N Vector N VNewEmpty ParHyp(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates a new parhyp N Vector with the pointer to the hypre vector set
to NULL.

N VMake ParHyp

Prototype N Vector N VMake ParHyp(HYPRE ParVector x)

Description This function creates an N Vector wrapper around an existing hypre parallel vector. It
does not allocate memory for x itself.

N VGetVector ParHyp

Prototype HYPRE ParVector N VGetVector ParHyp(N Vector v)

Description This function returns the underlying hypre vector.

N VCloneVectorArray ParHyp

Prototype N Vector *N VCloneVectorArray ParHyp(int count, N Vector w)

Description This function creates (by cloning) an array of count parallel vectors.
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N VCloneVectorArrayEmpty ParHyp

Prototype N Vector *N VCloneVectorArrayEmpty ParHyp(int count, N Vector w)

Description This function creates (by cloning) an array of count parallel vectors, each with an empty
(NULL) data array.

N VDestroyVectorArray ParHyp

Prototype void N VDestroyVectorArray ParHyp(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray ParHyp or with N VCloneVectorArrayEmpty ParHyp.

N VPrint ParHyp

Prototype void N VPrint ParHyp(N Vector v)

Description This function prints the local content of a parhyp vector to stdout.

N VPrintFile ParHyp

Prototype void N VPrintFile ParHyp(N Vector v, FILE *outfile)

Description This function prints the local content of a parhyp vector to outfile.

By default all fused and vector array operations are disabled in the nvector parhyp module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VMake ParHyp, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VMake ParHyp

will have the default settings for the nvector parhyp module.

N VEnableFusedOps ParHyp

Prototype int N VEnableFusedOps ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination ParHyp

Prototype int N VEnableLinearCombination ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti ParHyp

Prototype int N VEnableScaleAddMulti ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the parhyp vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.
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N VEnableDotProdMulti ParHyp

Prototype int N VEnableDotProdMulti ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray ParHyp

Prototype int N VEnableLinearSumVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray ParHyp

Prototype int N VEnableScaleVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray ParHyp

Prototype int N VEnableConstVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableWrmsNormVectorArray ParHyp

Prototype int N VEnableWrmsNormVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray ParHyp

Prototype int N VEnableWrmsNormMaskVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the parhyp vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray ParHyp

Prototype int N VEnableScaleAddMultiVectorArray ParHyp(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the parhyp vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.
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N VEnableLinearCombinationVectorArray ParHyp

Prototype int N VEnableLinearCombinationVectorArray ParHyp(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the parhyp vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector ParHyp, v, it is recommended to
extract the hypre vector via x vec = N VGetVector ParHyp(v) and then access components
using appropriate hypre functions.

• N VNewEmpty ParHyp, N VMake ParHyp, and N VCloneVectorArrayEmpty ParHyp set the field!

own parvector to SUNFALSE. N VDestroy ParHyp and N VDestroyVectorArray ParHyp will not
attempt to delete an underlying hypre vector for any N Vector with own parvector set to
SUNFALSE. In such a case, it is the user’s responsibility to delete the underlying vector.

• To maximize efficiency, vector operations in the nvector parhyp implementation that have!

more than one N Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.7 The NVECTOR PETSC implementation

The nvector petsc module is an nvector wrapper around the petsc vector. It defines the content
field of a N Vector to be a structure containing the global and local lengths of the vector, a pointer
to the petsc vector, an MPI communicator, and a boolean flag own data indicating ownership of the
wrapped petsc vector.

struct _N_VectorContent_Petsc {

sunindextype local_length;

sunindextype global_length;

booleantype own_data;

Vec *pvec;

MPI_Comm comm;

};

The header file to include when using this module is nvector petsc.h. The installed module library
to link to is libsundials nvecpetsc.lib where .lib is typically .so for shared libraries and .a for
static libraries.

Unlike native sundials vector types, nvector petsc does not provide macros to access its mem-
ber variables. Note that nvector petsc requires sundials to be built with MPI support.

7.7.1 NVECTOR PETSC functions

The nvector petsc module defines implementations of all vector operations listed in Tables 7.2, 7.3,
and 7.4, except for N VGetArrayPointer and N VSetArrayPointer. As such, this vector cannot be
used with sundials Fortran interfaces. When access to raw vector data is needed, it is recommended
to extract the petsc vector first, and then use petsc methods to access the data. Usage examples of
nvector petsc are provided in example programs for ida [28].

The names of vector operations are obtained from those in Tables 7.2, 7.3, and 7.4 by appending
the suffix Petsc (e.g. N VDestroy Petsc). The module nvector petsc provides the following
additional user-callable routines:
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N VNewEmpty Petsc

Prototype N Vector N VNewEmpty Petsc(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates a new nvector wrapper with the pointer to the wrapped petsc
vector set to (NULL). It is used by the N VMake Petsc and N VClone Petsc implementa-
tions.

N VMake Petsc

Prototype N Vector N VMake Petsc(Vec *pvec)

Description This function creates and allocates memory for an nvector petsc wrapper around a
user-provided petsc vector. It does not allocate memory for the vector pvec itself.

N VGetVector Petsc

Prototype Vec *N VGetVector Petsc(N Vector v)

Description This function returns a pointer to the underlying petsc vector.

N VCloneVectorArray Petsc

Prototype N Vector *N VCloneVectorArray Petsc(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector petsc vectors.

N VCloneVectorArrayEmpty Petsc

Prototype N Vector *N VCloneVectorArrayEmpty Petsc(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector petsc vectors, each with
pointers to petsc vectors set to (NULL).

N VDestroyVectorArray Petsc

Prototype void N VDestroyVectorArray Petsc(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Petsc or with N VCloneVectorArrayEmpty Petsc.

N VPrint Petsc

Prototype void N VPrint Petsc(N Vector v)

Description This function prints the global content of a wrapped petsc vector to stdout.

N VPrintFile Petsc

Prototype void N VPrintFile Petsc(N Vector v, const char fname[])

Description This function prints the global content of a wrapped petsc vector to fname.

By default all fused and vector array operations are disabled in the nvector petsc module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VMake Petsc, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VMake Petsc

will have the default settings for the nvector petsc module.
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N VEnableFusedOps Petsc

Prototype int N VEnableFusedOps Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the petsc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Petsc

Prototype int N VEnableLinearCombination Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Petsc

Prototype int N VEnableScaleAddMulti Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the petsc vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Petsc

Prototype int N VEnableDotProdMulti Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Petsc

Prototype int N VEnableLinearSumVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Petsc

Prototype int N VEnableScaleVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the petsc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Petsc

Prototype int N VEnableConstVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the petsc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.
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N VEnableWrmsNormVectorArray Petsc

Prototype int N VEnableWrmsNormVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Petsc

Prototype int N VEnableWrmsNormMaskVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the petsc vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Petsc

Prototype int N VEnableScaleAddMultiVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the petsc vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Petsc

Prototype int N VEnableLinearCombinationVectorArray Petsc(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the petsc vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector Petsc, v, it is recommeded to
extract the petsc vector via x vec = N VGetVector Petsc(v) and then access components
using appropriate petsc functions.

• The functions N VNewEmpty Petsc, N VMake Petsc, and N VCloneVectorArrayEmpty Petsc set !

the field own data to SUNFALSE. N VDestroy Petsc and N VDestroyVectorArray Petsc will not
attempt to free the pointer pvec for any N Vector with own data set to SUNFALSE. In such a
case, it is the user’s responsibility to deallocate the pvec pointer.

• To maximize efficiency, vector operations in the nvector petsc implementation that have !

more than one N Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.8 The NVECTOR CUDA implementation

The nvector cuda module is an experimental nvector implementation in the cuda language.
The module allows for sundials vector kernels to run on GPU devices. It is intended for users
who are already familiar with cuda and GPU programming. Building this vector module requires a
CUDA compiler and, by extension, a C++ compiler. The class Vector in the namespace suncudavec

manages the vector data layout:
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template <class T, class I>

class Vector {

I size_;

I mem_size_;

I global_size_;

T* h_vec_;

T* d_vec_;

ThreadPartitioning<T, I>* partStream_;

ThreadPartitioning<T, I>* partReduce_;

bool ownPartitioning_;

bool ownData_;

bool managed_mem_;

SUNMPI_Comm comm_;

...

};

The class members are vector size (length), size of the vector data memory block, pointers to vector
data on the host and the device, pointers to ThreadPartitioning implementations that handle thread
partitioning for streaming and reduction vector kernels, a boolean flag that signals if the vector owns
the thread partitioning, a boolean flag that signals if the vector owns the data, a boolean flag that
signals if managed memory is used for the data arrays, and the MPI communicator. The class Vector
inherits from the empty structure

struct _N_VectorContent_Cuda {};

to interface the C++ class with the nvector C code. Due to the rapid progress of cuda development,
we expect that the suncudavec::Vector class will change frequently in future sundials releases. The
code is structured so that it can tolerate significant changes in the suncudavec::Vector class without
requiring changes to the user API.

When instantiated with N VNew Cuda, the class Vector will allocate memory on both the host and
the device. Alternatively, a user can provide host and device data arrays by using the N VMake Cuda

constructor. To use cuda managed memory, the constructors N VNewManaged Cuda and
N VMakeManaged Cuda are provided. Details on each of these constructors are provided below.

The nvector cuda module can be utilized for single-node parallelism or in a distributed context
with MPI. In the single-node case the header file to include nvector cuda.h and the library to
link to is libsundials nveccuda.lib . In the a distributed setting the header file to include is
nvector mpicuda.h and the library to link to is libsundials nvecmpicuda.lib . The extension,
.lib, is typically .so for shared libraries and .a for static libraries. Only one of these libraries may
be linked to when creating an executable or library. sundials must be built with MPI support if the
distributed library is desired.

7.8.1 NVECTOR CUDA functions

Unlike other native sundials vector types, nvector cuda does not provide macros to access its
member variables. Instead, user should use the accessor functions:

N VGetLength Cuda

Prototype sunindextype N VGetLength Cuda(N Vector v)

Description This function returns the global length of the vector.

N VGetLocalLength Cuda

Prototype sunindextype N VGetLocalLength Cuda(N Vector v)
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Description This function returns the local length of the vector.

Note: This function is for use in a distributed context and is defined in the header
nvector mpicuda.h and the library to link to is libsundials nvecmpicuda.lib.

N VGetHostArrayPointer Cuda

Prototype realtype *N VGetHostArrayPointer Cuda(N Vector v)

Description This function returns a pointer to the vector data on the host.

N VGetDeviceArrayPointer Cuda

Prototype realtype *N VGetDeviceArrayPointer Cuda(N Vector v)

Description This function returns a pointer to the vector data on the device.

N VGetMPIComm Cuda

Prototype MPI Comm N VGetMPIComm Cuda(N Vector v)

Description This function returns the MPI communicator for the vector.

Note: This function is for use in a distributed context and is defined in the header
nvector mpicuda.h and the library to link to is libsundials nvecmpicuda.lib.

N VIsManagedMemory Cuda

Prototype booleantype *N VIsManagedMemory Cuda(N Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The nvector cuda module defines implementations of all vector operations listed in Tables 7.2,
7.3, and 7.4, except for N VGetArrayPointer and N VSetArrayPointer. As such, this vector cannot be
used with the sundials Fortran interfaces, nor with the sundials direct solvers and preconditioners.
Instead, the nvector cuda module provides separate functions to access data on the host and on
the device. It also provides methods for copying from the host to the device and vice versa. Usage
examples of nvector cuda are provided in some example programs for cvode [29].

The names of vector operations are obtained from those in Tables 7.2, 7.3, and 7.4 by appending the
suffix Cuda (e.g. N VDestroy Cuda). The module nvector cuda provides the following functions:

N VNew Cuda

Single-node usage

Prototype N Vector N VNew Cuda(sunindextype length)

Description This function creates and allocates memory for a cuda N Vector. The vector data array
is allocated on both the host and device. In the single-node setting, the only input is
the vector length. This constructor is defined in the header nvector cuda.h and the
library to link to is libsundials nveccuda.lib.

Distributed-memory parallel usage

Prototype N Vector N VNew Cuda(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates and allocates memory for a cuda N Vector. The vector data
array is allocated on both the host and device. When used in a distributed context
with MPI, the arguments are the MPI communicator, the local vector length, and the
global vector length. This constructor is defined in the header nvector mpicuda.h and
the library to link to is libsundials nvecmpicuda.lib.
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N VNewManaged Cuda

Single-node usage

Prototype N Vector N VNewManaged Cuda(sunindextype length)

Description This function creates and allocates memory for a cuda N Vector on a single node. The
vector data array is allocated in managed memory. In the single-node setting, the only
input is the vector length. This constructor is defined in the header nvector cuda.h

and the library to link to is libsundials nveccuda.lib.

Distributed-memory parallel usage

Prototype N Vector N VNewManaged Cuda(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates and allocates memory for a cuda N Vector on a single node. The
vector data array is allocated in managed memory. When used in a distributed context
with MPI, the arguments are the MPI communicator, the local vector lenght, and the
global vector length. This constructor is defined in the header nvector mpicuda.h and
the library to link to is libsundials nvecmpicuda.lib.

N VNewEmpty Cuda

Prototype N Vector N VNewEmpty Cuda()

Description This function creates a new nvector wrapper with the pointer to the wrapped cuda
vector set to NULL. It is used by the N VNew Cuda, N VMake Cuda, and N VClone Cuda

implementations.

N VMake Cuda

Single-node usage

Prototype N Vector N VMake Cuda(sunindextype length, realtype *h vdata,

realtype *d vdata)

Description This function creates an nvector cuda with user-supplied vector data arrays h vdata

and d vdata. This function does not allocate memory for data itself. In the single-
node setting, the inputs are the vector length, the host data array, and the device data.
This constructor is defined in the header nvector cuda.h and the library to link to is
libsundials nveccuda.lib.

Distributed-memory parallel usage

Prototype N Vector N VMake Cuda(MPI Comm comm, sunindextype local length,

sunindextype global length, realtype *h vdata,

realtype *d vdata)

Description This function creates an nvector cuda with user-supplied vector data arrays h vdata

and d vdata. This function does not allocate memory for data itself. When used in
a distributed context with MPI, the arguments are the MPI communicator, the local
vector lenght, the global vector length, the host data array, and the device data array.
This constructor is defined in the header nvector mpicuda.h and the library to link to
is libsundials nvecmpicuda.lib.

N VMakeManaged Cuda

Single-node usage

Prototype N Vector N VMakeManaged Cuda(sunindextype length, realtype *vdata)
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Description This function creates an nvector cuda with a user-supplied managed memory data
array. This function does not allocate memory for data itself. In the single-node setting,
the inputs are the vector length and the managed data array. This constructor is defined
in the header nvector cuda.h and the library to link to is libsundials nveccuda.lib.

Distributed-memory parallel usage

Prototype N Vector N VMakeManaged Cuda(MPI Comm comm, sunindextype local length,

sunindextype global length, realtype *vdata)

Description This function creates an nvector cuda with a user-supplied managed memory data
array. This function does not allocate memory for data itself. When used in a distributed
context with MPI, the arguments are the MPI communicator, the local vector lenght,
the global vector length, the managed data array. This constructor is defined in the
header nvector mpicuda.h and the library to link to is libsundials nvecmpicuda.lib.

The module nvector cuda also provides the following user-callable routines:

N VSetCudaStream Cuda

Prototype void N VSetCudaStream Cuda(N Vector v, cudaStream t *stream)

Description This function sets the cuda stream that all vector kernels will be launched on. By
default an nvector cuda uses the default cuda stream.

Note: All vectors used in a single instance of a SUNDIALS solver must use the same
cuda stream, and the cuda stream must be set prior to solver initialization. Addi-
tionally, if manually instantiating the stream and reduce ThreadPartitioning of a
suncudavec::Vector, ensure that they use the same cuda stream.

N VCopyToDevice Cuda

Prototype void N VCopyToDevice Cuda(N Vector v)

Description This function copies host vector data to the device.

N VCopyFromDevice Cuda

Prototype void N VCopyFromDevice Cuda(N Vector v)

Description This function copies vector data from the device to the host.

N VPrint Cuda

Prototype void N VPrint Cuda(N Vector v)

Description This function prints the content of a cuda vector to stdout.

N VPrintFile Cuda

Prototype void N VPrintFile Cuda(N Vector v, FILE *outfile)

Description This function prints the content of a cuda vector to outfile.

By default all fused and vector array operations are disabled in the nvector cuda module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to
first create a vector with N VNew Cuda, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Cuda will
have the default settings for the nvector cuda module.
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N VEnableFusedOps Cuda

Prototype int N VEnableFusedOps Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the cuda vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Cuda

Prototype int N VEnableLinearCombination Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Cuda

Prototype int N VEnableScaleAddMulti Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the cuda vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Cuda

Prototype int N VEnableDotProdMulti Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Cuda

Prototype int N VEnableLinearSumVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Cuda

Prototype int N VEnableScaleVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the cuda vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Cuda

Prototype int N VEnableConstVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the cuda vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.
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N VEnableWrmsNormVectorArray Cuda

Prototype int N VEnableWrmsNormVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Cuda

Prototype int N VEnableWrmsNormMaskVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the cuda vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Cuda

Prototype int N VEnableScaleAddMultiVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the cuda vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Cuda

Prototype int N VEnableLinearCombinationVectorArray Cuda(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the cuda vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector Cuda, v, it is recommeded to use
functions N VGetDeviceArrayPointer Cuda or N VGetHostArrayPointer Cuda.

• To maximize efficiency, vector operations in the nvector cuda implementation that have more !

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.

7.9 The NVECTOR RAJA implementation

The nvector raja module is an experimental nvector implementation using the raja hardware
abstraction layer. In this implementation, raja allows for sundials vector kernels to run on GPU
devices. The module is intended for users who are already familiar with raja and GPU programming.
Building this vector module requires a C++11 compliant compiler and a CUDA software development
toolkit. Besides the cuda backend, raja has other backends such as serial, OpenMP, and OpenACC.
These backends are not used in this sundials release. Class Vector in namespace sunrajavec

manages the vector data layout:

template <class T, class I>

class Vector {

I size_;

I mem_size_;

I global_size_;

https://software.llnl.gov/RAJA/
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T* h_vec_;

T* d_vec_;

SUNMPI_Comm comm_;

...

};

The class members are: vector size (length), size of the vector data memory block, the global vector
size (length), pointers to vector data on the host and on the device, and the MPI communicator. The
class Vector inherits from an empty structure

struct _N_VectorContent_Raja {

};

to interface the C++ class with the nvector C code. When instantiated, the class Vector will
allocate memory on both the host and the device. Due to the rapid progress of raja development, we
expect that the sunrajavec::Vector class will change frequently in future sundials releases. The
code is structured so that it can tolerate significant changes in the sunrajavec::Vector class without
requiring changes to the user API.

The nvector raja module can be utilized for single-node parallelism or in a distributed con-
text with MPI. The header file to include when using this module for single-node parallelism is
nvector raja.h. The header file to include when using this module in the distributed case is
nvector mpiraja.h. The installed module libraries to link to are libsundials nvecraja.lib in
the single-node case, or libsundials nvecmpicudaraja.lib in the distributed case. Only one one
of these libraries may be linked to when creating an executable or library. sundials must be built
with MPI support if the distributed library is desired.

7.9.1 NVECTOR RAJA functions

Unlike other native sundials vector types, nvector raja does not provide macros to access its
member variables. Instead, user should use the accessor functions:

N VGetLength Raja

Prototype sunindextype N VGetLength Raja(N Vector v)

Description This function returns the global length of the vector.

N VGetLocalLength Raja

Prototype sunindextype N VGetLocalLength Raja(N Vector v)

Description This function returns the local length of the vector.

Note: This function is for use in a distributed context and is defined in the header
nvector mpiraja.h and the library to link to is libsundials nvecmpicudaraja.lib.

N VGetHostArrayPointer Raja

Prototype realtype *N VGetHostArrayPointer Raja(N Vector v)

Description This function returns a pointer to the vector data on the host.

N VGetDeviceArrayPointer Raja

Prototype realtype *N VGetDeviceArrayPointer Raja(N Vector v)

Description This function returns a pointer to the vector data on the device.
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N VGetMPIComm Raja

Prototype MPI Comm N VGetMPIComm Raja(N Vector v)

Description This function returns the MPI communicator for the vector.

Note: This function is for use in a distributed context and is defined in the header
nvector mpiraja.h and the library to link to is libsundials nvecmpicudaraja.lib.

The nvector raja module defines the implementations of all vector operations listed in Tables
7.2, 7.3, and 7.4, except for N VDotProdMulti, N VWrmsNormVectorArray, and
N VWrmsNormMaskVectorArray as support for arrays of reduction vectors is not yet supported in raja.
These function will be added to the nvector raja implementation in the future. Additionally the
vector operations N VGetArrayPointer and N VSetArrayPointer are not implemented by the raja
vector. As such, this vector cannot be used with the sundials Fortran interfaces, nor with the
sundials direct solvers and preconditioners. The nvector raja module provides separate functions
to access data on the host and on the device. It also provides methods for copying data from the
host to the device and vice versa. Usage examples of nvector raja are provided in some example
programs for cvode [29].

The names of vector operations are obtained from those in Tables 7.2, 7.3, and 7.4, by append-
ing the suffix Raja (e.g. N VDestroy Raja). The module nvector raja provides the following
additional user-callable routines:

N VNew Raja

Single-node usage

Prototype N Vector N VNew Raja(sunindextype length)

Description This function creates and allocates memory for a cuda N Vector. The vector data array
is allocated on both the host and device. In the single-node setting, the only input is
the vector length. This constructor is defined in the header nvector raja.h and the
library to link to is libsundials nveccudaraja.lib.

Distributed-memory parallel usage

Prototype N Vector N VNew Raja(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates and allocates memory for a cuda N Vector. The vector data
array is allocated on both the host and device. When used in a distributed context
with MPI, the arguments are the MPI communicator, the local vector lenght, and the
global vector length. This constructor is defined in the header nvector mpiraja.h and
the library to link to is libsundials nvecmpicudaraja.lib.

N VNewEmpty Raja

Prototype N Vector N VNewEmpty Raja()

Description This function creates a new nvector wrapper with the pointer to the wrapped raja
vector set to NULL. It is used by the N VNew Raja, N VMake Raja, and N VClone Raja

implementations.

N VMake Raja

Prototype N Vector N VMake Raja(N VectorContent Raja c)

Description This function creates and allocates memory for an nvector raja wrapper around a
user-provided sunrajavec::Vector class. Its only argument is of type
N VectorContent Raja, which is the pointer to the class.
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N VCopyToDevice Raja

Prototype realtype *N VCopyToDevice Raja(N Vector v)

Description This function copies host vector data to the device.

N VCopyFromDevice Raja

Prototype realtype *N VCopyFromDevice Raja(N Vector v)

Description This function copies vector data from the device to the host.

N VPrint Raja

Prototype void N VPrint Raja(N Vector v)

Description This function prints the content of a raja vector to stdout.

N VPrintFile Raja

Prototype void N VPrintFile Raja(N Vector v, FILE *outfile)

Description This function prints the content of a raja vector to outfile.

By default all fused and vector array operations are disabled in the nvector raja module. The
following additional user-callable routines are provided to enable or disable fused and vector array
operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Raja, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Raja will
have the default settings for the nvector raja module.

N VEnableFusedOps Raja

Prototype int N VEnableFusedOps Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the raja vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Raja

Prototype int N VEnableLinearCombination Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the raja vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Raja

Prototype int N VEnableScaleAddMulti Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the raja vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.
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N VEnableLinearSumVectorArray Raja

Prototype int N VEnableLinearSumVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the raja vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Raja

Prototype int N VEnableScaleVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the raja vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Raja

Prototype int N VEnableConstVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the raja vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Raja

Prototype int N VEnableScaleAddMultiVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the raja vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Raja

Prototype int N VEnableLinearCombinationVectorArray Raja(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the raja vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector Raja, v, it is recommeded to use
functions N VGetDeviceArrayPointer Raja or N VGetHostArrayPointer Raja.

• To maximize efficiency, vector operations in the nvector raja implementation that have more !

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.

7.10 The NVECTOR OPENMPDEV implementation

In situations where a user has access to a device such as a GPU for offloading computation, sundials
provides an nvector implementation using OpenMP device offloading, called nvector openmpdev.

The nvector openmpdev implementation defines the content field of the N Vector to be a
structure containing the length of the vector, a pointer to the beginning of a contiguous data array
on the host, a pointer to the beginning of a contiguous data array on the device, and a boolean flag
own data which specifies the ownership of host and device data arrays.
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struct _N_VectorContent_OpenMPDEV {

sunindextype length;

booleantype own_data;

realtype *host_data;

realtype *dev_data;

};

The header file to include when using this module is nvector openmpdev.h. The installed module
library to link to is libsundials nvecopenmpdev.lib where .lib is typically .so for shared libraries
and .a for static libraries.

7.10.1 NVECTOR OPENMPDEV accessor macros

The following macros are provided to access the content of an nvector openmpdev vector.

• NV CONTENT OMPDEV

This routine gives access to the contents of the nvector openmpdev vector N Vector.

The assignment v cont = NV CONTENT OMPDEV(v) sets v cont to be a pointer to the nvec-
tor openmpdev N Vector content structure.

Implementation:

#define NV_CONTENT_OMPDEV(v) ( (N_VectorContent_OpenMPDEV)(v->content) )

• NV OWN DATA OMPDEV, NV DATA HOST OMPDEV, NV DATA DEV OMPDEV, NV LENGTH OMPDEV

These macros give individual access to the parts of the content of an nvector openmpdev
N Vector.

The assignment v data = NV DATA HOST OMPDEV(v) sets v data to be a pointer to the first
component of the data on the host for the N Vector v. The assignment NV DATA HOST OMPDEV(v)

= v data sets the host component array of v to be v data by storing the pointer v data.

The assignment v dev data = NV DATA DEV OMPDEV(v) sets v dev data to be a pointer to the
first component of the data on the device for the N Vector v. The assignment NV DATA DEV OMPDEV(v)

= v dev data sets the device component array of v to be v dev data by storing the pointer
v dev data.

The assignment v len = NV LENGTH OMPDEV(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH OMPDEV(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->own_data )

#define NV_DATA_HOST_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->host_data )

#define NV_DATA_DEV_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->dev_data )

#define NV_LENGTH_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->length )

7.10.2 NVECTOR OPENMPDEV functions

The nvector openmpdev module defines OpenMP device offloading implementations of all vector
operations listed in Tables 7.2, 7.3, and 7.4, except for N VGetArrayPointer and N VSetArrayPointer.
As such, this vector cannot be used with the sundials Fortran interfaces, nor with the sundials direct
solvers and preconditioners. It also provides methods for copying from the host to the device and vice
versa.

The names of vector operations are obtained from those in Tables 7.2, 7.3, and 7.4 by appending
the suffix OpenMPDEV (e.g. N VDestroy OpenMPDEV). The module nvector openmpdev provides the
following additional user-callable routines:
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N VNew OpenMPDEV

Prototype N Vector N VNew OpenMPDEV(sunindextype vec length)

Description This function creates and allocates memory for an nvector openmpdev N Vector.

N VNewEmpty OpenMPDEV

Prototype N Vector N VNewEmpty OpenMPDEV(sunindextype vec length)

Description This function creates a new nvector openmpdev N Vector with an empty (NULL) host
and device data arrays.

N VMake OpenMPDEV

Prototype N Vector N VMake OpenMPDEV(sunindextype vec length, realtype *h vdata,

realtype *d vdata)

Description This function creates an nvector openmpdev vector with user-supplied vector data
arrays h vdata and d vdata. This function does not allocate memory for data itself.

N VCloneVectorArray OpenMPDEV

Prototype N Vector *N VCloneVectorArray OpenMPDEV(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector openmpdev vectors.

N VCloneVectorArrayEmpty OpenMPDEV

Prototype N Vector *N VCloneVectorArrayEmpty OpenMPDEV(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector openmpdev vectors,
each with an empty (NULL) data array.

N VDestroyVectorArray OpenMPDEV

Prototype void N VDestroyVectorArray OpenMPDEV(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray OpenMPDEV or with
N VCloneVectorArrayEmpty OpenMPDEV.

N VGetLength OpenMPDEV

Prototype sunindextype N VGetLength OpenMPDEV(N Vector v)

Description This function returns the number of vector elements.

N VGetHostArrayPointer OpenMPDEV

Prototype realtype *N VGetHostArrayPointer OpenMPDEV(N Vector v)

Description This function returns a pointer to the host data array.

N VGetDeviceArrayPointer OpenMPDEV

Prototype realtype *N VGetDeviceArrayPointer OpenMPDEV(N Vector v)

Description This function returns a pointer to the device data array.
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N VPrint OpenMPDEV

Prototype void N VPrint OpenMPDEV(N Vector v)

Description This function prints the content of an nvector openmpdev vector to stdout.

N VPrintFile OpenMPDEV

Prototype void N VPrintFile OpenMPDEV(N Vector v, FILE *outfile)

Description This function prints the content of an nvector openmpdev vector to outfile.

N VCopyToDevice OpenMPDEV

Prototype void N VCopyToDevice OpenMPDEV(N Vector v)

Description This function copies the content of an nvector openmpdev vector’s host data array
to the device data array.

N VCopyFromDevice OpenMPDEV

Prototype void N VCopyFromDevice OpenMPDEV(N Vector v)

Description This function copies the content of an nvector openmpdev vector’s device data array
to the host data array.

By default all fused and vector array operations are disabled in the nvector openmpdev module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew OpenMPDEV, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew OpenMPDEV

will have the default settings for the nvector openmpdev module.

N VEnableFusedOps OpenMPDEV

Prototype int N VEnableFusedOps OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the nvector openmpdev vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.

N VEnableLinearCombination OpenMPDEV

Prototype int N VEnableLinearCombination OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the nvector openmpdev vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N VEnableScaleAddMulti OpenMPDEV

Prototype int N VEnableScaleAddMulti OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the nvector openmpdev vector. The return value
is 0 for success and -1 if the input vector or its ops structure are NULL.
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N VEnableDotProdMulti OpenMPDEV

Prototype int N VEnableDotProdMulti OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the nvector openmpdev vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N VEnableLinearSumVectorArray OpenMPDEV

Prototype int N VEnableLinearSumVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the nvector openmpdev vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableScaleVectorArray OpenMPDEV

Prototype int N VEnableScaleVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the nvector openmpdev vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableConstVectorArray OpenMPDEV

Prototype int N VEnableConstVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the nvector openmpdev vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableWrmsNormVectorArray OpenMPDEV

Prototype int N VEnableWrmsNormVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the nvector openmpdev vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray OpenMPDEV

Prototype int N VEnableWrmsNormMaskVectorArray OpenMPDEV(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the nvector openmpdev vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray OpenMPDEV

Prototype int N VEnableScaleAddMultiVectorArray OpenMPDEV(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the nvector openmpdev vector. The return
value is 0 for success and -1 if the input vector or its ops structure are NULL.
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N VEnableLinearCombinationVectorArray OpenMPDEV

Prototype int N VEnableLinearCombinationVectorArray OpenMPDEV(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the nvector openmpdev vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is most efficient to first obtain the
component array via h data = NV DATA HOST OMPDEV(v) for the host array or
d data = NV DATA DEV OMPDEV(v) for the device array and then access h data[i] or d data[i]

within the loop.

• When accessing individual components of an N Vector v on the host remember to first copy the
array back from the device with N VCopyFromDevice OpenMPDEV(v) to ensure the array is up
to date.

• N VNewEmpty OpenMPDEV, N VMake OpenMPDEV, and N VCloneVectorArrayEmpty OpenMPDEV set!

the field own data = SUNFALSE. N VDestroy OpenMPDEV and N VDestroyVectorArray OpenMPDEV

will not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In
such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector openmpdev implementation that!

have more than one N Vector argument do not check for consistent internal representation of
these vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

7.11 The NVECTOR TRILINOS implementation

The nvector trilinos module is an nvector wrapper around the Trilinos Tpetra vector. The
interface to Tpetra is implemented in the Sundials::TpetraVectorInterface class. This class
simply stores a reference counting pointer to a Tpetra vector and inherits from an empty structure

struct _N_VectorContent_Trilinos {};

to interface the C++ class with the nvector C code. A pointer to an instance of this class is kept in
the content field of the N Vector object, to ensure that the Tpetra vector is not deleted for as long
as the N Vector object exists.

The Tpetra vector type in the Sundials::TpetraVectorInterface class is defined as:

typedef Tpetra::Vector<realtype, sunindextype, sunindextype> vector_type;

The Tpetra vector will use the sundials-specified realtype as its scalar type, and it will use
sunindextype as the global and the local ordinal types. This type definition will use Tpetra’s default
node type. Available Kokkos node types in Trilinos 12.14 release are serial (single thread), OpenMP,
Pthread, and cuda. The default node type is selected when building the Kokkos package. For exam-
ple, the Tpetra vector will use a cuda node if Tpetra was built with cuda support and the cuda
node was selected as the default when Tpetra was built.

The header file to include when using this module is nvector trilinos.h. The installed module
library to link to is libsundials nvectrilinos.lib where .lib is typically .so for shared libraries
and .a for static libraries.

The nvector trilinos module defines implementations of all vector operations listed in Table
7.2, except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used
with sundials Fortran interfaces, nor with the sundials direct solvers and preconditioners. When

https://github.com/trilinos/Trilinos
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access to raw vector data is needed, it is recommended to extract the Trilinos Tpetra vector first,
and then use Tpetra vector methods to access the data. Usage examples of nvector trilinos are
provided in example programs for ida [28].

The names of vector operations are obtained from those in Table 7.2 by appending the suffix
Trilinos (e.g. N VDestroy Trilinos). Vector operations call existing Tpetra::Vector methods

when available. Vector operations specific to sundials are implemented as standalone functions in
the namespace Sundials::TpetraVector, located in the file SundialsTpetraVectorKernels.hpp.
The module nvector trilinos provides the following additional user-callable functions:

• N VGetVector Trilinos

This C++ function takes an N Vector as the argument and returns a reference counting pointer
to the underlying Tpetra vector. This is a standalone function defined in the global namespace.

Teuchos::RCP<vector_type> N_VGetVector_Trilinos(N_Vector v);

• N VMake Trilinos

This C++ function creates and allocates memory for an nvector trilinos wrapper around a
user-provided Tpetra vector. This is a standalone function defined in the global namespace.

N_Vector N_VMake_Trilinos(Teuchos::RCP<vector_type> v);

Notes

• The template parameter vector type should be set as:
typedef Sundials::TpetraVectorInterface::vector_type vector_type

This will ensure that data types used in Tpetra vector match those in sundials.

• When there is a need to access components of an N Vector Trilinos, v, it is recommeded
to extract the Trilinos vector object via x vec = N VGetVector Trilinos(v) and then access
components using the appropriate Trilinos functions.

• The functions N VDestroy Trilinos and N VDestroyVectorArray Trilinos only delete the
N Vector wrapper. The underlying Tpetra vector object will exist for as long as there is at least
one reference to it.

7.12 NVECTOR Examples

There are NVector examples that may be installed for the implementations provided with sundials.
Each implementation makes use of the functions in test nvector.c. These example functions show
simple usage of the NVector family of functions. The input to the examples are the vector length,
number of threads (if threaded implementation), and a print timing flag.
The following is a list of the example functions in test nvector.c:

• Test N VClone: Creates clone of vector and checks validity of clone.

• Test N VCloneEmpty: Creates clone of empty vector and checks validity of clone.

• Test N VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

• Test N VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned
array.

• Test N VGetArrayPointer: Get array pointer.

• Test N VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check
values.
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• Test N VLinearSum Case 1a: Test y = x + y

• Test N VLinearSum Case 1b: Test y = -x + y

• Test N VLinearSum Case 1c: Test y = ax + y

• Test N VLinearSum Case 2a: Test x = x + y

• Test N VLinearSum Case 2b: Test x = x - y

• Test N VLinearSum Case 2c: Test x = x + by

• Test N VLinearSum Case 3: Test z = x + y

• Test N VLinearSum Case 4a: Test z = x - y

• Test N VLinearSum Case 4b: Test z = -x + y

• Test N VLinearSum Case 5a: Test z = x + by

• Test N VLinearSum Case 5b: Test z = ax + y

• Test N VLinearSum Case 6a: Test z = -x + by

• Test N VLinearSum Case 6b: Test z = ax - y

• Test N VLinearSum Case 7: Test z = a(x + y)

• Test N VLinearSum Case 8: Test z = a(x - y)

• Test N VLinearSum Case 9: Test z = ax + by

• Test N VConst: Fill vector with constant and check result.

• Test N VProd: Test vector multiply: z = x * y

• Test N VDiv: Test vector division: z = x / y

• Test N VScale: Case 1: scale: x = cx

• Test N VScale: Case 2: copy: z = x

• Test N VScale: Case 3: negate: z = -x

• Test N VScale: Case 4: combination: z = cx

• Test N VAbs: Create absolute value of vector.

• Test N VAddConst: add constant vector: z = c + x

• Test N VDotProd: Calculate dot product of two vectors.

• Test N VMaxNorm: Create vector with known values, find and validate the max norm.

• Test N VWrmsNorm: Create vector of known values, find and validate the weighted root mean
square.

• Test N VWrmsNormMask: Create vector of known values, find and validate the weighted root
mean square using all elements except one.

• Test N VMin: Create vector, find and validate the min.

• Test N VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

• Test N VL1Norm: Create vector, find and validate the L1 norm.
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• Test N VCompare: Compare vector with constant returning and validating comparison vector.

• Test N VInvTest: Test z[i] = 1 / x[i]

• Test N VConstrMask: Test mask of vector x with vector c.

• Test N VMinQuotient: Fill two vectors with known values. Calculate and validate minimum
quotient.

• Test N VLinearCombination Case 1a: Test x = a x

• Test N VLinearCombination Case 1b: Test z = a x

• Test N VLinearCombination Case 2a: Test x = a x + b y

• Test N VLinearCombination Case 2b: Test z = a x + b y

• Test N VLinearCombination Case 3a: Test x = x + a y + b z

• Test N VLinearCombination Case 3b: Test x = a x + b y + c z

• Test N VLinearCombination Case 3c: Test w = a x + b y + c z

• Test N VScaleAddMulti Case 1a: y = a x + y

• Test N VScaleAddMulti Case 1b: z = a x + y

• Test N VScaleAddMulti Case 2a: Y[i] = c[i] x + Y[i], i = 1,2,3

• Test N VScaleAddMulti Case 2b: Z[i] = c[i] x + Y[i], i = 1,2,3

• Test N VDotProdMulti Case 1: Calculate the dot product of two vectors

• Test N VDotProdMulti Case 2: Calculate the dot product of one vector with three other vectors
in a vector array.

• Test N VLinearSumVectorArray Case 1: z = a x + b y

• Test N VLinearSumVectorArray Case 2a: Z[i] = a X[i] + b Y[i]

• Test N VLinearSumVectorArray Case 2b: X[i] = a X[i] + b Y[i]

• Test N VLinearSumVectorArray Case 2c: Y[i] = a X[i] + b Y[i]

• Test N VScaleVectorArray Case 1a: y = c y

• Test N VScaleVectorArray Case 1b: z = c y

• Test N VScaleVectorArray Case 2a: Y[i] = c[i] Y[i]

• Test N VScaleVectorArray Case 2b: Z[i] = c[i] Y[i]

• Test N VScaleVectorArray Case 1a: z = c

• Test N VScaleVectorArray Case 1b: Z[i] = c

• Test N VWrmsNormVectorArray Case 1a: Create a vector of know values, find and validate the
weighted root mean square norm.

• Test N VWrmsNormVectorArray Case 1b: Create a vector array of three vectors of know values,
find and validate the weighted root mean square norm of each.

• Test N VWrmsNormMaskVectorArray Case 1a: Create a vector of know values, find and validate
the weighted root mean square norm using all elements except one.
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• Test N VWrmsNormMaskVectorArray Case 1b: Create a vector array of three vectors of know
values, find and validate the weighted root mean square norm of each using all elements except
one.

• Test N VScaleAddMultiVectorArray Case 1a: y = a x + y

• Test N VScaleAddMultiVectorArray Case 1b: z = a x + y

• Test N VScaleAddMultiVectorArray Case 2a: Y[j][0] = a[j] X[0] + Y[j][0]

• Test N VScaleAddMultiVectorArray Case 2b: Z[j][0] = a[j] X[0] + Y[j][0]

• Test N VScaleAddMultiVectorArray Case 3a: Y[0][i] = a[0] X[i] + Y[0][i]

• Test N VScaleAddMultiVectorArray Case 3b: Z[0][i] = a[0] X[i] + Y[0][i]

• Test N VScaleAddMultiVectorArray Case 4a: Y[j][i] = a[j] X[i] + Y[j][i]

• Test N VScaleAddMultiVectorArray Case 4b: Z[j][i] = a[j] X[i] + Y[j][i]

• Test N VLinearCombinationVectorArray Case 1a: x = a x

• Test N VLinearCombinationVectorArray Case 1b: z = a x

• Test N VLinearCombinationVectorArray Case 2a: x = a x + b y

• Test N VLinearCombinationVectorArray Case 2b: z = a x + b y

• Test N VLinearCombinationVectorArray Case 3a: x = a x + b y + c z

• Test N VLinearCombinationVectorArray Case 3b: w = a x + b y + c z

• Test N VLinearCombinationVectorArray Case 4a: X[0][i] = c[0] X[0][i]

• Test N VLinearCombinationVectorArray Case 4b: Z[i] = c[0] X[0][i]

• Test N VLinearCombinationVectorArray Case 5a: X[0][i] = c[0] X[0][i] + c[1] X[1][i]

• Test N VLinearCombinationVectorArray Case 5b: Z[i] = c[0] X[0][i] + c[1] X[1][i]

• Test N VLinearCombinationVectorArray Case 6a: X[0][i] = X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test N VLinearCombinationVectorArray Case 6b: X[0][i] = c[0] X[0][i] + c[1] X[1][i] + c[2]
X[2][i]

• Test N VLinearCombinationVectorArray Case 6c: Z[i] = c[0] X[0][i] + c[1] X[1][i] + c[2] X[2][i]
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Table 7.5: List of vector functions usage by cvodes code modules
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N VGetVectorID

N VClone X X X X
N VCloneEmpty 1

N VDestroy X X X X
N VCloneVectorArray X X

N VDestroyVectorArray X X
N VSpace X 2

N VGetArrayPointer 1 X X
N VSetArrayPointer 1

N VLinearSum X X X X
N VConst X X
N VProd X X
N VDiv X X

N VScale X X X X X X
N VAbs X
N VInv X X

N VAddConst X X
N VDotProd X
N VMaxNorm X
N VWrmsNorm X X X X

N VMin X
N MinQuotient X
N VConstrMask X

N VCompare X X
N VInvTest X

N VLinearCombination X
N VScaleAddMulti X
N VDotProdMulti 3 3

N VLinearSumVectorArray X
N VScaleVectorArray X
N VConstVectorArray X

N VWrmsNormVectorArray X
N VScaleAddMultiVectorArray X

N VLinearCombinationVectorArray X





Chapter 8

Description of the SUNMatrix
module

For problems that involve direct methods for solving linear systems, the sundials solvers not only op-
erate on generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations
defined by the particular sunmatrix implementation. Users can provide their own specific imple-
mentation of the sunmatrix module, particularly in cases where they provide their own nvector
and/or linear solver modules, and require matrices that are compatible with those implementations.
Alternately, we provide three sunmatrix implementations: dense, banded, and sparse. The generic
operations are described below, and descriptions of the implementations provided with sundials
follow.

The generic SUNMatrix type has been modeled after the object-oriented style of the generic
N Vector type. Specifically, a generic SUNMatrix is a pointer to a structure that has an implementation-
dependent content field containing the description and actual data of the matrix, and an ops field
pointing to a structure with generic matrix operations. The type SUNMatrix is defined as

typedef struct _generic_SUNMatrix *SUNMatrix;

struct _generic_SUNMatrix {

void *content;

struct _generic_SUNMatrix_Ops *ops;

};

The generic SUNMatrix Ops structure is essentially a list of pointers to the various actual matrix
operations, and is defined as

struct _generic_SUNMatrix_Ops {

SUNMatrix_ID (*getid)(SUNMatrix);

SUNMatrix (*clone)(SUNMatrix);

void (*destroy)(SUNMatrix);

int (*zero)(SUNMatrix);

int (*copy)(SUNMatrix, SUNMatrix);

int (*scaleadd)(realtype, SUNMatrix, SUNMatrix);

int (*scaleaddi)(realtype, SUNMatrix);

int (*matvec)(SUNMatrix, N_Vector, N_Vector);

int (*space)(SUNMatrix, long int*, long int*);

};

The generic sunmatrix module defines and implements the matrix operations acting on SUNMatrix

objects. These routines are nothing but wrappers for the matrix operations defined by a particular
sunmatrix implementation, which are accessed through the ops field of the SUNMatrix structure. To
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Table 8.1: Identifiers associated with matrix kernels supplied with sundials.

Matrix ID Matrix type ID Value
SUNMATRIX DENSE Dense M× N matrix 0
SUNMATRIX BAND Band M× M matrix 1
SUNMATRIX SPARSE Sparse (CSR or CSC) M× N matrix 2
SUNMATRIX CUSTOM User-provided custom matrix 3

illustrate this point we show below the implementation of a typical matrix operation from the generic
sunmatrix module, namely SUNMatZero, which sets all values of a matrix A to zero, returning a flag
denoting a successful/failed operation:

int SUNMatZero(SUNMatrix A)

{

return((int) A->ops->zero(A));

}

Table 8.2 contains a complete list of all matrix operations defined by the generic sunmatrix module.
A particular implementation of the sunmatrix module must:

• Specify the content field of the SUNMatrix object.

• Define and implement a minimal subset of the matrix operations. See the documentation for
each sundials solver to determine which sunmatrix operations they require.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one sunmatrix module (each with different SUNMatrix internal data
representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNMatrix with the new content field and with ops pointing to the new matrix operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
SUNMatrix (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros or functions as needed for that particular implementation
to access different parts of the content field of the newly defined SUNMatrix.

Each sunmatrix implementation included in sundials has a unique identifier specified in enu-
meration and shown in Table 8.1. It is recommended that a user-supplied sunmatrix implementation
use the SUNMATRIX CUSTOM identifier.

Table 8.2: Description of the SUNMatrix operations

Name Usage and Description

SUNMatGetID id = SUNMatGetID(A);

Returns the type identifier for the matrix A. It is used to determine the ma-
trix implementation type (e.g. dense, banded, sparse,. . . ) from the abstract
SUNMatrix interface. This is used to assess compatibility with sundials-
provided linear solver implementations. Returned values are given in the
Table 8.1.

continued on next page
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Name Usage and Description

SUNMatClone B = SUNMatClone(A);

Creates a new SUNMatrix of the same type as an existing matrix A and sets
the ops field. It does not copy the matrix, but rather allocates storage for
the new matrix.

SUNMatDestroy SUNMatDestroy(A);

Destroys the SUNMatrix A and frees memory allocated for its internal data.

SUNMatSpace ier = SUNMatSpace(A, &lrw, &liw);

Returns the storage requirements for the matrix A. lrw is a long int con-
taining the number of realtype words and liw is a long int containing
the number of integer words. The return value is an integer flag denoting
success/failure of the operation.
This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied sunmatrix
module if that information is not of interest.

SUNMatZero ier = SUNMatZero(A);

Performs the operation Aij = 0 for all entries of the matrix A. The return
value is an integer flag denoting success/failure of the operation.

SUNMatCopy ier = SUNMatCopy(A,B);

Performs the operation Bij = Ai,j for all entries of the matrices A and B.
The return value is an integer flag denoting success/failure of the operation.

SUNMatScaleAdd ier = SUNMatScaleAdd(c, A, B);

Performs the operation A = cA + B. The return value is an integer flag
denoting success/failure of the operation.

SUNMatScaleAddI ier = SUNMatScaleAddI(c, A);

Performs the operation A = cA + I. The return value is an integer flag
denoting success/failure of the operation.

SUNMatMatvec ier = SUNMatMatvec(A, x, y);

Performs the matrix-vector product operation, y = Ax. It should only be
called with vectors x and y that are compatible with the matrix A – both in
storage type and dimensions. The return value is an integer flag denoting
success/failure of the operation.

We note that not all sunmatrix types are compatible with all nvector types provided with
sundials. This is primarily due to the need for compatibility within the SUNMatMatvec routine;
however, compatibility between sunmatrix and nvector implementations is more crucial when
considering their interaction within sunlinsol objects, as will be described in more detail in Chapter
9. More specifically, in Table 8.3 we show the matrix interfaces available as sunmatrix modules, and
the compatible vector implementations.

Table 8.3: sundials matrix interfaces and vector implementations that can be used for each.

Matrix
Interface

Serial Parallel
(MPI)

OpenMP pThreads hypre
Vec.

petsc
Vec.

cuda raja User
Suppl.

Dense X X X X

continued on next page
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Matrix
Interface

Serial Parallel
(MPI)

OpenMP pThreads hypre
Vec.

petsc
Vec.

cuda raja User
Suppl.

Band X X X X

Sparse X X X X

User supplied X X X X X X X X X

8.1 SUNMatrix functions used by CVODES

In Table 8.4, we list the matrix functions in the sunmatrix module used within the cvodes package.
The table also shows, for each function, which of the code modules uses the function. The main
cvodes integrator does not call any sunmatrix functions directly, so the table columns are specific
to the cvls interface and the cvbandpre and cvbbdpre preconditioner modules. We further note
that the cvls interface only utilizes these routines when supplied with a matrix-based linear solver,
i.e., the sunmatrix object passed to CVodeSetLinearSolver was not NULL.

At this point, we should emphasize that the cvodes user does not need to know anything about
the usage of matrix functions by the cvodes code modules in order to use cvodes. The information
is presented as an implementation detail for the interested reader.

Table 8.4: List of matrix functions usage by cvodes code modules
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SUNMatGetID X
SUNMatClone X

SUNMatDestroy X X X
SUNMatZero X X X
SUNMatCopy X X X

SUNMatScaleAddI X X X
SUNMatSpace † † †

The matrix functions listed in Table 8.2 with a † symbol are optionally used, in that these are
only called if they are implemented in the sunmatrix module that is being used (i.e. their function
pointers are non-NULL). The matrix functions listed in Table 8.2 that are not used by cvodes are:
SUNMatScaleAdd and SUNMatMatvec. Therefore a user-supplied sunmatrix module for cvodes could
omit these functions.

We note that the cvbandpre and cvbbdpre preconditioner modules are hard-coded to use the
sundials-supplied band sunmatrix type, so the most useful information above for user-supplied
sunmatrix implementations is the column relating the cvls requirements.

8.2 The SUNMatrix Dense implementation

The dense implementation of the sunmatrix module provided with sundials, sunmatrix dense,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Dense {

sunindextype M;

sunindextype N;

realtype *data;
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sunindextype ldata;

realtype **cols;

};

These entries of the content field contain the following information:
M - number of rows

N - number of columns

data - pointer to a contiguous block of realtype variables. The elements of the dense matrix are
stored columnwise, i.e. the (i,j)-th element of a dense sunmatrix A (with 0 ≤ i < M and 0 ≤
j < N) may be accessed via data[j*M+i].

ldata - length of the data array (= M·N).

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the
array data. The (i,j)-th element of a dense sunmatrix A (with 0 ≤ i < M and 0 ≤ j < N)
may be accessed via cols[j][i].

The header file to include when using this module is sunmatrix/sunmatrix dense.h. The sunma-
trix dense module is accessible from all sundials solvers without linking to the
libsundials sunmatrixdense module library.

8.2.1 SUNMatrix Dense accessor macros

The following macros are provided to access the content of a sunmatrix dense matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix D

denotes that these are specific to the dense version.

• SM CONTENT D

This macro gives access to the contents of the dense SUNMatrix.

The assignment A cont = SM CONTENT D(A) sets A cont to be a pointer to the dense SUNMatrix

content structure.

Implementation:

#define SM_CONTENT_D(A) ( (SUNMatrixContent_Dense)(A->content) )

• SM ROWS D, SM COLUMNS D, and SM LDATA D

These macros give individual access to various lengths relevant to the content of a dense
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows

= SM ROWS D(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS D(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_D(A) ( SM_CONTENT_D(A)->M )

#define SM_COLUMNS_D(A) ( SM_CONTENT_D(A)->N )

#define SM_LDATA_D(A) ( SM_CONTENT_D(A)->ldata )

• SM DATA D and SM COLS D

These macros give access to the data and cols pointers for the matrix entries.

The assignment A data = SM DATA D(A) sets A data to be a pointer to the first component of
the data array for the dense SUNMatrix A. The assignment SM DATA D(A) = A data sets the data
array of A to be A data by storing the pointer A data.

Similarly, the assignment A cols = SM COLS D(A) sets A cols to be a pointer to the array of
column pointers for the dense SUNMatrix A. The assignment SM COLS D(A) = A cols sets the
column pointer array of A to be A cols by storing the pointer A cols.
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Implementation:

#define SM_DATA_D(A) ( SM_CONTENT_D(A)->data )

#define SM_COLS_D(A) ( SM_CONTENT_D(A)->cols )

• SM COLUMN D and SM ELEMENT D

These macros give access to the individual columns and entries of the data array of a dense
SUNMatrix.

The assignment col j = SM COLUMN D(A,j) sets col j to be a pointer to the first entry of
the j-th column of the M × N dense matrix A (with 0 ≤ j < N). The type of the expression
SM COLUMN D(A,j) is realtype *. The pointer returned by the call SM COLUMN D(A,j) can be
treated as an array which is indexed from 0 to M− 1.

The assignments SM ELEMENT D(A,i,j) = a ij and a ij = SM ELEMENT D(A,i,j) reference the
(i,j)-th element of the M× N dense matrix A (with 0 ≤ i < M and 0 ≤ j < N).

Implementation:

#define SM_COLUMN_D(A,j) ( (SM_CONTENT_D(A)->cols)[j] )

#define SM_ELEMENT_D(A,i,j) ( (SM_CONTENT_D(A)->cols)[j][i] )

8.2.2 SUNMatrix Dense functions

The sunmatrix dense module defines dense implementations of all matrix operations listed in Ta-
ble 8.2. Their names are obtained from those in Table 8.2 by appending the suffix Dense (e.g.
SUNMatCopy Dense). All the standard matrix operations listed in 8.2 with the suffix Dense appended
are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g. FSUNMatCopy Dense).

The module sunmatrix dense provides the following additional user-callable routines:

SUNDenseMatrix

Prototype SUNMatrix SUNDenseMatrix(sunindextype M, sunindextype N)

Description This constructor function creates and allocates memory for a dense SUNMatrix. Its
arguments are the number of rows, M, and columns, N, for the dense matrix.

F2003 Name This function is callable as FSUNDenseMatrix when using the Fortran 2003 interface
module.

SUNDenseMatrix Print

Prototype void SUNDenseMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a dense SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.

SUNDenseMatrix Rows

Prototype sunindextype SUNDenseMatrix Rows(SUNMatrix A)

Description This function returns the number of rows in the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix Rows when using the Fortran 2003 inter-
face module.
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SUNDenseMatrix Columns

Prototype sunindextype SUNDenseMatrix Columns(SUNMatrix A)

Description This function returns the number of columns in the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix Columns when using the Fortran 2003
interface module.

SUNDenseMatrix LData

Prototype sunindextype SUNDenseMatrix LData(SUNMatrix A)

Description This function returns the length of the data array for the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix LData when using the Fortran 2003 inter-
face module.

SUNDenseMatrix Data

Prototype realtype* SUNDenseMatrix Data(SUNMatrix A)

Description This function returns a pointer to the data array for the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix Data when using the Fortran 2003 inter-
face module.

SUNDenseMatrix Cols

Prototype realtype** SUNDenseMatrix Cols(SUNMatrix A)

Description This function returns a pointer to the cols array for the dense SUNMatrix.

SUNDenseMatrix Column

Prototype realtype* SUNDenseMatrix Column(SUNMatrix A, sunindextype j)

Description This function returns a pointer to the first entry of the jth column of the dense SUNMatrix.
The resulting pointer should be indexed over the range 0 to M− 1.

F2003 Name This function is callable as FSUNDenseMatrix Column when using the Fortran 2003 in-
terface module.

Notes

• When looping over the components of a dense SUNMatrix A, the most efficient approaches are
to:

– First obtain the component array via A data = SM DATA D(A) or
A data = SUNDenseMatrix Data(A) and then access A data[i] within the loop.

– First obtain the array of column pointers via A cols = SM COLS D(A) or
A cols = SUNDenseMatrix Cols(A), and then access A cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via
A colj = SUNDenseMatrix Column(A,j) and then to access the entries within that column
using A colj[i] within the loop.

All three of these are more efficient than using SM ELEMENT D(A,i,j) within a double loop.

• Within the SUNMatMatvec Dense routine, internal consistency checks are performed to ensure !

that the matrix is called with consistent nvector implementations. These are currently limited
to: nvector serial, nvector openmp, and nvector pthreads. As additional compatible
vector implementations are added to sundials, these will be included within this compatibility
check.
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8.2.3 SUNMatrix Dense Fortran interfaces

The sunmatrix dense module provides a Fortran 2003 module as well as Fortran 77 style inter-
face functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunmatrix dense mod Fortran module defines interfaces to most sunmatrix dense C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNDenseMatrix is
interfaced as FSUNDenseMatrix.

The Fortran 2003 sunmatrix dense interface module can be accessed with the use statement,
i.e. use fsunmatrix dense mod, and linking to the library libsundials fsunmatrixdense mod.lib in
addition to the C library. For details on where the library and module file fsunmatrix dense mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunmatrixdense mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the sunmatrix dense module also includes the
Fortran-callable function FSUNDenseMatInit(code, M, N, ier) to initialize this sunmatrix dense
module for a given sundials solver. Here code is an integer input solver id (1 for cvode, 2 for ida,
3 for kinsol, 4 for arkode); M and N are the corresponding dense matrix construction arguments
(declared to match C type long int); and ier is an error return flag equal to 0 for success and -1
for failure. Both code and ier are declared to match C type int. Additionally, when using arkode
with a non-identity mass matrix, the Fortran-callable function FSUNDenseMassMatInit(M, N, ier)

initializes this sunmatrix dense module for storing the mass matrix.

8.3 The SUNMatrix Band implementation

The banded implementation of the sunmatrix module provided with sundials, sunmatrix band,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Band {

sunindextype M;

sunindextype N;

sunindextype mu;

sunindextype ml;

sunindextype s_mu;

sunindextype ldim;

realtype *data;

sunindextype ldata;

realtype **cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Figure 8.1. A more
complete description of the parts of this content field is given below:

M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 ≤ mu < N

ml - lower half-bandwidth, 0 ≤ ml < N
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s mu - storage upper bandwidth, mu ≤ s mu < N. The LU decomposition routines in the associated
sunlinsol band and sunlinsol lapackband modules write the LU factors into the storage
for A. The upper triangular factor U, however, may have an upper bandwidth as big as min(N-
1,mu+ml) because of partial pivoting. The s mu field holds the upper half-bandwidth allocated
for A.

ldim - leading dimension (ldim ≥ s mu+ml+1)

data - pointer to a contiguous block of realtype variables. The elements of the banded matrix are
stored columnwise (i.e. columns are stored one on top of the other in memory). Only elements
within the specified half-bandwidths are stored. data is a pointer to ldata contiguous locations
which hold the elements within the band of A.

ldata - length of the data array (= ldim·N)

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the
j-th column. This pointer may be treated as an array indexed from s mu−mu (to access the
uppermost element within the band in the j-th column) to s mu+ml (to access the lowest
element within the band in the j-th column). Indices from 0 to s mu−mu−1 give access to extra
storage elements required by the LU decomposition function. Finally, cols[j][i-j+s mu] is
the (i, j)-th element with j−mu ≤ i ≤ j+ml.

The header file to include when using this module is sunmatrix/sunmatrix band.h. The sunma-
trix band module is accessible from all sundials solvers without linking to the
libsundials sunmatrixband module library.

8.3.1 SUNMatrix Band accessor macros

The following macros are provided to access the content of a sunmatrix band matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix B

denotes that these are specific to the banded version.

• SM CONTENT B

This routine gives access to the contents of the banded SUNMatrix.

The assignment A cont = SM CONTENT B(A) sets A cont to be a pointer to the banded SUNMatrix

content structure.

Implementation:

#define SM_CONTENT_B(A) ( (SUNMatrixContent_Band)(A->content) )

• SM ROWS B, SM COLUMNS B, SM UBAND B, SM LBAND B, SM SUBAND B, SM LDIM B, and SM LDATA B

These macros give individual access to various lengths relevant to the content of a banded
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows

= SM ROWS B(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS B(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_B(A) ( SM_CONTENT_B(A)->M )

#define SM_COLUMNS_B(A) ( SM_CONTENT_B(A)->N )

#define SM_UBAND_B(A) ( SM_CONTENT_B(A)->mu )

#define SM_LBAND_B(A) ( SM_CONTENT_B(A)->ml )

#define SM_SUBAND_B(A) ( SM_CONTENT_B(A)->s_mu )

#define SM_LDIM_B(A) ( SM_CONTENT_B(A)->ldim )

#define SM_LDATA_B(A) ( SM_CONTENT_B(A)->ldata )
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size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

A

Figure 8.1: Diagram of the storage for the sunmatrix band module. Here A is an N × N band
matrix with upper and lower half-bandwidths mu and ml, respectively. The rows and columns of A are
numbered from 0 to N − 1 and the (i, j)-th element of A is denoted A(i,j). The greyed out areas of
the underlying component storage are used by the associated sunlinsol band linear solver.
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• SM DATA B and SM COLS B

These macros give access to the data and cols pointers for the matrix entries.

The assignment A data = SM DATA B(A) sets A data to be a pointer to the first component of
the data array for the banded SUNMatrix A. The assignment SM DATA B(A) = A data sets the
data array of A to be A data by storing the pointer A data.

Similarly, the assignment A cols = SM COLS B(A) sets A cols to be a pointer to the array of
column pointers for the banded SUNMatrix A. The assignment SM COLS B(A) = A cols sets the
column pointer array of A to be A cols by storing the pointer A cols.

Implementation:

#define SM_DATA_B(A) ( SM_CONTENT_B(A)->data )

#define SM_COLS_B(A) ( SM_CONTENT_B(A)->cols )

• SM COLUMN B, SM COLUMN ELEMENT B, and SM ELEMENT B

These macros give access to the individual columns and entries of the data array of a banded
SUNMatrix.

The assignments SM ELEMENT B(A,i,j) = a ij and a ij = SM ELEMENT B(A,i,j) reference the
(i,j)-th element of the N× N band matrix A, where 0 ≤ i, j ≤ N− 1. The location (i,j) should
further satisfy j−mu ≤ i ≤ j+ml.

The assignment col j = SM COLUMN B(A,j) sets col j to be a pointer to the diagonal element
of the j-th column of the N × N band matrix A, 0 ≤ j ≤ N − 1. The type of the expression
SM COLUMN B(A,j) is realtype *. The pointer returned by the call SM COLUMN B(A,j) can be
treated as an array which is indexed from −mu to ml.

The assignments SM COLUMN ELEMENT B(col j,i,j) = a ij and
a ij = SM COLUMN ELEMENT B(col j,i,j) reference the (i,j)-th entry of the band matrix A

when used in conjunction with SM COLUMN B to reference the j-th column through col j. The
index (i,j) should satisfy j−mu ≤ i ≤ j+ml.

Implementation:

#define SM_COLUMN_B(A,j) ( ((SM_CONTENT_B(A)->cols)[j])+SM_SUBAND_B(A) )

#define SM_COLUMN_ELEMENT_B(col_j,i,j) (col_j[(i)-(j)])

#define SM_ELEMENT_B(A,i,j)

( (SM_CONTENT_B(A)->cols)[j][(i)-(j)+SM_SUBAND_B(A)] )

8.3.2 SUNMatrix Band functions

The sunmatrix band module defines banded implementations of all matrix operations listed in
Table 8.2. Their names are obtained from those in Table 8.2 by appending the suffix Band (e.g.
SUNMatCopy Band). All the standard matrix operations listed in 8.2 with the suffix Band appended
are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g. FSUNMatCopy Band).

The module sunmatrix band provides the following additional user-callable routines:

SUNBandMatrix

Prototype SUNMatrix SUNBandMatrix(sunindextype N, sunindextype mu, sunindextype ml)

Description This constructor function creates and allocates memory for a banded SUNMatrix. Its
arguments are the matrix size, N, and the upper and lower half-bandwidths of the matrix,
mu and ml. The stored upper bandwidth is set to mu+ml to accommodate subsequent
factorization in the sunlinsol band and sunlinsol lapackband modules.

F2003 Name This function is callable as FSUNBandMatrix when using the Fortran 2003 interface
module.
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SUNBandMatrixStorage

Prototype SUNMatrix SUNBandMatrixStorage(sunindextype N, sunindextype mu,

sunindextype ml, sunindextype smu)

Description This constructor function creates and allocates memory for a banded SUNMatrix. Its
arguments are the matrix size, N, the upper and lower half-bandwidths of the matrix,
mu and ml, and the stored upper bandwidth, smu. When creating a band SUNMatrix,
this value should be

• at least min(N-1,mu+ml) if the matrix will be used by the sunlinsol band module;

• exactly equal to mu+ml if the matrix will be used by the sunlinsol lapackband
module;

• at least mu if used in some other manner.

Note: it is strongly recommended that users call the default constructor, SUNBandMatrix,
in all standard use cases. This advanced constructor is used internally within sundials
solvers, and is provided to users who require banded matrices for non-default purposes.

SUNBandMatrix Print

Prototype void SUNBandMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a banded SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.

SUNBandMatrix Rows

Prototype sunindextype SUNBandMatrix Rows(SUNMatrix A)

Description This function returns the number of rows in the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix Rows when using the Fortran 2003 interface
module.

SUNBandMatrix Columns

Prototype sunindextype SUNBandMatrix Columns(SUNMatrix A)

Description This function returns the number of columns in the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix Columns when using the Fortran 2003 in-
terface module.

SUNBandMatrix LowerBandwidth

Prototype sunindextype SUNBandMatrix LowerBandwidth(SUNMatrix A)

Description This function returns the lower half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix LowerBandwidth when using the Fortran
2003 interface module.

SUNBandMatrix UpperBandwidth

Prototype sunindextype SUNBandMatrix UpperBandwidth(SUNMatrix A)

Description This function returns the upper half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix UpperBandwidth when using the Fortran
2003 interface module.
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SUNBandMatrix StoredUpperBandwidth

Prototype sunindextype SUNBandMatrix StoredUpperBandwidth(SUNMatrix A)

Description This function returns the stored upper half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix StoredUpperBandwidth when using the
Fortran 2003 interface module.

SUNBandMatrix LDim

Prototype sunindextype SUNBandMatrix LDim(SUNMatrix A)

Description This function returns the length of the leading dimension of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix LDim when using the Fortran 2003 interface
module.

SUNBandMatrix Data

Prototype realtype* SUNBandMatrix Data(SUNMatrix A)

Description This function returns a pointer to the data array for the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix Data when using the Fortran 2003 interface
module.

SUNBandMatrix Cols

Prototype realtype** SUNBandMatrix Cols(SUNMatrix A)

Description This function returns a pointer to the cols array for the banded SUNMatrix.

SUNBandMatrix Column

Prototype realtype* SUNBandMatrix Column(SUNMatrix A, sunindextype j)

Description This function returns a pointer to the diagonal entry of the j-th column of the banded
SUNMatrix. The resulting pointer should be indexed over the range −mu to ml.

F2003 Name This function is callable as FSUNBandMatrix Column when using the Fortran 2003 inter-
face module.

Notes

• When looping over the components of a banded SUNMatrix A, the most efficient approaches are
to:

– First obtain the component array via A data = SM DATA B(A) or
A data = SUNBandMatrix Data(A) and then access A data[i] within the loop.

– First obtain the array of column pointers via A cols = SM COLS B(A) or
A cols = SUNBandMatrix Cols(A), and then access A cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via
A colj = SUNBandMatrix Column(A,j) and then to access the entries within that column
using SM COLUMN ELEMENT B(A colj,i,j).

All three of these are more efficient than using SM ELEMENT B(A,i,j) within a double loop.

• Within the SUNMatMatvec Band routine, internal consistency checks are performed to ensure !

that the matrix is called with consistent nvector implementations. These are currently limited
to: nvector serial, nvector openmp, and nvector pthreads. As additional compatible
vector implementations are added to sundials, these will be included within this compatibility
check.
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8.3.3 SUNMatrix Band Fortran interfaces

The sunmatrix band module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunmatrix band mod Fortran module defines interfaces to most sunmatrix band C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNBandMatrix is
interfaced as FSUNBandMatrix.

The Fortran 2003 sunmatrix band interface module can be accessed with the use statement,
i.e. use fsunmatrix band mod, and linking to the library libsundials fsunmatrixband mod.lib in
addition to the C library. For details on where the library and module file fsunmatrix band mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunmatrixband mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the sunmatrix band module also includes
the Fortran-callable function FSUNBandMatInit(code, N, mu, ml, ier) to initialize this sunma-
trix band module for a given sundials solver. Here code is an integer input solver id (1 for cvode,
2 for ida, 3 for kinsol, 4 for arkode); N, mu, and ml are the corresponding band matrix construction
arguments (declared to match C type long int); and ier is an error return flag equal to 0 for success
and -1 for failure. Both code and ier are declared to match C type int. Additionally, when using
arkode with a non-identity mass matrix, the Fortran-callable function FSUNBandMassMatInit(N,

mu, ml, ier) initializes this sunmatrix band module for storing the mass matrix.

8.4 The SUNMatrix Sparse implementation

The sparse implementation of the sunmatrix module provided with sundials, sunmatrix sparse,
is designed to work with either compressed-sparse-column (CSC) or compressed-sparse-row (CSR)
sparse matrix formats. To this end, it defines the content field of SUNMatrix to be the following
structure:

struct _SUNMatrixContent_Sparse {

sunindextype M;

sunindextype N;

sunindextype NNZ;

sunindextype NP;

realtype *data;

int sparsetype;

sunindextype *indexvals;

sunindextype *indexptrs;

/* CSC indices */

sunindextype **rowvals;

sunindextype **colptrs;

/* CSR indices */

sunindextype **colvals;

sunindextype **rowptrs;

};

A diagram of the underlying data representation for a CSC matrix is shown in Figure 8.2 (the CSR
format is similar). A more complete description of the parts of this content field is given below:
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M - number of rows

N - number of columns

NNZ - maximum number of nonzero entries in the matrix (allocated length of data and
indexvals arrays)

NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC
matrices NP = N, and for CSR matrices NP = M. This value is set automatically based
the input for sparsetype.

data - pointer to a contiguous block of realtype variables (of length NNZ), containing the
values of the nonzero entries in the matrix

sparsetype - type of the sparse matrix (CSC MAT or CSR MAT)

indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices
(if CSC) or column indices (if CSR) of each nonzero matrix entry held in data

indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each
entry provides the index of the first column entry into the data and indexvals arrays,
e.g. if indexptr[3]=7, then the first nonzero entry in the fourth column of the matrix
is located in data[7], and is located in row indexvals[7] of the matrix. The last entry
contains the total number of nonzero values in the matrix and hence points one past the
end of the active data in the data and indexvals arrays. For CSR matrices, each entry
provides the index of the first row entry into the data and indexvals arrays.

The following pointers are added to the SlsMat type for user convenience, to provide a more intuitive
interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating
a sparse sunmatrix, based on the sparse matrix storage type.
rowvals - pointer to indexvals when sparsetype is CSC MAT, otherwise set to NULL.

colptrs - pointer to indexptrs when sparsetype is CSC MAT, otherwise set to NULL.

colvals - pointer to indexvals when sparsetype is CSR MAT, otherwise set to NULL.

rowptrs - pointer to indexptrs when sparsetype is CSR MAT, otherwise set to NULL.
For example, the 5× 4 CSC matrix 

0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5


could be stored in this structure as either

M = 5;

N = 4;

NNZ = 8;

NP = N;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};

sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4};

indexptrs = {0, 2, 4, 5, 8};

or

M = 5;

N = 4;

NNZ = 10;

NP = N;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};

sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};

indexptrs = {0, 2, 4, 5, 8};
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where the first has no unused space, and the second has additional storage (the entries marked with
* may contain any values). Note in both cases that the final value in indexptrs is 8, indicating the
total number of nonzero entries in the matrix.

Similarly, in CSR format, the same matrix could be stored as

M = 5;

N = 4;

NNZ = 8;

NP = N;

data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};

sparsetype = CSR_MAT;

indexvals = {1, 2, 0, 3, 1, 0, 3, 3};

indexptrs = {0, 2, 4, 5, 7, 8};

The header file to include when using this module is sunmatrix/sunmatrix sparse.h. The sunma-
trix sparse module is accessible from all sundials solvers without linking to the
libsundials sunmatrixsparse module library.

8.4.1 SUNMatrix Sparse accessor macros

The following macros are provided to access the content of a sunmatrix sparse matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix S

denotes that these are specific to the sparse version.

• SM CONTENT S

This routine gives access to the contents of the sparse SUNMatrix.

The assignment A cont = SM CONTENT S(A) sets A cont to be a pointer to the sparse SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_S(A) ( (SUNMatrixContent_Sparse)(A->content) )

• SM ROWS S, SM COLUMNS S, SM NNZ S, SM NP S, and SM SPARSETYPE S

These macros give individual access to various lengths relevant to the content of a sparse
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows

= SM ROWS S(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS S(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_S(A) ( SM_CONTENT_S(A)->M )

#define SM_COLUMNS_S(A) ( SM_CONTENT_S(A)->N )

#define SM_NNZ_S(A) ( SM_CONTENT_S(A)->NNZ )

#define SM_NP_S(A) ( SM_CONTENT_S(A)->NP )

#define SM_SPARSETYPE_S(A) ( SM_CONTENT_S(A)->sparsetype )

• SM DATA S, SM INDEXVALS S, and SM INDEXPTRS S

These macros give access to the data and index arrays for the matrix entries.

The assignment A data = SM DATA S(A) sets A data to be a pointer to the first component of
the data array for the sparse SUNMatrix A. The assignment SM DATA S(A) = A data sets the
data array of A to be A data by storing the pointer A data.

Similarly, the assignment A indexvals = SM INDEXVALS S(A) sets A indexvals to be a pointer
to the array of index values (i.e. row indices for a CSC matrix, or column indices for a CSR
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data

k

nz

0

j column 0

unused
storage

rowvals colptrs

indexvals indexptrs

colvals rowptrs

NULL NULL

A(*rowvals[j],1)

A(*rowvals[1],0)

A(*rowvals[0],0)

A(*rowvals[k],NP−1)

A(*rowvals[nz−1],NP−1)
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M

sparsetype=CSC_MAT

NNP = N
A

Figure 8.2: Diagram of the storage for a compressed-sparse-column matrix. Here A is an M× N sparse
matrix with storage for up to NNZ nonzero entries (the allocated length of both data and indexvals).
The entries in indexvals may assume values from 0 to M− 1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the
row i, column j entry of A (again, zero-based) denoted as A(i,j). The indexptrs array contains N+1
entries; the first N denote the starting index of each column within the indexvals and data arrays,
while the final entry points one past the final nonzero entry. Here, although NNZ values are allocated,
only nz are actually filled in; the greyed-out portions of data and indexvals indicate extra allocated
space.
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matrix) for the sparse SUNMatrix A. The assignment A indexptrs = SM INDEXPTRS S(A) sets
A indexptrs to be a pointer to the array of index pointers (i.e. the starting indices in the
data/indexvals arrays for each row or column in CSR or CSC formats, respectively).

Implementation:

#define SM_DATA_S(A) ( SM_CONTENT_S(A)->data )

#define SM_INDEXVALS_S(A) ( SM_CONTENT_S(A)->indexvals )

#define SM_INDEXPTRS_S(A) ( SM_CONTENT_S(A)->indexptrs )

8.4.2 SUNMatrix Sparse functions

The sunmatrix sparse module defines sparse implementations of all matrix operations listed in Ta-
ble 8.2. Their names are obtained from those in Table 8.2 by appending the suffix Sparse (e.g.
SUNMatCopy Sparse). All the standard matrix operations listed in 8.2 with the suffix Sparse ap-
pended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g. FSUNMatCopy Sparse).

The module sunmatrix sparse provides the following additional user-callable routines:

SUNSparseMatrix

Prototype SUNMatrix SUNSparseMatrix(sunindextype M, sunindextype N,

sunindextype NNZ, int sparsetype)

Description This function creates and allocates memory for a sparse SUNMatrix. Its arguments
are the number of rows and columns of the matrix, M and N, the maximum number of
nonzeros to be stored in the matrix, NNZ, and a flag sparsetype indicating whether to
use CSR or CSC format (valid arguments are CSR MAT or CSC MAT).

F2003 Name This function is callable as FSUNSparseMatrix when using the Fortran 2003 interface
module.

SUNSparseFromDenseMatrix

Prototype SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, realtype droptol,

int sparsetype);

Description This function creates a new sparse matrix from an existing dense matrix by copying all
values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX DENSE;

• droptol must be non-negative;

• sparsetype must be either CSC MAT or CSR MAT.

The function returns NULL if any requirements are violated, or if the matrix storage
request cannot be satisfied.

F2003 Name This function is callable as FSUNSparseFromDenseMatrix when using the Fortran 2003
interface module.

SUNSparseFromBandMatrix

Prototype SUNMatrix SUNSparseFromBandMatrix(SUNMatrix A, realtype droptol,

int sparsetype);

Description This function creates a new sparse matrix from an existing band matrix by copying all
values with magnitude larger than droptol into the sparse matrix structure.

Requirements:
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• A must have type SUNMATRIX BAND;

• droptol must be non-negative;

• sparsetype must be either CSC MAT or CSR MAT.

The function returns NULL if any requirements are violated, or if the matrix storage
request cannot be satisfied.

F2003 Name This function is callable as FSUNSparseFromBandMatrix when using the Fortran 2003
interface module.

SUNSparseMatrix Realloc

Prototype int SUNSparseMatrix Realloc(SUNMatrix A)

Description This function reallocates internal storage arrays in a sparse matrix so that the resulting
sparse matrix has no wasted space (i.e. the space allocated for nonzero entries equals
the actual number of nonzeros, indexptrs[NP]). Returns 0 on success and 1 on failure
(e.g. if the input matrix is not sparse).

F2003 Name This function is callable as FSUNSparseMatrix Realloc when using the Fortran 2003
interface module.

SUNSparseMatrix Reallocate

Prototype int SUNSparseMatrix Reallocate(SUNMatrix A, sunindextype NNZ)

Description This function reallocates internal storage arrays in a sparse matrix so that the resulting
sparse matrix has storage for a specified number of nonzeros. Returns 0 on success and
1 on failure (e.g. if the input matrix is not sparse or if NNZ is negative).

F2003 Name This function is callable as FSUNSparseMatrix Reallocate when using the Fortran 2003
interface module.

SUNSparseMatrix Print

Prototype void SUNSparseMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a sparse SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.

SUNSparseMatrix Rows

Prototype sunindextype SUNSparseMatrix Rows(SUNMatrix A)

Description This function returns the number of rows in the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix Rows when using the Fortran 2003 inter-
face module.

SUNSparseMatrix Columns

Prototype sunindextype SUNSparseMatrix Columns(SUNMatrix A)

Description This function returns the number of columns in the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix Columns when using the Fortran 2003
interface module.
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SUNSparseMatrix NNZ

Prototype sunindextype SUNSparseMatrix NNZ(SUNMatrix A)

Description This function returns the number of entries allocated for nonzero storage for the sparse
matrix SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix NNZ when using the Fortran 2003 inter-
face module.

SUNSparseMatrix NP

Prototype sunindextype SUNSparseMatrix NP(SUNMatrix A)

Description This function returns the number of columns/rows for the sparse SUNMatrix, depending
on whether the matrix uses CSC/CSR format, respectively. The indexptrs array has
NP+1 entries.

F2003 Name This function is callable as FSUNSparseMatrix NP when using the Fortran 2003 interface
module.

SUNSparseMatrix SparseType

Prototype int SUNSparseMatrix SparseType(SUNMatrix A)

Description This function returns the storage type (CSR MAT or CSC MAT) for the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix SparseType when using the Fortran 2003
interface module.

SUNSparseMatrix Data

Prototype realtype* SUNSparseMatrix Data(SUNMatrix A)

Description This function returns a pointer to the data array for the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix Data when using the Fortran 2003 inter-
face module.

SUNSparseMatrix IndexValues

Prototype sunindextype* SUNSparseMatrix IndexValues(SUNMatrix A)

Description This function returns a pointer to index value array for the sparse SUNMatrix: for CSR
format this is the column index for each nonzero entry, for CSC format this is the row
index for each nonzero entry.

F2003 Name This function is callable as FSUNSparseMatrix IndexValues when using the Fortran
2003 interface module.

SUNSparseMatrix IndexPointers

Prototype sunindextype* SUNSparseMatrix IndexPointers(SUNMatrix A)

Description This function returns a pointer to the index pointer array for the sparse SUNMatrix:
for CSR format this is the location of the first entry of each row in the data and
indexvalues arrays, for CSC format this is the location of the first entry of each column.

F2003 Name This function is callable as FSUNSparseMatrix IndexPointers when using the Fortran
2003 interface module.

Within the SUNMatMatvec Sparse routine, internal consistency checks are performed to ensure that!

the matrix is called with consistent nvector implementations. These are currently limited to: nvec-
tor serial, nvector openmp, and nvector pthreads. As additional compatible vector imple-
mentations are added to sundials, these will be included within this compatibility check.
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8.4.3 SUNMatrix Sparse Fortran interfaces

The sunmatrix sparse module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunmatrix sparse mod Fortran module defines interfaces to most sunmatrix sparse C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNSparseMatrix is
interfaced as FSUNSparseMatrix.

The Fortran 2003 sunmatrix sparse interface module can be accessed with the use statement,
i.e. use fsunmatrix sparse mod, and linking to the library libsundials fsunmatrixsparse mod.lib
in addition to the C library. For details on where the library and module file fsunmatrix sparse mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunmatrixsparse mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the sunmatrix sparse module also includes
the Fortran-callable function FSUNSparseMatInit(code, M, N, NNZ, sparsetype, ier) to initial-
ize this sunmatrix sparse module for a given sundials solver. Here code is an integer input for the
solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); M, N and NNZ are the corresponding
sparse matrix construction arguments (declared to match C type long int); sparsetype is an integer
flag indicating the sparse storage type (0 for CSC, 1 for CSR); and ier is an error return flag equal to
0 for success and -1 for failure. Each of code, sparsetype and ier are declared so as to match C type
int. Additionally, when using arkode with a non-identity mass matrix, the Fortran-callable function
FSUNSparseMassMatInit(M, N, NNZ, sparsetype, ier) initializes this sunmatrix sparse mod-
ule for storing the mass matrix.





Chapter 9

Description of the
SUNLinearSolver module

For problems that involve the solution of linear systems of equations, the sundials packages oper-
ate using generic linear solver modules defined through the sunlinsol API. This allows sundials
packages to utilize any valid sunlinsol implementation that provides a set of required functions.
These functions can be divided into three categories. The first are the core linear solver functions.
The second group consists of “set” routines to supply the linear solver object with functions provided
by the sundials package, or for modification of solver parameters. The last group consists of “get”
routines for retrieving artifacts (statistics, residual vectors, etc.) from the linear solver. All of these
functions are defined in the header file sundials/sundials linearsolver.h.

The implementations provided with sundials work in coordination with the sundials generic
nvector and sunmatrix modules to provide a set of compatible data structures and solvers for the
solution of linear systems using direct or iterative (matrix-based or matrix-free) methods. Moreover,
advanced users can provide a customized SUNLinearSolver implementation to any sundials package,
particularly in cases where they provide their own nvector and/or sunmatrix modules.

Historically, the sundials packages have been designed to specifically leverage the use of either
direct linear solvers or matrix-free, scaled, preconditioned, iterative linear solvers. However, matrix-
based iterative linear solvers are also supported.

The iterative linear solvers packaged with sundials leverage scaling and preconditioning, as ap-
plicable, to balance error between solution components and to accelerate convergence of the linear
solver. To this end, instead of solving the linear system Ax = b directly, these apply the underlying
iterative algorithm to the transformed system

Ãx̃ = b̃ (9.1)

where

Ã = S1P
−1
1 AP−12 S−12 ,

b̃ = S1P
−1
1 b, (9.2)

x̃ = S2P2x,

and where

• P1 is the left preconditioner,

• P2 is the right preconditioner,

• S1 is a diagonal matrix of scale factors for P−11 b,

• S2 is a diagonal matrix of scale factors for P2x.
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The scaling matrices are chosen so that S1P
−1
1 b and S2P2x have dimensionless components. If pre-

conditioning is done on the left only (P2 = I), by a matrix P , then S2 must be a scaling for x, while
S1 is a scaling for P−1b, and so may also be taken as a scaling for x. Similarly, if preconditioning is
done on the right only (P1 = I and P2 = P ), then S1 must be a scaling for b, while S2 is a scaling for
Px, and may also be taken as a scaling for b.

sundials packages request that iterative linear solvers stop based on the 2-norm of the scaled
preconditioned residual meeting a prescribed tolerance∥∥∥b̃− Ãx̃∥∥∥

2
< tol.

When provided an iterative sunlinsol implementation that does not support the scaling matrices
S1 and S2, sundials’ packages will adjust the value of tol accordingly (see §9.4.2 for more details).
In this case, they instead request that iterative linear solvers stop based on the criteria∥∥P−11 b− P−11 Ax

∥∥
2
< tol.

We note that the corresponding adjustments to tol in this case are non-optimal, in that they cannot
balance error between specific entries of the solution x, only the aggregate error in the overall solution
vector.

We further note that not all of the sundials-provided iterative linear solvers support the full
range of the above options (e.g., separate left/right preconditioning), and that some of the sundials
packages only utilize a subset of these options. Further details on these exceptions are described in
the documentation for each sunlinsol implementation, or for each sundials package.

For users interested in providing their own sunlinsol module, the following section presents
the sunlinsol API and its implementation beginning with the definition of sunlinsol functions
in sections 9.1.1 – 9.1.3. This is followed by the definition of functions supplied to a linear solver
implementation in section 9.1.4. A table of linear solver return codes is given in section 9.1.5. The
SUNLinearSolver type and the generic sunlinsol module are defined in section 9.1.6. The section 9.2
discusses compatibility between the sundials-provided sunlinsol modules and sunmatrix modules.
Section 9.3 lists the requirements for supplying a custom sunlinsol module and discusses some
intended use cases. Users wishing to supply their own sunlinsol module are encouraged to use
the sunlinsol implementations provided with sundials as a template for supplying custom linear
solver modules. The sunlinsol functions required by this sundials package as well as other package
specific details are given in section 9.4. The remaining sections of this chapter present the sunlinsol
modules provided with sundials.

9.1 The SUNLinearSolver API

The sunlinsol API defines several linear solver operations that enable sundials packages to utilize
any sunlinsol implementation that provides the required functions. These functions can be divided
into three categories. The first are the core linear solver functions. The second group of functions con-
sists of set routines to supply the linear solver with functions provided by the sundials time integrators
and to modify solver parameters. The final group consists of get routines for retrieving linear solver
statistics. All of these functions are defined in the header file sundials/sundials linearsolver.h.

9.1.1 SUNLinearSolver core functions

The core linear solver functions consist of four required routines to get the linear solver type
(SUNLinSolGetType), initialize the linear solver object once all solver-specific options have been set
(SUNLinSolInitialize), set up the linear solver object to utilize an updated matrix A
(SUNLinSolSetup), and solve the linear system Ax = b (SUNLinSolSolve). The remaining routine
for destruction of the linear solver object (SUNLinSolFree) is optional.
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SUNLinSolGetType

Call type = SUNLinSolGetType(LS);

Description The required function SUNLinSolGetType returns the type identifier for the linear solver
LS. It is used to determine the solver type (direct, iterative, or matrix-iterative) from
the abstract SUNLinearSolver interface.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value The return value type (of type int) will be one of the following:

• SUNLINEARSOLVER DIRECT – 0, the sunlinsol module requires a matrix, and com-
putes an ‘exact’ solution to the linear system defined by that matrix.

• SUNLINEARSOLVER ITERATIVE – 1, the sunlinsol module does not require a matrix
(though one may be provided), and computes an inexact solution to the linear
system using a matrix-free iterative algorithm. That is it solves the linear system
defined by the package-supplied ATimes routine (see SUNLinSolSetATimes below),
even if that linear system differs from the one encoded in the matrix object (if one
is provided). As the solver computes the solution only inexactly (or may diverge),
the linear solver should check for solution convergence/accuracy as appropriate.

• SUNLINEARSOLVER MATRIX ITERATIVE – 2, the sunlinsol module requires a ma-
trix, and computes an inexact solution to the linear system defined by that matrix
using an iterative algorithm. That is it solves the linear system defined by the
matrix object even if that linear system differs from that encoded by the package-
supplied ATimes routine. As the solver computes the solution only inexactly (or
may diverge), the linear solver should check for solution convergence/accuracy as
appropriate.

Notes See section 9.3.1 for more information on intended use cases corresponding to the linear
solver type.

SUNLinSolInitialize

Call retval = SUNLinSolInitialize(LS);

Description The required function SUNLinSolInitialize performs linear solver initialization (as-
suming that all solver-specific options have been set).

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value This should return zero for a successful call, and a negative value for a failure, ideally
returning one of the generic error codes listed in Table 9.1.

SUNLinSolSetup

Call retval = SUNLinSolSetup(LS, A);

Description The required function SUNLinSolSetup performs any linear solver setup needed, based
on an updated system sunmatrix A. This may be called frequently (e.g., with a full
Newton method) or infrequently (for a modified Newton method), based on the type of
integrator and/or nonlinear solver requesting the solves.

Arguments LS (SUNLinearSolver) a sunlinsol object.

A (SUNMatrix) a sunmatrix object.

Return value This should return zero for a successful call, a positive value for a recoverable failure
and a negative value for an unrecoverable failure, ideally returning one of the generic
error codes listed in Table 9.1.
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SUNLinSolSolve

Call retval = SUNLinSolSolve(LS, A, x, b, tol);

Description The required function SUNLinSolSolve solves a linear system Ax = b.

Arguments LS (SUNLinearSolver) a sunlinsol object.

A (SUNMatrix) a sunmatrix object.

x (N Vector) a nvector object containing the initial guess for the solution of the
linear system, and the solution to the linear system upon return.

b (N Vector) a nvector object containing the linear system right-hand side.

tol (realtype) the desired linear solver tolerance.

Return value This should return zero for a successful call, a positive value for a recoverable failure
and a negative value for an unrecoverable failure, ideally returning one of the generic
error codes listed in Table 9.1.

Notes Direct solvers: can ignore the tol argument.

Matrix-free solvers: (those that identify as SUNLINEARSOLVER ITERATIVE) can ignore
the sunmatrix input A, and should instead rely on the matrix-vector product function
supplied through the routine SUNLinSolSetATimes.

Iterative solvers: (those that identify as SUNLINEARSOLVER ITERATIVE or
SUNLINEARSOLVER MATRIX ITERATIVE) should attempt to solve to the specified toler-
ance tol in a weighted 2-norm. If the solver does not support scaling then it should
just use a 2-norm.

SUNLinSolFree

Call retval = SUNLinSolFree(LS);

Description The optional function SUNLinSolFree frees memory allocated by the linear solver.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value This should return zero for a successful call and a negative value for a failure.

9.1.2 SUNLinearSolver set functions

The following set functions are used to supply linear solver modules with functions defined by the
sundials packages and to modify solver parameters. Only the routine for setting the matrix-vector
product routine is required, and that is only for matrix-free linear solver modules. Otherwise, all other
set functions are optional. sunlinsol implementations that do not provide the functionality for any
optional routine should leave the corresponding function pointer NULL instead of supplying a dummy
routine.

SUNLinSolSetATimes

Call retval = SUNLinSolSetATimes(LS, A data, ATimes);

Description The function SUNLinSolSetATimes is required for matrix-free linear solvers; otherwise
it is optional.

This routine provides an ATimesFn function pointer, as well as a void* pointer to a
data structure used by this routine, to a linear solver object. sundials packages will
call this function to set the matrix-vector product function to either a solver-provided
difference-quotient via vector operations or a user-supplied solver-specific routine.

Arguments LS (SUNLinearSolver) a sunlinsol object.

A data (void*) data structure passed to ATimes.

ATimes (ATimesFn) function pointer implementing the matrix-vector product routine.



9.1 The SUNLinearSolver API 245

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 9.1.

SUNLinSolSetPreconditioner

Call retval = SUNLinSolSetPreconditioner(LS, Pdata, Pset, Psol);

Description The optional function SUNLinSolSetPreconditioner provides PSetupFn and PSolveFn

function pointers that implement the preconditioner solves P−11 and P−12 from equations
(9.1)-(9.2). This routine will be called by a sundials package, which will provide
translation between the generic Pset and Psol calls and the package- or user-supplied
routines.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Pdata (void*) data structure passed to both Pset and Psol.

Pset (PSetupFn) function pointer implementing the preconditioner setup.

Psol (PSolveFn) function pointer implementing the preconditioner solve.

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 9.1.

SUNLinSolSetScalingVectors

Call retval = SUNLinSolSetScalingVectors(LS, s1, s2);

Description The optional function SUNLinSolSetScalingVectors provides left/right scaling vectors
for the linear system solve. Here, s1 and s2 are nvector of positive scale factors con-
taining the diagonal of the matrices S1 and S2 from equations (9.1)-(9.2), respectively.
Neither of these vectors need to be tested for positivity, and a NULL argument for either
indicates that the corresponding scaling matrix is the identity.

Arguments LS (SUNLinearSolver) a sunlinsol object.

s1 (N Vector) diagonal of the matrix S1

s2 (N Vector) diagonal of the matrix S2

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 9.1.

9.1.3 SUNLinearSolver get functions

The following get functions allow sundials packages to retrieve results from a linear solve. All routines
are optional.

SUNLinSolNumIters

Call its = SUNLinSolNumIters(LS);

Description The optional function SUNLinSolNumIters should return the number of linear iterations
performed in the last ‘solve’ call.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value int containing the number of iterations

SUNLinSolResNorm

Call rnorm = SUNLinSolResNorm(LS);

Description The optional function SUNLinSolResNorm should return the final residual norm from
the last ‘solve’ call.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value realtype containing the final residual norm
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SUNLinSolResid

Call rvec = SUNLinSolResid(LS);

Description If an iterative method computes the preconditioned initial residual and returns with
a successful solve without performing any iterations (i.e., either the initial guess or
the preconditioner is sufficiently accurate), then this optional routine may be called
by the sundials package. This routine should return the nvector containing the
preconditioned initial residual vector.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value N Vector containing the final residual vector

Notes Since N Vector is actually a pointer, and the results are not modified, this routine
should not require additional memory allocation. If the sunlinsol object does not
retain a vector for this purpose, then this function pointer should be set to NULL in the
implementation.

SUNLinSolLastFlag

Call lflag = SUNLinSolLastFlag(LS);

Description The optional function SUNLinSolLastFlag should return the last error flag encountered
within the linear solver. This is not called by the sundials packages directly; it allows
the user to investigate linear solver issues after a failed solve.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value long int containing the most recent error flag

SUNLinSolSpace

Call retval = SUNLinSolSpace(LS, &lrw, &liw);

Description The optional function SUNLinSolSpace should return the storage requirements for the
linear solver LS.

Arguments LS (SUNLinearSolver) a sunlinsol object.

lrw (long int*) the number of realtype words stored by the linear solver.

liw (long int*) the number of integer words stored by the linear solver.

Return value This should return zero for a successful call, and a negative value for a failure, ideally
returning one of the generic error codes listed in Table 9.1.

Notes This function is advisory only, for use in determining a user’s total space requirements.

9.1.4 Functions provided by sundials packages

To interface with the sunlinsol modules, the sundials packages supply a variety of routines for
evaluating the matrix-vector product, and setting up and applying the preconditioner. These package-
provided routines translate between the user-supplied ODE, DAE, or nonlinear systems and the generic
interfaces to the linear systems of equations that result in their solution. The types for functions
provided to a sunlinsol module are defined in the header file sundials/sundials iterative.h,
and are described below.

ATimesFn

Definition typedef int (*ATimesFn)(void *A data, N Vector v, N Vector z);

Purpose These functions compute the action of a matrix on a vector, performing the operation
z = Av. Memory for z should already be allocted prior to calling this function. The
vector v should be left unchanged.
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Arguments A data is a pointer to client data, the same as that supplied to SUNLinSolSetATimes.

v is the input vector to multiply.

z is the output vector computed.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.

PSetupFn

Definition typedef int (*PSetupFn)(void *P data)

Purpose These functions set up any requisite problem data in preparation for calls to the corre-
sponding PSolveFn.

Arguments P data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.

PSolveFn

Definition typedef int (*PSolveFn)(void *P data, N Vector r, N Vector z,

realtype tol, int lr)

Purpose These functions solve the preconditioner equation Pz = r for the vector z. Memory for
z should already be allocted prior to calling this function. The parameter P data is a
pointer to any information about P which the function needs in order to do its job (set
up by the corresponding PSetupFn). The parameter lr is input, and indicates whether
P is to be taken as the left preconditioner or the right preconditioner: lr = 1 for left
and lr = 2 for right. If preconditioning is on one side only, lr can be ignored. If the
preconditioner is iterative, then it should strive to solve the preconditioner equation so
that

‖Pz − r‖wrms < tol

where the weight vector for the WRMS norm may be accessed from the main package
memory structure. The vector r should not be modified by the PSolveFn.

Arguments P data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

r is the right-hand side vector for the preconditioner system.

z is the solution vector for the preconditioner system.

tol is the desired tolerance for an iterative preconditioner.

lr is flag indicating whether the routine should perform left (1) or right (2) pre-
conditioning.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful. On a
failure, a negative return value indicates an unrecoverable condition, while a positive
value indicates a recoverable one, in which the calling routine may reattempt the solution
after updating preconditioner data.

9.1.5 SUNLinearSolver return codes

The functions provided to sunlinsol modules by each sundials package, and functions within the
sundials-provided sunlinsol implementations utilize a common set of return codes, shown in Table
9.1. These adhere to a common pattern: 0 indicates success, a postitive value corresponds to a
recoverable failure, and a negative value indicates a non-recoverable failure. Aside from this pattern,
the actual values of each error code are primarily to provide additional information to the user in case
of a linear solver failure.
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Table 9.1: Description of the SUNLinearSolver error codes

Name Value Description

SUNLS SUCCESS 0 successful call or converged solve

SUNLS MEM NULL -1 the memory argument to the function is NULL

SUNLS ILL INPUT -2 an illegal input has been provided to the function

SUNLS MEM FAIL -3 failed memory access or allocation

SUNLS ATIMES FAIL UNREC -4 an unrecoverable failure occurred in the ATimes routine

SUNLS PSET FAIL UNREC -5 an unrecoverable failure occurred in the Pset routine

SUNLS PSOLVE FAIL UNREC -6 an unrecoverable failure occurred in the Psolve routine

SUNLS PACKAGE FAIL UNREC -7 an unrecoverable failure occurred in an external linear
solver package

SUNLS GS FAIL -8 a failure occurred during Gram-Schmidt orthogonalization
(sunlinsol spgmr/sunlinsol spfgmr)

SUNLS QRSOL FAIL -9 a singular R matrix was encountered in a QR factorization
(sunlinsol spgmr/sunlinsol spfgmr)

SUNLS RES REDUCED 1 an iterative solver reduced the residual, but did not con-
verge to the desired tolerance

SUNLS CONV FAIL 2 an iterative solver did not converge (and the residual was
not reduced)

SUNLS ATIMES FAIL REC 3 a recoverable failure occurred in the ATimes routine

SUNLS PSET FAIL REC 4 a recoverable failure occurred in the Pset routine

SUNLS PSOLVE FAIL REC 5 a recoverable failure occurred in the Psolve routine

SUNLS PACKAGE FAIL REC 6 a recoverable failure occurred in an external linear solver
package

SUNLS QRFACT FAIL 7 a singular matrix was encountered during a QR factoriza-
tion (sunlinsol spgmr/sunlinsol spfgmr)

SUNLS LUFACT FAIL 8 a singular matrix was encountered during a LU factorization
(sunlinsol dense/sunlinsol band)

9.1.6 The generic SUNLinearSolver module

sundials packages interact with specific sunlinsol implementations through the generic sunlinsol
module on which all other sunlinsol iplementations are built. The SUNLinearSolver type is a
pointer to a structure containing an implementation-dependent content field, and an ops field. The
type SUNLinearSolver is defined as

typedef struct _generic_SUNLinearSolver *SUNLinearSolver;

struct _generic_SUNLinearSolver {

void *content;

struct _generic_SUNLinearSolver_Ops *ops;

};

where the generic SUNLinearSolver Ops structure is a list of pointers to the various actual lin-
ear solver operations provided by a specific implementation. The generic SUNLinearSolver Ops

structure is defined as

struct _generic_SUNLinearSolver_Ops {

SUNLinearSolver_Type (*gettype)(SUNLinearSolver);
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int (*setatimes)(SUNLinearSolver, void*, ATimesFn);

int (*setpreconditioner)(SUNLinearSolver, void*,

PSetupFn, PSolveFn);

int (*setscalingvectors)(SUNLinearSolver,

N_Vector, N_Vector);

int (*initialize)(SUNLinearSolver);

int (*setup)(SUNLinearSolver, SUNMatrix);

int (*solve)(SUNLinearSolver, SUNMatrix, N_Vector,

N_Vector, realtype);

int (*numiters)(SUNLinearSolver);

realtype (*resnorm)(SUNLinearSolver);

long int (*lastflag)(SUNLinearSolver);

int (*space)(SUNLinearSolver, long int*, long int*);

N_Vector (*resid)(SUNLinearSolver);

int (*free)(SUNLinearSolver);

};

The generic sunlinsol module defines and implements the linear solver operations defined in
Sections 9.1.1-9.1.3. These routines are in fact only wrappers to the linear solver operations de-
fined by a particular sunlinsol implementation, which are accessed through the ops field of the
SUNLinearSolver structure. To illustrate this point we show below the implementation of a typical
linear solver operation from the generic sunlinsol module, namely SUNLinSolInitialize, which
initializes a sunlinsol object for use after it has been created and configured, and returns a flag
denoting a successful/failed operation:

int SUNLinSolInitialize(SUNLinearSolver S)

{

return ((int) S->ops->initialize(S));

}

9.2 Compatibility of SUNLinearSolver modules

We note that not all sunlinsol types are compatible with all sunmatrix and nvector types provided
with sundials. In Table 9.2 we show the matrix-based linear solvers available as sunlinsol modules,
and the compatible matrix implementations. Recall that Table 4.1 shows the compatibility between
all sunlinsol modules and vector implementations.

Table 9.2: sundials matrix-based linear solvers and matrix implementations that can be used for
each.

Linear Solver
Interface

Dense
Matrix

Banded
Matrix

Sparse
Matrix

User
Supplied

Dense X X
Band X X
LapackDense X X
LapackBand X X
klu X X
superlumt X X
User supplied X X X X

9.3 Implementing a custom SUNLinearSolver module

A particular implementation of the sunlinsol module must:
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• Specify the content field of the SUNLinearSolver object.

• Define and implement a minimal subset of the linear solver operations. See the section 9.4 to
determine which sunlinsol operations are required for this sundials package.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one sunlinsol module (each with different SUNLinearSolver internal
data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNLinearSolver with the new content field and with ops pointing to the new linear solver
operations.

We note that the function pointers for all unsupported optional routines should be set to NULL in
the ops structure. This allows the sundials package that is using the sunlinsol object to know that
the associated functionality is not supported.

Additionally, a sunlinsol implementation may do the following:

• Define and implement additional user-callable “set” routines acting on the SUNLinearSolver,
e.g., for setting various configuration options to tune the linear solver to a particular problem.

• Provide additional user-callable “get” routines acting on the SUNLinearSolver object, e.g., for
returning various solve statistics.

9.3.1 Intended use cases

The sunlinsol (and sunmatrix) APIs are designed to require a minimal set of routines to ease
interfacing with custom or third-party linear solver libraries. External solvers provide similar routines
with the necessary functionality and thus will require minimal effort to wrap within custom sunmatrix
and sunlinsol implementations. Sections 8.1 and 9.4 include a list of the required set of routines that
compatible sunmatrix and sunlinsol implementations must provide. As sundials packages utilize
generic sunlinsol modules allowing for user-supplied SUNLinearSolver implementations, there exists
a wide range of possible linear solver combinations. Some intended use cases for both the sundials-
provided and user-supplied sunlinsol modules are discussd in the following sections.

Direct linear solvers

Direct linear solver modules require a matrix and compute an ‘exact’ solution to the linear system
defined by the matrix. Multiple matrix formats and associated direct linear solvers are supplied with
sundials through different sunmatrix and sunlinsol implementations. sundials packages strive
to amortize the high cost of matrix construction by reusing matrix information for multiple nonlinear
iterations. As a result, each package’s linear solver interface recomputes Jacobian information as
infrequently as possible.

Alternative matrix storage formats and compatible linear solvers that are not currently provided
by, or interfaced with, sundials can leverage this infrastructure with minimal effort. To do so, a user
must implement custom sunmatrix and sunlinsol wrappers for the desired matrix format and/or
linear solver following the APIs described in Chapters 8 and 9. This user-supplied sunlinsol module
must then self-identify as having SUNLINEARSOLVER DIRECT type.

Matrix-free iterative linear solvers

Matrix-free iterative linear solver modules do not require a matrix and compute an inexact solution to
the linear system defined by the package-supplied ATimes routine. sundials supplies multiple scaled,
preconditioned iterative linear solver (spils) sunlinsol modules that support scaling to allow users to
handle non-dimensionalization (as best as possible) within each sundials package and retain variables
and define equations as desired in their applications. For linear solvers that do not support left/right
scaling, the tolerance supplied to the linear solver is adjusted to compensate (see section 9.4.2 for
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more details); however, this use case may be non-optimal and cannot handle situations where the
magnitudes of different solution components or equations vary dramatically within a single problem.

To utilize alternative linear solvers that are not currently provided by, or interfaced with, sundi-
als a user must implement a custom sunlinsol wrapper for the linear solver following the API
described in Chapter 9. This user-supplied sunlinsol module must then self-identify as having
SUNLINEARSOLVER ITERATIVE type.

Matrix-based iterative linear solvers (reusing A)

Matrix-based iterative linear solver modules require a matrix and compute an inexact solution to
the linear system defined by the matrix. This matrix will be updated infrequently and resued across
multiple solves to amortize cost of matrix construction. As in the direct linear solver case, only
wrappers for the matrix and linear solver in sunmatrix and sunlinsol implementations need to be
created to utilize a new linear solver. This user-supplied sunlinsol module must then self-identify as
having SUNLINEARSOLVER MATRIX ITERATIVE type.

At present, sundials has one example problem that uses this approach for wrapping a structured-
grid matrix, linear solver, and preconditioner from the hypre library that may be used as a template
for other customized implementations (see examples/arkode/CXX parhyp/ark heat2D hypre.cpp).

Matrix-based iterative linear solvers (current A)

For users who wish to utilize a matrix-based iterative linear solver module where the matrix is purely
for preconditioning and the linear system is defined by the package-supplied ATimes routine, we envision
two current possibilities.

The preferred approach is for users to employ one of the sundials spils sunlinsol implementa-
tions (sunlinsol spgmr, sunlinsol spfgmr, sunlinsol spbcgs, sunlinsol sptfqmr, or sunlin-
sol pcg) as the outer solver. The creation and storage of the preconditioner matrix, and interfacing
with the corresponding linear solver, can be handled through a package’s preconditioner ‘setup’ and
‘solve’ functionality (see §4.5.7.2) without creating sunmatrix and sunlinsol implementations. This
usage mode is recommended primarily because the sundials-provided spils modules support the scal-
ing as described above.

A second approach supported by the linear solver APIs is as follows. If the sunlinsol implemen-
tation is matrix-based, self-identifies as having SUNLINEARSOLVER ITERATIVE type, and also provides
a non-NULL SUNLinSolSetATimes routine, then each sundials package will call that routine to attach
its package-specific matrix-vector product routine to the sunlinsol object. The sundials package
will then call the sunlinsol-provided SUNLinSolSetup routine (infrequently) to update matrix infor-
mation, but will provide current matrix-vector products to the sunlinsol implementation through
the package-supplied ATimesFn routine.

9.4 CVODES SUNLinearSolver interface

Table 9.3 below lists the sunlinsol module linear solver functions used within the cvls interface.
As with the sunmatrix module, we emphasize that the cvodes user does not need to know detailed
usage of linear solver functions by the cvodes code modules in order to use cvodes. The information
is presented as an implementation detail for the interested reader.

The linear solver functions listed below are marked with Xto indicate that they are required, or
with † to indicate that they are only called if they are non-NULL in the sunlinsol implementation
that is being used. Note:

1. SUNLinSolNumIters is only used to accumulate overall iterative linear solver statistics. If it is
not implemented by the sunlinsol module, then cvls will consider all solves as requiring zero
iterations.

2. Although cvls does not call SUNLinSolLastFlag directly, this routine is available for users to
query linear solver issues directly.
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3. Although cvls does not call SUNLinSolFree directly, this routine should be available for users
to call when cleaning up from a simulation.

Table 9.3: List of linear solver function usage in the cvls interface
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SUNLinSolGetType X X X
SUNLinSolSetATimes † X †

SUNLinSolSetPreconditioner † † †
SUNLinSolSetScalingVectors † † †

SUNLinSolInitialize X X X
SUNLinSolSetup X X X
SUNLinSolSolve X X X

1SUNLinSolNumIters † †
2SUNLinSolLastFlag

3SUNLinSolFree

SUNLinSolSpace † † †

Since there are a wide range of potential sunlinsol use cases, the following subsections describe
some details of the cvls interface, in the case that interested users wish to develop custom sunlinsol
modules.

9.4.1 Lagged matrix information

If the sunlinsol object self-identifies as having type SUNLINEARSOLVER DIRECT or
SUNLINEARSOLVER MATRIX ITERATIVE, then the sunlinsol object solves a linear system defined by a
sunmatrix object. cvls will update the matrix information infrequently according to the strategies
outlined in §2.1. When solving a linear system

Mx̄ = b ⇔ (I − γ̄J)x̄ = b

it is likely that the value γ̄ used to construct M differs from the current value of γ in the linear
multistep method, since M is updated infrequently. Therefore, after calling the sunlinsol-provided
SUNLinSolSolve routine, we test whether γ/γ̄ 6= 1, and if this is the case we scale the solution x̄ to
obtain the desired linear system solution x via

x =
2

1 + γ/γ̄
x̄. (9.3)

For values of γ/γ̄ that are “close” to 1, this rescaling approximately solves the original linear system,
as discussed below. We first note that the equation (9.3) is equivalent to

x̄ =
1

2

(
1 +

γ

γ̄

)
x.
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Adding the two equations (I − γJ)x = b and (I − γ̄J)x̄ = b, and inserting the above relationship, we
have

2b = (I − γJ)x+ (I − γ̄J)

= x− γJx+ x̄− J (γ̄x̄)

=
3

2
(I − γJ)x+

1

2

(
γ

γ̄
I − γ̄J

)
x

=
3

2
b+

1

2

(
γ

γ̄
I − γ̄J

)
x.

When γ/γ̄ ≈ 1, this latter term is approximately equal to 1
2b.

9.4.2 Iterative linear solver tolerance

If the sunlinsol object self-identifies as having type SUNLINEARSOLVER ITERATIVE or
SUNLINEARSOLVER MATRIX ITERATIVE then cvls will set the input tolerance delta as described in
§2.1. However, if the iterative linear solver does not support scaling matrices (i.e., the
SUNLinSolSetScalingVectors routine is NULL), then cvls will attempt to adjust the linear solver
tolerance to account for this lack of functionality. To this end, the following assumptions are made:

1. All solution components have similar magnitude; hence the error weight vector W used in the
WRMS norm (see §2.1) should satisfy the assumption

Wi ≈Wmean, for i = 0, . . . , n− 1.

2. The sunlinsol object uses a standard 2-norm to measure convergence.

Since cvode uses identical left and right scaling matrices, S1 = S2 = S = diag(W ), then the linear
solver convergence requirement is converted as follows (using the notation from equations (9.1)-(9.2)):∥∥∥b̃− Ãx̃∥∥∥

2
< tol

⇔
∥∥SP−11 b− SP−11 Ax

∥∥
2
< tol

⇔
n−1∑
i=0

[
Wi

(
P−11 (b−Ax)

)
i

]2
< tol2

⇔ W 2
mean

n−1∑
i=0

[(
P−11 (b−Ax)

)
i

]2
< tol2

⇔
n−1∑
i=0

[(
P−11 (b−Ax)

)
i

]2
<

(
tol

Wmean

)2

⇔
∥∥P−11 (b−Ax)

∥∥
2
<

tol

Wmean

Therefore the tolerance scaling factor

Wmean = ‖W‖2/
√
n

is computed and the scaled tolerance delta= tol/Wmean is supplied to the sunlinsol object.

9.5 The SUNLinearSolver Dense implementation

This section describes the sunlinsol implementation for solving dense linear systems. The sunlin-
sol dense module is designed to be used with the corresponding sunmatrix dense matrix type, and
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one of the serial or shared-memory nvector implementations (nvector serial, nvector openmp,
or nvector pthreads).

To access the sunlinsol dense module, include the header file sunlinsol/sunlinsol dense.h.
We note that the sunlinsol dense module is accessible from sundials packages without separately
linking to the libsundials sunlinsoldense module library.

9.5.1 SUNLinearSolver Dense description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA =
LU , where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
sunmatrix dense object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix dense object (O(N2) cost).

9.5.2 SUNLinearSolver Dense functions

The sunlinsol dense module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol Dense

Call LS = SUNLinSol Dense(y, A);

Description The function SUNLinSol Dense creates and allocates memory for a dense
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix dense matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix dense matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Deprecated Name For backward compatibility, the wrapper function SUNDenseLinearSolver with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol Dense when using the Fortran 2003 inter-
face module.

The sunlinsol dense module defines implementations of all “direct” linear solver operations listed
in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType Dense

• SUNLinSolInitialize Dense – this does nothing, since all consistency checks are performed at
solver creation.

• SUNLinSolSetup Dense – this performs the LU factorization.

• SUNLinSolSolve Dense – this uses the LU factors and pivots array to perform the solve.
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• SUNLinSolLastFlag Dense

• SUNLinSolSpace Dense – this only returns information for the storage within the solver object,
i.e. storage for N, last flag, and pivots.

• SUNLinSolFree Dense

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

9.5.3 SUNLinearSolver Dense Fortran interfaces

The sunlinsol dense module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol dense mod Fortran module defines interfaces to all sunlinsol dense C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperating
with C. As noted in the C function descriptions above, the interface functions are named after the
corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol Dense is
interfaced as FSUNLinSol Dense.

The Fortran 2003 sunlinsol dense interface module can be accessed with the use statement,
i.e. use fsunlinsol dense mod, and linking to the library libsundials fsunlinsoldense mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol dense mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsoldense mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol dense module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNDENSELINSOLINIT

Call FSUNDENSELINSOLINIT(code, ier)

Description The function FSUNDENSELINSOLINIT can be called for Fortran programs to create a
dense SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol dense module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSDENSELINSOLINIT

Call FSUNMASSDENSELINSOLINIT(ier)

Description The function FSUNMASSDENSELINSOLINIT can be called for Fortran programs to create
a dense SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.
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Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

9.5.4 SUNLinearSolver Dense content

The sunlinsol dense module defines the content field of a SUNLinearSolver as the following struc-
ture:

struct _SUNLinearSolverContent_Dense {

sunindextype N;

sunindextype *pivots;

long int last_flag;

};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

9.6 The SUNLinearSolver Band implementation

This section describes the sunlinsol implementation for solving banded linear systems. The sunlin-
sol band module is designed to be used with the corresponding sunmatrix band matrix type, and
one of the serial or shared-memory nvector implementations (nvector serial, nvector openmp,
or nvector pthreads).

To access the sunlinsol band module, include the header file sunlinsol/sunlinsol band.h.
We note that the sunlinsol band module is accessible from sundials packages without separately
linking to the libsundials sunlinsolband module library.

9.6.1 SUNLinearSolver Band description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU , where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input sunmatrix band
object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix band object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factor-
ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml.!

9.6.2 SUNLinearSolver Band functions

The sunlinsol band module provides the following user-callable constructor for creating a
SUNLinearSolver object.
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SUNLinSol Band

Call LS = SUNLinSol Band(y, A);

Description The function SUNLinSol Band creates and allocates memory for a band
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix band matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix band matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with
appropriate upper bandwidth storage for the LU factorization.

Deprecated Name For backward compatibility, the wrapper function SUNBandLinearSolver with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol Band when using the Fortran 2003 interface
module.

The sunlinsol band module defines band implementations of all “direct” linear solver operations
listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType Band

• SUNLinSolInitialize Band – this does nothing, since all consistency checks are performed at
solver creation.

• SUNLinSolSetup Band – this performs the LU factorization.

• SUNLinSolSolve Band – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag Band

• SUNLinSolSpace Band – this only returns information for the storage within the solver object,
i.e. storage for N, last flag, and pivots.

• SUNLinSolFree Band

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

9.6.3 SUNLinearSolver Band Fortran interfaces

The sunlinsol band module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol band mod Fortran module defines interfaces to all sunlinsol band C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol Band is
interfaced as FSUNLinSol Band.
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The Fortran 2003 sunlinsol band interface module can be accessed with the use statement,
i.e. use fsunlinsol band mod, and linking to the library libsundials fsunlinsolband mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol band mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsolband mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol band module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNBANDLINSOLINIT

Call FSUNBANDLINSOLINIT(code, ier)

Description The function FSUNBANDLINSOLINIT can be called for Fortran programs to create a band
SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol band module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSBANDLINSOLINIT

Call FSUNMASSBANDLINSOLINIT(ier)

Description The function FSUNMASSBANDLINSOLINIT can be called for Fortran programs to create a
band SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

9.6.4 SUNLinearSolver Band content

The sunlinsol band module defines the content field of a SUNLinearSolver as the following struc-
ture:

struct _SUNLinearSolverContent_Band {

sunindextype N;

sunindextype *pivots;

long int last_flag;

};

These entries of the content field contain the following information:
N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.
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9.7 The SUNLinearSolver LapackDense implementation

This section describes the sunlinsol implementation for solving dense linear systems with LA-
PACK. The sunlinsol lapackdense module is designed to be used with the corresponding sunma-
trix dense matrix type, and one of the serial or shared-memory nvector implementations (nvec-
tor serial, nvector openmp, or nvector pthreads).

To access the sunlinsol lapackdense module, include the header file
sunlinsol/sunlinsol lapackdense.h. The installed module library to link to is
libsundials sunlinsollapackdense.lib where .lib is typically .so for shared libraries and .a for
static libraries.

The sunlinsol lapackdense module is a sunlinsol wrapper for the LAPACK dense matrix
factorization and solve routines, *GETRF and *GETRS, where * is either D or S, depending on whether
sundials was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the sunlinsol lapackdense module it is assumed that LAPACK has been installed
on the system prior to installation of sundials, and that sundials has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit
floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the sunlinsol lapackdense module also cannot be compiled when using 64-bit integers
for the sunindextype. !

9.7.1 SUNLinearSolver LapackDense description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA =
LU , where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
sunmatrix dense object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix dense object (O(N2) cost).

9.7.2 SUNLinearSolver LapackDense functions

The sunlinsol lapackdense module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol LapackDense

Call LS = SUNLinSol LapackDense(y, A);

Description The function SUNLinSol LapackDense creates and allocates memory for a LAPACK-
based, dense SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix dense matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix dense matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.
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Deprecated Name For backward compatibility, the wrapper function SUNLapackDense with idential
input and output arguments is also provided.

The sunlinsol lapackdense module defines dense implementations of all “direct” linear solver
operations listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType LapackDense

• SUNLinSolInitialize LapackDense – this does nothing, since all consistency checks are per-
formed at solver creation.

• SUNLinSolSetup LapackDense – this calls either DGETRF or SGETRF to perform the LU factor-
ization.

• SUNLinSolSolve LapackDense – this calls either DGETRS or SGETRS to use the LU factors and
pivots array to perform the solve.

• SUNLinSolLastFlag LapackDense

• SUNLinSolSpace LapackDense – this only returns information for the storage within the solver
object, i.e. storage for N, last flag, and pivots.

• SUNLinSolFree LapackDense

9.7.3 SUNLinearSolver LapackDense Fortran interfaces

For solvers that include a Fortran 77 interface module, the sunlinsol lapackdense module also
includes a Fortran-callable function for creating a SUNLinearSolver object.

FSUNLAPACKDENSEINIT

Call FSUNLAPACKDENSEINIT(code, ier)

Description The function FSUNLAPACKDENSEINIT can be called for Fortran programs to create a
LAPACK-based dense SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol lapackdense
module includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver ob-
ject.

FSUNMASSLAPACKDENSEINIT

Call FSUNMASSLAPACKDENSEINIT(ier)

Description The function FSUNMASSLAPACKDENSEINIT can be called for Fortran programs to create
a LAPACK-based, dense SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.
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9.7.4 SUNLinearSolver LapackDense content

The sunlinsol lapackdense module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_Dense {

sunindextype N;

sunindextype *pivots;

long int last_flag;

};

These entries of the content field contain the following information:

N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

9.8 The SUNLinearSolver LapackBand implementation

This section describes the sunlinsol implementation for solving banded linear systems with LA-
PACK. The sunlinsol lapackband module is designed to be used with the corresponding sunma-
trix band matrix type, and one of the serial or shared-memory nvector implementations (nvec-
tor serial, nvector openmp, or nvector pthreads).

To access the sunlinsol lapackband module, include the header file
sunlinsol/sunlinsol lapackband.h. The installed module library to link to is
libsundials sunlinsollapackband.lib where .lib is typically .so for shared libraries and .a for
static libraries.

The sunlinsol lapackband module is a sunlinsol wrapper for the LAPACK band matrix
factorization and solve routines, *GBTRF and *GBTRS, where * is either D or S, depending on whether
sundials was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the sunlinsol lapackband module it is assumed that LAPACK has been installed
on the system prior to installation of sundials, and that sundials has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit
floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the sunlinsol lapackband module also cannot be compiled when using 64-bit integers for
the sunindextype. !

9.8.1 SUNLinearSolver LapackBand description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU , where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input sunmatrix band
object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix band object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factor-
ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml. !
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9.8.2 SUNLinearSolver LapackBand functions

The sunlinsol lapackband module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol LapackBand

Call LS = SUNLinSol LapackBand(y, A);

Description The function SUNLinSol LapackBand creates and allocates memory for a LAPACK-
based, band SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix band matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix band matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with
appropriate upper bandwidth storage for the LU factorization.

Deprecated Name For backward compatibility, the wrapper function SUNLapackBand with idential
input and output arguments is also provided.

The sunlinsol lapackband module defines band implementations of all “direct” linear solver op-
erations listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType LapackBand

• SUNLinSolInitialize LapackBand – this does nothing, since all consistency checks are per-
formed at solver creation.

• SUNLinSolSetup LapackBand – this calls either DGBTRF or SGBTRF to perform the LU factoriza-
tion.

• SUNLinSolSolve LapackBand – this calls either DGBTRS or SGBTRS to use the LU factors and
pivots array to perform the solve.

• SUNLinSolLastFlag LapackBand

• SUNLinSolSpace LapackBand – this only returns information for the storage within the solver
object, i.e. storage for N, last flag, and pivots.

• SUNLinSolFree LapackBand

9.8.3 SUNLinearSolver LapackBand Fortran interfaces

For solvers that include a Fortran 77 interface module, the sunlinsol lapackband module also
includes a Fortran-callable function for creating a SUNLinearSolver object.
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FSUNLAPACKDENSEINIT

Call FSUNLAPACKBANDINIT(code, ier)

Description The function FSUNLAPACKBANDINIT can be called for Fortran programs to create a
LAPACK-based band SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol lapackband
module includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver ob-
ject.

FSUNMASSLAPACKBANDINIT

Call FSUNMASSLAPACKBANDINIT(ier)

Description The function FSUNMASSLAPACKBANDINIT can be called for Fortran programs to create a
LAPACK-based, band SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

9.8.4 SUNLinearSolver LapackBand content

The sunlinsol lapackband module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_Band {

sunindextype N;

sunindextype *pivots;

long int last_flag;

};

These entries of the content field contain the following information:
N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

9.9 The SUNLinearSolver KLU implementation

This section describes the sunlinsol implementation for solving sparse linear systems with KLU.
The sunlinsol klu module is designed to be used with the corresponding sunmatrix sparse ma-
trix type, and one of the serial or shared-memory nvector implementations (nvector serial,
nvector openmp, or nvector pthreads).

The header file to include when using this module is sunlinsol/sunlinsol klu.h. The installed
module library to link to is libsundials sunlinsolklu.lib where .lib is typically .so for shared
libraries and .a for static libraries.
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The sunlinsol klu module is a sunlinsol wrapper for the klu sparse matrix factorization and
solver library written by Tim Davis [1, 14]. In order to use the sunlinsol klu interface to klu,
it is assumed that klu has been installed on the system prior to installation of sundials, and that
sundials has been configured appropriately to link with klu (see Appendix A for details). Addi-
tionally, this wrapper only supports double-precision calculations, and therefore cannot be compiled
if sundials is configured to have realtype set to either extended or single (see Section 4.2). Since
the klu library supports both 32-bit and 64-bit integers, this interface will be compiled for either of
the available sunindextype options.!

9.9.1 SUNLinearSolver KLU description

The klu library has a symbolic factorization routine that computes the permutation of the linear
system matrix to block triangular form and the permutations that will pre-order the diagonal blocks
(the only ones that need to be factored) to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural,
or an ordering given by the user). Of these ordering choices, the default value in the sunlinsol klu
module is the COLAMD ordering.

klu breaks the factorization into two separate parts. The first is a symbolic factorization and the
second is a numeric factorization that returns the factored matrix along with final pivot information.
klu also has a refactor routine that can be called instead of the numeric factorization. This routine
will reuse the pivot information. This routine also returns diagnostic information that a user can
examine to determine if numerical stability is being lost and a full numerical factorization should be
done instead of the refactor.

Since the linear systems that arise within the context of sundials calculations will typically
have identical sparsity patterns, the sunlinsol klu module is constructed to perform the following
operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.

• On subsequent calls to the “setup” routine, it calls the appropriate klu “refactor” routine,
followed by estimates of the numerical conditioning using the relevant “rcond”, and if necessary
“condest”, routine(s). If these estimates of the condition number are larger than ε−2/3 (where
ε is the double-precision unit roundoff), then a new factorization is performed.

• The module includes the routine SUNKLUReInit, that can be called by the user to force a full or
partial refactorization at the next “setup” call.

• The “solve” call performs pivoting and forward and backward substitution using the stored klu
data structures. We note that in this solve klu operates on the native data arrays for the
right-hand side and solution vectors, without requiring costly data copies.

9.9.2 SUNLinearSolver KLU functions

The sunlinsol klu module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol KLU

Call LS = SUNLinSol KLU(y, A);

Description The function SUNLinSol KLU creates and allocates memory for a KLU-based
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix sparse matrix template for cloning matrices needed
within the solver
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Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix sparse matrix type (using either CSR or CSC storage formats)
and the nvector serial, nvector openmp, and nvector pthreads vector
types. As additional compatible matrix and vector implementations are added to
sundials, these will be included within this compatibility check.

Deprecated Name For backward compatibility, the wrapper function SUNKLU with idential input and
output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol KLU when using the Fortran 2003 interface
module.

The sunlinsol klu module defines implementations of all “direct” linear solver operations listed in
Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType KLU

• SUNLinSolInitialize KLU – this sets the first factorize flag to 1, forcing both symbolic
and numerical factorizations on the subsequent “setup” call.

• SUNLinSolSetup KLU – this performs either a LU factorization or refactorization of the input
matrix.

• SUNLinSolSolve KLU – this calls the appropriate klu solve routine to utilize the LU factors to
solve the linear system.

• SUNLinSolLastFlag KLU

• SUNLinSolSpace KLU – this only returns information for the storage within the solver interface,
i.e. storage for the integers last flag and first factorize. For additional space requirements,
see the klu documentation.

• SUNLinSolFree KLU

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol klu module also defines the following additional user-callable functions.

SUNLinSol KLUReInit

Call retval = SUNLinSol KLUReInit(LS, A, nnz, reinit type);

Description The function SUNLinSol KLUReInit reinitializes memory and flags for a new fac-
torization (symbolic and numeric) to be conducted at the next solver setup call.
This routine is useful in the cases where the number of nonzeroes has changed or if
the structure of the linear system has changed which would require a new symbolic
(and numeric factorization).

Arguments LS (SUNLinearSolver) a template for cloning vectors needed within the
solver

A (SUNMatrix) a sunmatrix sparse matrix template for cloning ma-
trices needed within the solver

nnz (sunindextype) the new number of nonzeros in the matrix

reinit type (int) flag governing the level of reinitialization. The allowed values
are:
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• SUNKLU REINIT FULL – The Jacobian matrix will be destroyed
and a new one will be allocated based on the nnz value passed
to this call. New symbolic and numeric factorizations will be
completed at the next solver setup.

• SUNKLU REINIT PARTIAL – Only symbolic and numeric factor-
izations will be completed. It is assumed that the Jacobian
size has not exceeded the size of nnz given in the sparse ma-
trix provided to the original constructor routine (or the previous
SUNLinSol KLUReInit call).

Return value The return values from this function are SUNLS MEM NULL (either S or A are NULL),
SUNLS ILL INPUT (A does not have type SUNMATRIX SPARSE or reinit type is in-
valid), SUNLS MEM FAIL (reallocation of the sparse matrix failed) or SUNLS SUCCESS.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix sparse matrix type (using either CSR or CSC storage formats)
and the nvector serial, nvector openmp, and nvector pthreads vector
types. As additional compatible matrix and vector implementations are added to
sundials, these will be included within this compatibility check.

This routine assumes no other changes to solver use are necessary.

Deprecated Name For backward compatibility, the wrapper function SUNKLUReInit with idential in-
put and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol KLUReInit when using the Fortran 2003
interface module.

SUNLinSol KLUSetOrdering

Call retval = SUNLinSol KLUSetOrdering(LS, ordering);

Description This function sets the ordering used by klu for reducing fill in the linear solve.

Arguments LS (SUNLinearSolver) the sunlinsol klu object

ordering (int) flag indicating the reordering algorithm to use, the options are:

0 AMD,

1 COLAMD, and

2 the natural ordering.

The default is 1 for COLAMD.

Return value The return values from this function are SUNLS MEM NULL (S is NULL),
SUNLS ILL INPUT (invalid ordering choice), or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNKLUSetOrdering with iden-
tial input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol KLUSetOrdering when using the Fortran
2003 interface module.

9.9.3 SUNLinearSolver KLU Fortran interfaces

The sunlinsol klu module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.
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FORTRAN 2003 interface module

The fsunlinsol klu mod Fortran module defines interfaces to all sunlinsol klu C functions using
the intrinsic iso c binding module which provides a standardized mechanism for interoperating with
C. As noted in the C function descriptions above, the interface functions are named after the corre-
sponding C function, but with a leading ‘F’. For example, the function SUNLinSol klu is interfaced
as FSUNLinSol klu.

The Fortran 2003 sunlinsol klu interface module can be accessed with the use statement,
i.e. use fsunlinsol klu mod, and linking to the library libsundials fsunlinsolklu mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol klu mod.mod

are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol klu module also includes a
Fortran-callable function for creating a SUNLinearSolver object.

FSUNKLUINIT

Call FSUNKLUINIT(code, ier)

Description The function FSUNKLUINIT can be called for Fortran programs to create a sunlin-
sol klu object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol klu module in-
cludes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSKLUINIT

Call FSUNMASSKLUINIT(ier)

Description The function FSUNMASSKLUINIT can be called for Fortran programs to create a KLU-
based SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

The SUNLinSol KLUReInit and SUNLinSol KLUSetOrdering routines also support Fortran inter-
faces for the system and mass matrix solvers:

FSUNKLUREINIT

Call FSUNKLUREINIT(code, nnz, reinit type, ier)

Description The function FSUNKLUREINIT can be called for Fortran programs to re-initialize a sun-
linsol klu object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida,
3 for kinsol, and 4 for arkode).

nnz (sunindextype*) the new number of nonzeros in the matrix
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reinit type (int*) flag governing the level of reinitialization. The allowed values are:

1 – The Jacobian matrix will be destroyed and a new one will be allo-
cated based on the nnz value passed to this call. New symbolic and
numeric factorizations will be completed at the next solver setup.

2 – Only symbolic and numeric factorizations will be completed. It is
assumed that the Jacobian size has not exceeded the size of nnz given
in the sparse matrix provided to the original constructor routine (or
the previous SUNLinSol KLUReInit call).

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUReInit for complete further documentation of this routine.

FSUNMASSKLUREINIT

Call FSUNMASSKLUREINIT(nnz, reinit type, ier)

Description The function FSUNMASSKLUREINIT can be called for Fortran programs to re-initialize a
sunlinsol klu object for mass matrix linear systems.

Arguments The arguments are identical to FSUNKLUREINIT above, except that code is not needed
since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUReInit for complete further documentation of this routine.

FSUNKLUSETORDERING

Call FSUNKLUSETORDERING(code, ordering, ier)

Description The function FSUNKLUSETORDERING can be called for Fortran programs to change the
reordering algorithm used by klu.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

ordering (int*) flag indication the reordering algorithm to use. Options include:

0 AMD,

1 COLAMD, and

2 the natural ordering.

The default is 1 for COLAMD.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUSetOrdering for complete further documentation of this routine.

FSUNMASSKLUSETORDERING

Call FSUNMASSKLUSETORDERING(ier)

Description The function FSUNMASSKLUSETORDERING can be called for Fortran programs to change
the reordering algorithm used by klu for mass matrix linear systems.

Arguments The arguments are identical to FSUNKLUSETORDERING above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUSetOrdering for complete further documentation of this routine.
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9.9.4 SUNLinearSolver KLU content

The sunlinsol klu module defines the content field of a SUNLinearSolver as the following structure:

struct _SUNLinearSolverContent_KLU {

long int last_flag;

int first_factorize;

sun_klu_symbolic *symbolic;

sun_klu_numeric *numeric;

sun_klu_common common;

sunindextype (*klu_solver)(sun_klu_symbolic*, sun_klu_numeric*,

sunindextype, sunindextype,

double*, sun_klu_common*);

};

These entries of the content field contain the following information:
last flag - last error return flag from internal function evaluations,

first factorize - flag indicating whether the factorization has ever been performed,

symbolic - klu storage structure for symbolic factorization components,

numeric - klu storage structure for numeric factorization components,

common - storage structure for common klu solver components,

klu solver – pointer to the appropriate klu solver function (depending on whether it is using
a CSR or CSC sparse matrix).

9.10 The SUNLinearSolver SuperLUMT implementation

This section describes the sunlinsol implementation for solving sparse linear systems with Su-
perLU MT. The superlumt module is designed to be used with the corresponding sunmatrix sparse
matrix type, and one of the serial or shared-memory nvector implementations (nvector serial,
nvector openmp, or nvector pthreads). While these are compatible, it is not recommended to
use a threaded vector module with sunlinsol superlumt unless it is the nvector openmp module
and the superlumt library has also been compiled with OpenMP.

The header file to include when using this module is sunlinsol/sunlinsol superlumt.h. The
installed module library to link to is libsundials sunlinsolsuperlumt.lib where .lib is typically
.so for shared libraries and .a for static libraries.

The sunlinsol superlumt module is a sunlinsol wrapper for the superlumt sparse matrix
factorization and solver library written by X. Sherry Li [2, 34, 16]. The package performs matrix fac-
torization using threads to enhance efficiency in shared memory parallel environments. It should be
noted that threads are only used in the factorization step. In order to use the sunlinsol superlumt
interface to superlumt, it is assumed that superlumt has been installed on the system prior to in-
stallation of sundials, and that sundials has been configured appropriately to link with superlumt
(see Appendix A for details). Additionally, this wrapper only supports single- and double-precision
calculations, and therefore cannot be compiled if sundials is configured to have realtype set to
extended (see Section 4.2). Moreover, since the superlumt library may be installed to support
either 32-bit or 64-bit integers, it is assumed that the superlumt library is installed using the same
integer precision as the sundials sunindextype option. !

9.10.1 SUNLinearSolver SuperLUMT description

The superlumt library has a symbolic factorization routine that computes the permutation of the
linear system matrix to reduce fill-in on subsequent LU factorizations (using COLAMD, minimal
degree ordering on AT ∗ A, minimal degree ordering on AT + A, or natural ordering). Of these
ordering choices, the default value in the sunlinsol superlumt module is the COLAMD ordering.
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Since the linear systems that arise within the context of sundials calculations will typically have
identical sparsity patterns, the sunlinsol superlumt module is constructed to perform the following
operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.

• On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors
the input matrix.

• The “solve” call performs pivoting and forward and backward substitution using the stored
superlumt data structures. We note that in this solve superlumt operates on the native data
arrays for the right-hand side and solution vectors, without requiring costly data copies.

9.10.2 SUNLinearSolver SuperLUMT functions

The module sunlinsol superlumt provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SuperLUMT

Call LS = SUNLinSol SuperLUMT(y, A, num threads);

Description The function SUNLinSol SuperLUMT creates and allocates memory for a
SuperLU MT-based SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix sparse matrix template for cloning ma-
trices needed within the solver

num threads (int) desired number of threads (OpenMP or Pthreads, depending
on how superlumt was installed) to use during the factorization
steps

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine analyzes the input matrix and vector to determine the linear system
size and to assess compatibility with the superlumt library.

This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix sparse matrix type (using either CSR or CSC storage formats)
and the nvector serial, nvector openmp, and nvector pthreads vector
types. As additional compatible matrix and vector implementations are added to
sundials, these will be included within this compatibility check.

The num threads argument is not checked and is passed directly to superlumt
routines.

Deprecated Name For backward compatibility, the wrapper function SUNSuperLUMT with idential in-
put and output arguments is also provided.

The sunlinsol superlumt module defines implementations of all “direct” linear solver operations
listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType SuperLUMT

• SUNLinSolInitialize SuperLUMT – this sets the first factorize flag to 1 and resets the
internal superlumt statistics variables.

• SUNLinSolSetup SuperLUMT – this performs either a LU factorization or refactorization of the
input matrix.
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• SUNLinSolSolve SuperLUMT – this calls the appropriate superlumt solve routine to utilize the
LU factors to solve the linear system.

• SUNLinSolLastFlag SuperLUMT

• SUNLinSolSpace SuperLUMT – this only returns information for the storage within the solver
interface, i.e. storage for the integers last flag and first factorize. For additional space
requirements, see the superlumt documentation.

• SUNLinSolFree SuperLUMT

The sunlinsol superlumt module also defines the following additional user-callable function.

SUNLinSol SuperLUMTSetOrdering

Call retval = SUNLinSol SuperLUMTSetOrdering(LS, ordering);

Description This function sets the ordering used by superlumt for reducing fill in the linear
solve.

Arguments LS (SUNLinearSolver) the sunlinsol superlumt object

ordering (int) a flag indicating the ordering algorithm to use, the options are:

0 natural ordering

1 minimal degree ordering on ATA

2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

Return value The return values from this function are SUNLS MEM NULL (S is NULL),
SUNLS ILL INPUT (invalid ordering choice), or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSuperLUMTSetOrdering with
idential input and output arguments is also provided.

9.10.3 SUNLinearSolver SuperLUMT Fortran interfaces

For solvers that include a Fortran interface module, the sunlinsol superlumt module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSUPERLUMTINIT

Call FSUNSUPERLUMTINIT(code, num threads, ier)

Description The function FSUNSUPERLUMTINIT can be called for Fortran programs to create a sun-
linsol klu object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida,
3 for kinsol, and 4 for arkode).

num threads (int*) desired number of threads (OpenMP or Pthreads, depending on
how superlumt was installed) to use during the factorization steps

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol superlumt mod-
ule includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.
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FSUNMASSSUPERLUMTINIT

Call FSUNMASSSUPERLUMTINIT(num threads, ier)

Description The function FSUNMASSSUPERLUMTINIT can be called for Fortran programs to create a
SuperLU MT-based SUNLinearSolver object for mass matrix linear systems.

Arguments num threads (int*) desired number of threads (OpenMP or Pthreads, depending on
how superlumt was installed) to use during the factorization steps.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

The SUNLinSol SuperLUMTSetOrdering routine also supports Fortran interfaces for the system and
mass matrix solvers:

FSUNSUPERLUMTSETORDERING

Call FSUNSUPERLUMTSETORDERING(code, ordering, ier)

Description The function FSUNSUPERLUMTSETORDERING can be called for Fortran programs to update
the ordering algorithm in a sunlinsol superlumt object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

ordering (int*) a flag indicating the ordering algorithm, options are:

0 natural ordering

1 minimal degree ordering on ATA

2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SuperLUMTSetOrdering for complete further documentation of this rou-
tine.

FSUNMASSUPERLUMTSETORDERING

Call FSUNMASSUPERLUMTSETORDERING(ordering, ier)

Description The function FSUNMASSUPERLUMTSETORDERING can be called for Fortran programs to
update the ordering algorithm in a sunlinsol superlumt object for mass matrix linear
systems.

Arguments ordering (int*) a flag indicating the ordering algorithm, options are:

0 natural ordering

1 minimal degree ordering on ATA

2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SuperLUMTSetOrdering for complete further documentation of this rou-
tine.
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9.10.4 SUNLinearSolver SuperLUMT content

The sunlinsol superlumt module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SuperLUMT {

long int last_flag;

int first_factorize;

SuperMatrix *A, *AC, *L, *U, *B;

Gstat_t *Gstat;

sunindextype *perm_r, *perm_c;

sunindextype N;

int num_threads;

realtype diag_pivot_thresh;

int ordering;

superlumt_options_t *options;

};

These entries of the content field contain the following information:
last flag - last error return flag from internal function evaluations,

first factorize - flag indicating whether the factorization has ever been performed,

A, AC, L, U, B - SuperMatrix pointers used in solve,

Gstat - GStat t object used in solve,

perm r, perm c - permutation arrays used in solve,

N - size of the linear system,

num threads - number of OpenMP/Pthreads threads to use,

diag pivot thresh - threshold on diagonal pivoting,

ordering - flag for which reordering algorithm to use,

options - pointer to superlumt options structure.

9.11 The SUNLinearSolver SPGMR implementation

This section describes the sunlinsol implementation of the spgmr (Scaled, Preconditioned, Gen-
eralized Minimum Residual [41]) iterative linear solver. The sunlinsol spgmr module is designed
to be compatible with any nvector implementation that supports a minimal subset of operations
(N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VConst, N VDiv, and N VDestroy).
When using Classical Gram-Schmidt, the optional function N VDotProdMulti may be supplied for
increased efficiency.

To access the sunlinsol spgmr module, include the header file sunlinsol/sunlinsol spgmr.h.
We note that the sunlinsol spgmr module is accessible from sundials packages without separately
linking to the libsundials sunlinsolspgmr module library.

9.11.1 SUNLinearSolver SPGMR description

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template nvector that is
input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spgmr
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.
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• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning,
and restarts if those options have been supplied.

9.11.2 SUNLinearSolver SPGMR functions

The sunlinsol spgmr module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPGMR

Call LS = SUNLinSol SPGMR(y, pretype, maxl);

Description The function SUNLinSol SPGMR creates and allocates memory for a spgmr
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values
are:

• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of Krylov basis vectors to use. Values ≤ 0 will result
in the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol). While
it is possible to configure a sunlinsol spgmr object to use any of the precondi-
tioning options with these solvers, this use mode is not supported and may result
in inferior performance.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMR with idential input
and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPGMR when using the Fortran 2003 inter-
face module.

The sunlinsol spgmr module defines implementations of all “iterative” linear solver operations listed
in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType SPGMR

• SUNLinSolInitialize SPGMR

• SUNLinSolSetATimes SPGMR

• SUNLinSolSetPreconditioner SPGMR
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• SUNLinSolSetScalingVectors SPGMR

• SUNLinSolSetup SPGMR

• SUNLinSolSolve SPGMR

• SUNLinSolNumIters SPGMR

• SUNLinSolResNorm SPGMR

• SUNLinSolResid SPGMR

• SUNLinSolLastFlag SPGMR

• SUNLinSolSpace SPGMR

• SUNLinSolFree SPGMR

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol spgmr module also defines the following additional user-callable functions.

SUNLinSol SPGMRSetPrecType

Call retval = SUNLinSol SPGMRSetPrecType(LS, pretype);

Description The function SUNLinSol SPGMRSetPrecType updates the type of preconditioning
to use in the sunlinsol spgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spgmr object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPGMR.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMRSetPrecType with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPGMRSetPrecType when using the Fortran
2003 interface module.

SUNLinSol SPGMRSetGSType

Call retval = SUNLinSol SPGMRSetGSType(LS, gstype);

Description The function SUNLinSol SPGMRSetPrecType sets the type of Gram-Schmidt or-
thogonalization to use in the sunlinsol spgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spgmr object to update

gstype (int) flag indicating the desired orthogonalization algorithm; allowed val-
ues are:

• MODIFIED GS (1)

• CLASSICAL GS (2)

Any other integer input will result in a failure, returning error code
SUNLS ILL INPUT.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMRSetGSType with iden-
tial input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPGMRSetGSType when using the Fortran
2003 interface module.
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SUNLinSol SPGMRSetMaxRestarts

Call retval = SUNLinSol SPGMRSetMaxRestarts(LS, maxrs);

Description The function SUNLinSol SPGMRSetMaxRestarts sets the number of GMRES restarts
to allow in the sunlinsol spgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spgmr object to update

maxrs (int) integer indicating number of restarts to allow. A negative input will
result in the default of 0.

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMRSetMaxRestarts with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPGMRSetMaxRestarts when using the
Fortran 2003 interface module.

9.11.3 SUNLinearSolver SPGMR Fortran interfaces

The sunlinsol spgmr module provides a Fortran 2003 module as well as Fortran 77 style inter-
face functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol spgmr mod Fortran module defines interfaces to all sunlinsol spgmr C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperating
with C. As noted in the C function descriptions above, the interface functions are named after the
corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPGMR is
interfaced as FSUNLinSol SPGMR.

The Fortran 2003 sunlinsol spgmr interface module can be accessed with the use statement,
i.e. use fsunlinsol spgmr mod, and linking to the library libsundials fsunlinsolspgmr mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol spgmr mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsolspgmr mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol spgmr module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSPGMRINIT

Call FSUNSPGMRINIT(code, pretype, maxl, ier)

Description The function FSUNSPGMRINIT can be called for Fortran programs to create a sunlin-
sol spgmr object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPGMR.
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Additionally, when using arkode with a non-identity mass matrix, the sunlinsol spgmr module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPGMRINIT

Call FSUNMASSSPGMRINIT(pretype, maxl, ier)

Description The function FSUNMASSSPGMRINIT can be called for Fortran programs to create a sun-
linsol spgmr object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPGMR.

The SUNLinSol SPGMRSetPrecType, SUNLinSol SPGMRSetGSType and
SUNLinSol SPGMRSetMaxRestarts routines also support Fortran interfaces for the system and mass
matrix solvers.

FSUNSPGMRSETGSTYPE

Call FSUNSPGMRSETGSTYPE(code, gstype, ier)

Description The function FSUNSPGMRSETGSTYPE can be called for Fortran programs to change the
Gram-Schmidt orthogonaliation algorithm.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

gstype (int*) flag indicating the desired orthogonalization algorithm.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetGSType for complete further documentation of this routine.

FSUNMASSSPGMRSETGSTYPE

Call FSUNMASSSPGMRSETGSTYPE(gstype, ier)

Description The function FSUNMASSSPGMRSETGSTYPE can be called for Fortran programs to change
the Gram-Schmidt orthogonaliation algorithm for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPGMRSETGSTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetGSType for complete further documentation of this routine.

FSUNSPGMRSETPRECTYPE

Call FSUNSPGMRSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPGMRSETPRECTYPE can be called for Fortran programs to change the
type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.
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Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetPrecType for complete further documentation of this routine.

FSUNMASSSPGMRSETPRECTYPE

Call FSUNMASSSPGMRSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPGMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPGMRSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetPrecType for complete further documentation of this routine.

FSUNSPGMRSETMAXRS

Call FSUNSPGMRSETMAXRS(code, maxrs, ier)

Description The function FSUNSPGMRSETMAXRS can be called for Fortran programs to change the
maximum number of restarts allowed for spgmr.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxrs (int*) maximum allowed number of restarts.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetMaxRestarts for complete further documentation of this rou-
tine.

FSUNMASSSPGMRSETMAXRS

Call FSUNMASSSPGMRSETMAXRS(maxrs, ier)

Description The function FSUNMASSSPGMRSETMAXRS can be called for Fortran programs to change
the maximum number of restarts allowed for spgmr for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPGMRSETMAXRS above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetMaxRestarts for complete further documentation of this rou-
tine.

9.11.4 SUNLinearSolver SPGMR content

The sunlinsol spgmr module defines the content field of a SUNLinearSolver as the following struc-
ture:

struct _SUNLinearSolverContent_SPGMR {

int maxl;

int pretype;

int gstype;

int max_restarts;

int numiters;
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realtype resnorm;

long int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector *V;

realtype **Hes;

realtype *givens;

N_Vector xcor;

realtype *yg;

N_Vector vtemp;

};

These entries of the content field contain the following information:
maxl - number of GMRES basis vectors to use (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

max restarts - number of GMRES restarts to allow (default is 0),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], . . . , V[maxl]. Each
vi is a vector of type nvector.,

Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th
element is given by Hes[i][j].,

givens - a length 2*maxl array which represents the Givens rotation matrices that arise in the
GMRES algorithm. These matrices are F0, F1, . . . , Fj , where

Fi =



1
. . .

1
ci −si
si ci

1
. . .

1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2]
= c1, givens[3] = s1, . . . givens[2j] = cj , givens[2j+1] = sj .,
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xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (maxl+1) array of realtype values used to hold “short” vectors (e.g. y and
g),

vtemp - temporary vector storage.

9.12 The SUNLinearSolver SPFGMR implementation

This section describes the sunlinsol implementation of the spfgmr (Scaled, Preconditioned, Flex-
ible, Generalized Minimum Residual [40]) iterative linear solver. The sunlinsol spfgmr module is
designed to be compatible with any nvector implementation that supports a minimal subset of opera-
tions (N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VConst, N VDiv, and N VDestroy).
When using Classical Gram-Schmidt, the optional function N VDotProdMulti may be supplied for in-
creased efficiency. Unlike the other Krylov iterative linear solvers supplied with sundials, spfgmr is
specifically designed to work with a changing preconditioner (e.g. from an iterative method).

To access the sunlinsol spfgmr module, include the header file sunlinsol/sunlinsol spfgmr.h.
We note that the sunlinsol spfgmr module is accessible from sundials packages without separately
linking to the libsundials sunlinsolspfgmr module library.

9.12.1 SUNLinearSolver SPFGMR description

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template nvector that is
input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with
sunlinsol spfgmr to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2

scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg )

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call, the FGMRES iteration is performed. This will include scaling, precondition-
ing, and restarts if those options have been supplied.

9.12.2 SUNLinearSolver SPFGMR functions

The sunlinsol spfgmr module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPFGMR

Call LS = SUNLinSol SPFGMR(y, pretype, maxl);

Description The function SUNLinSol SPFGMR creates and allocates memory for a spfgmr
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values are:

• PREC NONE (0)

• PREC LEFT (1)
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• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of Krylov basis vectors to use. Values ≤ 0 will result in the
default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this routine
will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consistent
nvector implementation (i.e. that it supplies the requisite vector operations). If y is
incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left preconditioning
(ida and idas) and others with only right preconditioning (kinsol). While it is possible
to configure a sunlinsol spfgmr object to use any of the preconditioning options with
these solvers, this use mode is not supported and may result in inferior performance.

F2003 Name This function is callable as FSUNLinSol SPFGMR when using the Fortran 2003 interface
module.

SUNSPFGMR The sunlinsol spfgmr module defines implementations of all “iterative” linear solver
operations listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType SPFGMR

• SUNLinSolInitialize SPFGMR

• SUNLinSolSetATimes SPFGMR

• SUNLinSolSetPreconditioner SPFGMR

• SUNLinSolSetScalingVectors SPFGMR

• SUNLinSolSetup SPFGMR

• SUNLinSolSolve SPFGMR

• SUNLinSolNumIters SPFGMR

• SUNLinSolResNorm SPFGMR

• SUNLinSolResid SPFGMR

• SUNLinSolLastFlag SPFGMR

• SUNLinSolSpace SPFGMR

• SUNLinSolFree SPFGMR

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol spfgmr module also defines the following additional user-callable functions.

SUNLinSol SPFGMRSetPrecType

Call retval = SUNLinSol SPFGMRSetPrecType(LS, pretype);

Description The function SUNLinSol SPFGMRSetPrecType updates the type of preconditioning
to use in the sunlinsol spfgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spfgmr object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPFGMR.
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Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPFGMRSetPrecType with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPFGMRSetPrecType when using the For-
tran 2003 interface module.

SUNLinSol SPFGMRSetGSType

Call retval = SUNLinSol SPFGMRSetGSType(LS, gstype);

Description The function SUNLinSol SPFGMRSetPrecType sets the type of Gram-Schmidt or-
thogonalization to use in the sunlinsol spfgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spfgmr object to update

gstype (int) flag indicating the desired orthogonalization algorithm; allowed val-
ues are:

• MODIFIED GS (1)

• CLASSICAL GS (2)

Any other integer input will result in a failure, returning error code
SUNLS ILL INPUT.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPFGMRSetGSType with iden-
tial input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPFGMRSetGSType when using the Fortran
2003 interface module.

SUNLinSol SPFGMRSetMaxRestarts

Call retval = SUNLinSol SPFGMRSetMaxRestarts(LS, maxrs);

Description The function SUNLinSol SPFGMRSetMaxRestarts sets the number of GMRES
restarts to allow in the sunlinsol spfgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spfgmr object to update

maxrs (int) integer indicating number of restarts to allow. A negative input will
result in the default of 0.

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPFGMRSetMaxRestarts with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPFGMRSetMaxRestarts when using the
Fortran 2003 interface module.

9.12.3 SUNLinearSolver SPFGMR Fortran interfaces

The sunlinsol spfgmr module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.



9.12 The SUNLinearSolver SPFGMR implementation 283

FORTRAN 2003 interface module

The fsunlinsol spfgmr mod Fortran module defines interfaces to all sunlinsol spfgmr C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPFGMR

is interfaced as FSUNLinSol SPFGMR.
The Fortran 2003 sunlinsol spfgmr interface module can be accessed with the use statement,

i.e. use fsunlinsol spfgmr mod, and linking to the library libsundials fsunlinsolspfgmr mod.lib
in addition to the C library. For details on where the library and module file
fsunlinsol spfgmr mod.mod are installed see Appendix A. We note that the module is accessible
from the Fortran 2003 sundials integrators without separately linking to the
libsundials fsunlinsolspfgmr mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol spfgmr module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSPFGMRINIT

Call FSUNSPFGMRINIT(code, pretype, maxl, ier)

Description The function FSUNSPFGMRINIT can be called for Fortran programs to create a sunlin-
sol spfgmr object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPFGMR.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol spfgmr module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPFGMRINIT

Call FSUNMASSSPFGMRINIT(pretype, maxl, ier)

Description The function FSUNMASSSPFGMRINIT can be called for Fortran programs to create a sun-
linsol spfgmr object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPFGMR.

The SUNLinSol SPFGMRSetPrecType, SUNLinSol SPFGMRSetGSType and
SUNLinSol SPFGMRSetMaxRestarts routines also support Fortran interfaces for the system and mass
matrix solvers.
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FSUNSPFGMRSETGSTYPE

Call FSUNSPFGMRSETGSTYPE(code, gstype, ier)

Description The function FSUNSPFGMRSETGSTYPE can be called for Fortran programs to change the
Gram-Schmidt orthogonaliation algorithm.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

gstype (int*) flag indicating the desired orthogonalization algorithm.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetGSType for complete further documentation of this routine.

FSUNMASSSPFGMRSETGSTYPE

Call FSUNMASSSPFGMRSETGSTYPE(gstype, ier)

Description The function FSUNMASSSPFGMRSETGSTYPE can be called for Fortran programs to change
the Gram-Schmidt orthogonaliation algorithm for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPFGMRSETGSTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetGSType for complete further documentation of this routine.

FSUNSPFGMRSETPRECTYPE

Call FSUNSPFGMRSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPFGMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetPrecType for complete further documentation of this routine.

FSUNMASSSPFGMRSETPRECTYPE

Call FSUNMASSSPFGMRSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPFGMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPFGMRSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetPrecType for complete further documentation of this routine.
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FSUNSPFGMRSETMAXRS

Call FSUNSPFGMRSETMAXRS(code, maxrs, ier)

Description The function FSUNSPFGMRSETMAXRS can be called for Fortran programs to change the
maximum number of restarts allowed for spfgmr.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxrs (int*) maximum allowed number of restarts.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetMaxRestarts for complete further documentation of this rou-
tine.

FSUNMASSSPFGMRSETMAXRS

Call FSUNMASSSPFGMRSETMAXRS(maxrs, ier)

Description The function FSUNMASSSPFGMRSETMAXRS can be called for Fortran programs to change
the maximum number of restarts allowed for spfgmr for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPFGMRSETMAXRS above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetMaxRestarts for complete further documentation of this rou-
tine.

9.12.4 SUNLinearSolver SPFGMR content

The sunlinsol spfgmr module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SPFGMR {

int maxl;

int pretype;

int gstype;

int max_restarts;

int numiters;

realtype resnorm;

long int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector *V;

N_Vector *Z;

realtype **Hes;

realtype *givens;

N_Vector xcor;

realtype *yg;

N_Vector vtemp;

};
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These entries of the content field contain the following information:
maxl - number of FGMRES basis vectors to use (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

max restarts - number of FGMRES restarts to allow (default is 0),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], . . . , V[maxl]. Each
vi is a vector of type nvector.,

Z - the array of preconditioned Krylov basis vectors z1, . . . , zmaxl+1, stored in Z[0], . . . ,
Z[maxl]. Each zi is a vector of type nvector.,

Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th
element is given by Hes[i][j].,

givens - a length 2*maxl array which represents the Givens rotation matrices that arise in the
FGMRES algorithm. These matrices are F0, F1, . . . , Fj , where

Fi =



1
. . .

1
ci −si
si ci

1
. . .

1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2]
= c1, givens[3] = s1, . . . givens[2j] = cj , givens[2j+1] = sj .,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (maxl+1) array of realtype values used to hold “short” vectors (e.g. y and
g),

vtemp - temporary vector storage.

9.13 The SUNLinearSolver SPBCGS implementation

This section describes the sunlinsol implementation of the spbcgs (Scaled, Preconditioned, Bi-
Conjugate Gradient, Stabilized [44]) iterative linear solver. The sunlinsol spbcgs module is designed
to be compatible with any nvector implementation that supports a minimal subset of operations
(N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VDiv, and N VDestroy). Unlike the
spgmr and spfgmr algorithms, spbcgs requires a fixed amount of memory that does not increase
with the number of allowed iterations.
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To access the sunlinsol spbcgs module, include the header file sunlinsol/sunlinsol spbcgs.h.
We note that the sunlinsol spbcgs module is accessible from sundials packages without separately
linking to the libsundials sunlinsolspbcgs module library.

9.13.1 SUNLinearSolver SPBCGS description

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spbcgs
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the spbcgs iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.

9.13.2 SUNLinearSolver SPBCGS functions

The sunlinsol spbcgs module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPBCGS

Call LS = SUNLinSol SPBCGS(y, pretype, maxl);

Description The function SUNLinSol SPBCGS creates and allocates memory for a spbcgs
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values
are:

• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of linear iterations to allow. Values ≤ 0 will result in
the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol). While
it is possible to configure a sunlinsol spbcgs object to use any of the precondi-
tioning options with these solvers, this use mode is not supported and may result
in inferior performance.
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Deprecated Name For backward compatibility, the wrapper function SUNSPBCGS with idential input
and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPBCGS when using the Fortran 2003 in-
terface module.

The sunlinsol spbcgs module defines implementations of all “iterative” linear solver operations
listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType SPBCGS

• SUNLinSolInitialize SPBCGS

• SUNLinSolSetATimes SPBCGS

• SUNLinSolSetPreconditioner SPBCGS

• SUNLinSolSetScalingVectors SPBCGS

• SUNLinSolSetup SPBCGS

• SUNLinSolSolve SPBCGS

• SUNLinSolNumIters SPBCGS

• SUNLinSolResNorm SPBCGS

• SUNLinSolResid SPBCGS

• SUNLinSolLastFlag SPBCGS

• SUNLinSolSpace SPBCGS

• SUNLinSolFree SPBCGS

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol spbcgs module also defines the following additional user-callable functions.

SUNLinSol SPBCGSSetPrecType

Call retval = SUNLinSol SPBCGSSetPrecType(LS, pretype);

Description The function SUNLinSol SPBCGSSetPrecType updates the type of preconditioning
to use in the sunlinsol spbcgs object.

Arguments LS (SUNLinearSolver) the sunlinsol spbcgs object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPBCGS.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPBCGSSetPrecType with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPBCGSSetPrecType when using the For-
tran 2003 interface module.
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SUNLinSol SPBCGSSetMaxl

Call retval = SUNLinSol SPBCGSSetMaxl(LS, maxl);

Description The function SUNLinSol SPBCGSSetMaxl updates the number of linear solver iter-
ations to allow.

Arguments LS (SUNLinearSolver) the sunlinsol spbcgs object to update

maxl (int) flag indicating the number of iterations to allow. Values ≤ 0 will result
in the default value (5).

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPBCGSSetMaxl with idential
input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPBCGSSetMaxl when using the Fortran
2003 interface module.

9.13.3 SUNLinearSolver SPBCGS Fortran interfaces

The sunlinsol spbcgs module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol spbcgs mod Fortran module defines interfaces to all sunlinsol spbcgs C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPBCGS

is interfaced as FSUNLinSol SPBCGS.
The Fortran 2003 sunlinsol spbcgs interface module can be accessed with the use statement,

i.e. use fsunlinsol spbcgs mod, and linking to the library libsundials fsunlinsolspbcgs mod.lib
in addition to the C library. For details on where the library and module file
fsunlinsol spbcgs mod.mod are installed see Appendix A. We note that the module is accessible
from the Fortran 2003 sundials integrators without separately linking to the
libsundials fsunlinsolspbcgs mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol spbcgs module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSPBCGSINIT

Call FSUNSPBCGSINIT(code, pretype, maxl, ier)

Description The function FSUNSPBCGSINIT can be called for Fortran programs to create a sunlin-
sol spbcgs object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPBCGS.
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Additionally, when using arkode with a non-identity mass matrix, the sunlinsol spbcgs module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPBCGSINIT

Call FSUNMASSSPBCGSINIT(pretype, maxl, ier)

Description The function FSUNMASSSPBCGSINIT can be called for Fortran programs to create a sun-
linsol spbcgs object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPBCGS.

The SUNLinSol SPBCGSSetPrecType and SUNLinSol SPBCGSSetMaxl routines also support Fortran
interfaces for the system and mass matrix solvers.

FSUNSPBCGSSETPRECTYPE

Call FSUNSPBCGSSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPBCGSSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetPrecType for complete further documentation of this routine.

FSUNMASSSPBCGSSETPRECTYPE

Call FSUNMASSSPBCGSSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPBCGSSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPBCGSSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetPrecType for complete further documentation of this routine.

FSUNSPBCGSSETMAXL

Call FSUNSPBCGSSETMAXL(code, maxl, ier)

Description The function FSUNSPBCGSSETMAXL can be called for Fortran programs to change the
maximum number of iterations to allow.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxl (int*) the number of iterations to allow.
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Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetMaxl for complete further documentation of this routine.

FSUNMASSSPBCGSSETMAXL

Call FSUNMASSSPBCGSSETMAXL(maxl, ier)

Description The function FSUNMASSSPBCGSSETMAXL can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPBCGSSETMAXL above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetMaxl for complete further documentation of this routine.

9.13.4 SUNLinearSolver SPBCGS content

The sunlinsol spbcgs module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SPBCGS {

int maxl;

int pretype;

int numiters;

realtype resnorm;

long int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector r;

N_Vector r_star;

N_Vector p;

N_Vector q;

N_Vector u;

N_Vector Ap;

N_Vector vtemp;

};

These entries of the content field contain the following information:
maxl - number of spbcgs iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,
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Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

r - a nvector which holds the current scaled, preconditioned linear system residual,

r star - a nvector which holds the initial scaled, preconditioned linear system residual,

p, q, u, Ap, vtemp - nvectors used for workspace by the spbcgs algorithm.

9.14 The SUNLinearSolver SPTFQMR implementation

This section describes the sunlinsol implementation of the sptfqmr (Scaled, Preconditioned,
Transpose-Free Quasi-Minimum Residual [20]) iterative linear solver. The sunlinsol sptfqmr mod-
ule is designed to be compatible with any nvector implementation that supports a minimal sub-
set of operations (N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VConst, N VDiv, and
N VDestroy). Unlike the spgmr and spfgmr algorithms, sptfqmr requires a fixed amount of memory
that does not increase with the number of allowed iterations.

To access the sunlinsol sptfqmr module, include the header file
sunlinsol/sunlinsol sptfqmr.h. We note that the sunlinsol sptfqmr module is accessible from
sundials packages without separately linking to the libsundials sunlinsolsptfqmr module library.

9.14.1 SUNLinearSolver SPTFQMR description

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with
sunlinsol sptfqmr to supply the ATimes, PSetup, and Psolve function pointers and s1 and
s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the TFQMR iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.

9.14.2 SUNLinearSolver SPTFQMR functions

The sunlinsol sptfqmr module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPTFQMR

Call LS = SUNLinSol SPTFQMR(y, pretype, maxl);

Description The function SUNLinSol SPTFQMR creates and allocates memory for a sptfqmr
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values
are:
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• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of linear iterations to allow. Values ≤ 0 will result in
the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol). While
it is possible to configure a sunlinsol sptfqmr object to use any of the precondi-
tioning options with these solvers, this use mode is not supported and may result
in inferior performance.

Deprecated Name For backward compatibility, the wrapper function SUNSPTFQMR with idential input
and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPTFQMR when using the Fortran 2003
interface module.

The sunlinsol sptfqmr module defines implementations of all “iterative” linear solver operations
listed in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType SPTFQMR

• SUNLinSolInitialize SPTFQMR

• SUNLinSolSetATimes SPTFQMR

• SUNLinSolSetPreconditioner SPTFQMR

• SUNLinSolSetScalingVectors SPTFQMR

• SUNLinSolSetup SPTFQMR

• SUNLinSolSolve SPTFQMR

• SUNLinSolNumIters SPTFQMR

• SUNLinSolResNorm SPTFQMR

• SUNLinSolResid SPTFQMR

• SUNLinSolLastFlag SPTFQMR

• SUNLinSolSpace SPTFQMR

• SUNLinSolFree SPTFQMR

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol sptfqmr module also defines the following additional user-callable functions.
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SUNLinSol SPTFQMRSetPrecType

Call retval = SUNLinSol SPTFQMRSetPrecType(LS, pretype);

Description The function SUNLinSol SPTFQMRSetPrecType updates the type of preconditioning
to use in the sunlinsol sptfqmr object.

Arguments LS (SUNLinearSolver) the sunlinsol sptfqmr object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPTFQMR.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPTFQMRSetPrecType with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPTFQMRSetPrecType when using the For-
tran 2003 interface module.

SUNLinSol SPTFQMRSetMaxl

Call retval = SUNLinSol SPTFQMRSetMaxl(LS, maxl);

Description The function SUNLinSol SPTFQMRSetMaxl updates the number of linear solver iterations
to allow.

Arguments LS (SUNLinearSolver) the sunlinsol sptfqmr object to update

maxl (int) flag indicating the number of iterations to allow; values ≤ 0 will result in
the default value (5)

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

F2003 Name This function is callable as FSUNLinSol SPTFQMRSetMaxl when using the Fortran 2003
interface module.

SUNSPTFQMRSetMaxl

9.14.3 SUNLinearSolver SPTFQMR Fortran interfaces

The sunlinsol spfgmr module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol sptfqmr mod Fortran module defines interfaces to all sunlinsol spfgmr C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPTFQMR

is interfaced as FSUNLinSol SPTFQMR.
The Fortran 2003 sunlinsol spfgmr interface module can be accessed with the use statement,

i.e. use fsunlinsol sptfqmr mod, and linking to the library libsundials fsunlinsolsptfqmr mod.lib
in addition to the C library. For details on where the library and module file
fsunlinsol sptfqmr mod.mod are installed see Appendix A. We note that the module is accessible
from the Fortran 2003 sundials integrators without separately linking to the
libsundials fsunlinsolsptfqmr mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol sptfqmr module also in-
cludes a Fortran-callable function for creating a SUNLinearSolver object.
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FSUNSPTFQMRINIT

Call FSUNSPTFQMRINIT(code, pretype, maxl, ier)

Description The function FSUNSPTFQMRINIT can be called for Fortran programs to create a sunlin-
sol sptfqmr object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPTFQMR.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol sptfqmr module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPTFQMRINIT

Call FSUNMASSSPTFQMRINIT(pretype, maxl, ier)

Description The function FSUNMASSSPTFQMRINIT can be called for Fortran programs to create a
sunlinsol sptfqmr object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPTFQMR.

The SUNLinSol SPTFQMRSetPrecType and SUNLinSol SPTFQMRSetMaxl routines also support Fortran
interfaces for the system and mass matrix solvers.

FSUNSPTFQMRSETPRECTYPE

Call FSUNSPTFQMRSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPTFQMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetPrecType for complete further documentation of this rou-
tine.

FSUNMASSSPTFQMRSETPRECTYPE

Call FSUNMASSSPTFQMRSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPTFQMRSETPRECTYPE can be called for Fortran programs to
change the type of preconditioning for mass matrix linear systems.
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Arguments The arguments are identical to FSUNSPTFQMRSETPRECTYPE above, except that code is
not needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetPrecType for complete further documentation of this rou-
tine.

FSUNSPTFQMRSETMAXL

Call FSUNSPTFQMRSETMAXL(code, maxl, ier)

Description The function FSUNSPTFQMRSETMAXL can be called for Fortran programs to change the
maximum number of iterations to allow.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxl (int*) the number of iterations to allow.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetMaxl for complete further documentation of this routine.

FSUNMASSSPTFQMRSETMAXL

Call FSUNMASSSPTFQMRSETMAXL(maxl, ier)

Description The function FSUNMASSSPTFQMRSETMAXL can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPTFQMRSETMAXL above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetMaxl for complete further documentation of this routine.

9.14.4 SUNLinearSolver SPTFQMR content

The sunlinsol sptfqmr module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SPTFQMR {

int maxl;

int pretype;

int numiters;

realtype resnorm;

long int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector r_star;

N_Vector q;

N_Vector d;

N_Vector v;
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N_Vector p;

N_Vector *r;

N_Vector u;

N_Vector vtemp1;

N_Vector vtemp2;

N_Vector vtemp3;

};

These entries of the content field contain the following information:
maxl - number of TFQMR iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

r star - a nvector which holds the initial scaled, preconditioned linear system residual,

q, d, v, p, u - nvectors used for workspace by the SPTFQMR algorithm,

r - array of two nvectors used for workspace within the SPTFQMR algorithm,

vtemp1, vtemp2, vtemp3 - temporary vector storage.

9.15 The SUNLinearSolver PCG implementation

This section describes the sunlinsol implementaiton of the pcg (Preconditioned Conjugate Gradient
[21]) iterative linear solver. The sunlinsol pcg module is designed to be compatible with any nvec-
tor implementation that supports a minimal subset of operations (N VClone, N VDotProd, N VScale,
N VLinearSum, N VProd, and N VDestroy). Unlike the spgmr and spfgmr algorithms, pcg requires
a fixed amount of memory that does not increase with the number of allowed iterations.

To access the sunlinsol pcg module, include the header file
sunlinsol/sunlinsol pcg.h. We note that the sunlinsol pcg module is accessible from sundials
packages without separately linking to the libsundials sunlinsolpcg module library.

9.15.1 SUNLinearSolver PCG description

Unlike all of the other iterative linear solvers supplied with sundials, pcg should only be used on
symmetric linear systems (e.g. mass matrix linear systems encountered in arkode). As a result, the
explanation of the role of scaling and preconditioning matrices given in general must be modified in
this scenario. The pcg algorithm solves a linear system Ax = b where A is a symmetric (AT = A),
real-valued matrix. Preconditioning is allowed, and is applied in a symmetric fashion on both the
right and left. Scaling is also allowed and is applied symmetrically. We denote the preconditioner and
scaling matrices as follows:

• P is the preconditioner (assumed symmetric),

• S is a diagonal matrix of scale factors.
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The matrices A and P are not required explicitly; only routines that provide A and P−1 as operators
are required. The diagonal of the matrix S is held in a single nvector, supplied by the user.

In this notation, pcg applies the underlying CG algorithm to the equivalent transformed system

Ãx̃ = b̃ (9.4)

where

Ã = SP−1AP−1S,

b̃ = SP−1b, (9.5)

x̃ = S−1Px.

The scaling matrix must be chosen so that the vectors SP−1b and S−1Px have dimensionless com-
ponents.

The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

‖b̃− Ãx̃‖2 < δ

⇔
‖SP−1b− SP−1Ax‖2 < δ

⇔
‖P−1b− P−1Ax‖S < δ

where ‖v‖S =
√
vTSTSv, with an input tolerance δ.

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol pcg
to supply the ATimes, PSetup, and Psolve function pointers and s scaling vector.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the pcg iteration is performed. This will include scaling and preconditioning
if those options have been supplied.

9.15.2 SUNLinearSolver PCG functions

The sunlinsol pcg module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol PCG

Call LS = SUNLinSol PCG(y, pretype, maxl);

Description The function SUNLinSol PCG creates and allocates memory for a pcg SUNLinearSolver

object.

Arguments y (N Vector) a template for cloning vectors needed within the solver
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pretype (int) flag indicating whether to use preconditioning. Since the pcg al-
gorithm is designed to only support symmetric preconditioning, then any
of the pretype inputs PREC LEFT (1), PREC RIGHT (2), or PREC BOTH (3)
will result in use of the symmetric preconditioner; any other integer input
will result in the default (no preconditioning).

maxl (int) the number of linear iterations to allow; values ≤ 0 will result in
the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

Although some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol), pcg
should only be used with these packages when the linear systems are known to be
symmetric. Since the scaling of matrix rows and columns must be identical in a
symmetric matrix, symmetric preconditioning should work appropriately even for
packages designed with one-sided preconditioning in mind.

Deprecated Name For backward compatibility, the wrapper function SUNPCG with idential input and
output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol PCG when using the Fortran 2003 interface
module.

The sunlinsol pcg module defines implementations of all “iterative” linear solver operations listed
in Sections 9.1.1 – 9.1.3:

• SUNLinSolGetType PCG

• SUNLinSolInitialize PCG

• SUNLinSolSetATimes PCG

• SUNLinSolSetPreconditioner PCG

• SUNLinSolSetScalingVectors PCG – since pcg only supports symmetric scaling, the second
nvector argument to this function is ignored

• SUNLinSolSetup PCG

• SUNLinSolSolve PCG

• SUNLinSolNumIters PCG

• SUNLinSolResNorm PCG

• SUNLinSolResid PCG

• SUNLinSolLastFlag PCG

• SUNLinSolSpace PCG

• SUNLinSolFree PCG

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol pcg module also defines the following additional user-callable functions.
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SUNLinSol PCGSetPrecType

Call retval = SUNLinSol PCGSetPrecType(LS, pretype);

Description The function SUNLinSol PCGSetPrecType updates the flag indicating use of pre-
conditioning in the sunlinsol pcg object.

Arguments LS (SUNLinearSolver) the sunlinsol pcg object to update

pretype (int) flag indicating use of preconditioning, allowed values match those
discussed in SUNLinSol PCG.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNPCGSetPrecType with iden-
tial input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol PCGSetPrecType when using the Fortran
2003 interface module.

SUNLinSol PCGSetMaxl

Call retval = SUNLinSol PCGSetMaxl(LS, maxl);

Description The function SUNLinSol PCGSetMaxl updates the number of linear solver iterations
to allow.

Arguments LS (SUNLinearSolver) the sunlinsol pcg object to update

maxl (int) flag indicating the number of iterations to allow; values ≤ 0 will result
in the default value (5)

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNPCGSetMaxl with idential
input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol PCGSetMaxl when using the Fortran 2003
interface module.

9.15.3 SUNLinearSolver PCG Fortran interfaces

The sunlinsol pcg module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol pcg mod Fortran module defines interfaces to all sunlinsol pcg C functions using
the intrinsic iso c binding module which provides a standardized mechanism for interoperating with
C. As noted in the C function descriptions above, the interface functions are named after the corre-
sponding C function, but with a leading ‘F’. For example, the function SUNLinSol PCG is interfaced
as FSUNLinSol PCG.

The Fortran 2003 sunlinsol pcg interface module can be accessed with the use statement,
i.e. use fsunlinsol pcg mod, and linking to the library libsundials fsunlinsolpcg mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol pcg mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsolpcg mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol pcg module also includes a
Fortran-callable function for creating a SUNLinearSolver object.
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FSUNPCGINIT

Call FSUNPCGINIT(code, pretype, maxl, ier)

Description The function FSUNPCGINIT can be called for Fortran programs to create a sunlin-
sol pcg object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function SUNLinSol PCG.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol pcg module in-
cludes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSPCGINIT

Call FSUNMASSPCGINIT(pretype, maxl, ier)

Description The function FSUNMASSPCGINIT can be called for Fortran programs to create a sunlin-
sol pcg object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function SUNLinSol PCG.

The SUNLinSol PCGSetPrecType and SUNLinSol PCGSetMaxl routines also support Fortran interfaces
for the system and mass matrix solvers.

FSUNPCGSETPRECTYPE

Call FSUNPCGSETPRECTYPE(code, pretype, ier)

Description The function FSUNPCGSETPRECTYPE can be called for Fortran programs to change the
type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetPrecType for complete further documentation of this routine.

FSUNMASSPCGSETPRECTYPE

Call FSUNMASSPCGSETPRECTYPE(pretype, ier)

Description The function FSUNMASSPCGSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNPCGSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.
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Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetPrecType for complete further documentation of this routine.

FSUNPCGSETMAXL

Call FSUNPCGSETMAXL(code, maxl, ier)

Description The function FSUNPCGSETMAXL can be called for Fortran programs to change the maxi-
mum number of iterations to allow.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxl (int*) the number of iterations to allow.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetMaxl for complete further documentation of this routine.

FSUNMASSPCGSETMAXL

Call FSUNMASSPCGSETMAXL(maxl, ier)

Description The function FSUNMASSPCGSETMAXL can be called for Fortran programs to change the
type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNPCGSETMAXL above, except that code is not needed
since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetMaxl for complete further documentation of this routine.

9.15.4 SUNLinearSolver PCG content

The sunlinsol pcg module defines the content field of a SUNLinearSolver as the following structure:

struct _SUNLinearSolverContent_PCG {

int maxl;

int pretype;

int numiters;

realtype resnorm;

long int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s;

N_Vector r;

N_Vector p;

N_Vector z;

N_Vector Ap;

};

These entries of the content field contain the following information:
maxl - number of pcg iterations to allow (default is 5),

pretype - flag for use of preconditioning (default is none),
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numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s - vector pointer for supplied scaling matrix (default is NULL),

r - a nvector which holds the preconditioned linear system residual,

p, z, Ap - nvectors used for workspace by the pcg algorithm.

9.16 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make
use of the functions in test sunlinsol.c. These example functions show simple usage of the
SUNLinearSolver family of functions. The inputs to the examples depend on the linear solver type,
and are output to stdout if the example is run without the appropriate number of command-line
arguments.
The following is a list of the example functions in test sunlinsol.c:

• Test SUNLinSolGetType: Verifies the returned solver type against the value that should be
returned.

• Test SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns
successfully.

• Test SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

• Test SUNLinSolSolve: Given a sunmatrix object A, nvector objects x and b (where Ax = b)
and a desired solution tolerance tol, this routine clones x into a new vector y, calls
SUNLinSolSolve to fill y as the solution to Ay = b (to the input tolerance), verifies that each
entry in x and y match to within 10*tol, and overwrites x with y prior to returning (in case
the calling routine would like to investigate further).

• Test SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be
called and returns successfully.

• Test SUNLinSolSetPreconditioner (iterative solvers only): Verifies that
SUNLinSolSetPreconditioner can be called and returns successfully.

• Test SUNLinSolSetScalingVectors (iterative solvers only): Verifies that
SUNLinSolSetScalingVectors can be called and returns successfully.

• Test SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the
result to stdout.

• Test SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be
called, and outputs the result to stdout.

• Test SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called,
and that the result is non-negative.

• Test SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.
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• Test SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to
stdout.

We’ll note that these tests should be performed in a particular order. For either direct or iterative
linear solvers, Test SUNLinSolInitialize must be called before Test SUNLinSolSetup, which must
be called before Test SUNLinSolSolve. Additionally, for iterative linear solvers
Test SUNLinSolSetATimes, Test SUNLinSolSetPreconditioner and
Test SUNLinSolSetScalingVectors should be called before Test SUNLinSolInitialize; similarly
Test SUNLinSolNumIters, Test SUNLinSolResNorm and Test SUNLinSolResid should be called after
Test SUNLinSolSolve. These are called in the appropriate order in all of the example problems.



Chapter 10

Description of the
SUNNonlinearSolver module

sundials time integration packages are written in terms of generic nonlinear solver operations de-
fined by the sunnonlinsol API and implemented by a particular sunnonlinsol module of type
SUNNonlinearSolver. Users can supply their own sunnonlinsol module, or use one of the modules
provided with sundials.

The time integrators in sundials specify a default nonlinear solver module and as such this chapter
is intended for users that wish to use a non-default nonlinear solver module or would like to provide
their own nonlinear solver implementation. Users interested in using a non-default solver module
may skip the description of the sunnonlinsol API in section 10.1 and proceeded to the subsequent
sections in this chapter that describe the sunnonlinsol modules provided with sundials.

For users interested in providing their own sunnonlinsol module, the following section presents
the sunnonlinsol API and its implementation beginning with the definition of sunnonlinsol func-
tions in sections 10.1.1 – 10.1.3. This is followed by the definition of functions supplied to a nonlinear
solver implementation in section 10.1.4. A table of nonlinear solver return codes is given in section
10.1.5. The SUNNonlinearSolver type and the generic sunnonlinsol module are defined in section
10.1.6. Section 10.1.7 describes how sunnonlinsol models interface with sundials integrators pro-
viding sensitivity analysis capabilities (cvodes and idas). Finally, section 10.1.8 lists the requirements
for supplying a custom sunnonlinsol module. Users wishing to supply their own sunnonlinsol
module are encouraged to use the sunnonlinsol implementations provided with sundials as a tem-
plate for supplying custom nonlinear solver modules.

10.1 The SUNNonlinearSolver API

The sunnonlinsol API defines several nonlinear solver operations that enable sundials integrators
to utilize any sunnonlinsol implementation that provides the required functions. These functions
can be divided into three categories. The first are the core nonlinear solver functions. The second
group of functions consists of set routines to supply the nonlinear solver with functions provided
by the sundials time integrators and to modify solver parameters. The final group consists of get
routines for retrieving nonlinear solver statistics. All of these functions are defined in the header file
sundials/sundials nonlinearsolver.h.

10.1.1 SUNNonlinearSolver core functions

The core nonlinear solver functions consist of two required functions to get the nonlinear solver type
(SUNNonlinsSolGetType) and solve the nonlinear system (SUNNonlinSolSolve). The remaining three
functions for nonlinear solver initialization (SUNNonlinSolInitialization), setup
(SUNNonlinSolSetup), and destruction (SUNNonlinSolFree) are optional.
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SUNNonlinSolGetType

Call type = SUNNonlinSolGetType(NLS);

Description The required function SUNNonlinSolGetType returns nonlinear solver type.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

Return value The return value type (of type int) will be one of the following:

SUNNONLINEARSOLVER ROOTFIND 0, the sunnonlinsol module solves F (y) = 0.

SUNNONLINEARSOLVER FIXEDPOINT 1, the sunnonlinsol module solves G(y) = y.

SUNNonlinSolInitialize

Call retval = SUNNonlinSolInitialize(NLS);

Description The optional function SUNNonlinSolInitialize performs nonlinear solver initialization
and may perform any necessary memory allocations.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

Return value The return value retval (of type int) is zero for a successful call and a negative value
for a failure.

Notes It is assumed all solver-specific options have been set prior to calling
SUNNonlinSolInitialize. sunnonlinsol implementations that do not require initial-
ization may set this operation to NULL.

SUNNonlinSolSetup

Call retval = SUNNonlinSolSetup(NLS, y, mem);

Description The optional function SUNNonlinSolSetup performs any solver setup needed for a non-
linear solve.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

y (N Vector) the initial iteration passed to the nonlinear solver.

mem (void *) the sundials integrator memory structure.

Return value The return value retval (of type int) is zero for a successful call and a negative value
for a failure.

Notes sundials integrators call SUNonlinSolSetup before each step attempt. sunnonlinsol
implementations that do not require setup may set this operation to NULL.

SUNNonlinSolSolve

Call retval = SUNNonlinSolSolve(NLS, y0, y, w, tol, callLSetup, mem);

Description The required function SUNNonlinSolSolve solves the nonlinear system F (y) = 0 or
G(y) = y.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

y0 (N Vector) the initial iterate for the nonlinear solve. This must remain
unchanged throughout the solution process.

y (N Vector) the solution to the nonlinear system.

w (N Vector) the solution error weight vector used for computing weighted
error norms.

tol (realtype) the requested solution tolerance in the weighted root-mean-
squared norm.

callLSetup (booleantype) a flag indicating that the integrator recommends for the
linear solver setup function to be called.



10.1 The SUNNonlinearSolver API 307

mem (void *) the sundials integrator memory structure.

Return value The return value retval (of type int) is zero for a successul solve, a positive value for
a recoverable error, and a negative value for an unrecoverable error.

SUNNonlinSolFree

Call retval = SUNNonlinSolFree(NLS);

Description The optional function SUNNonlinSolFree frees any memory allocated by the nonlinear
solver.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure. sunnonlinsol implementations that do not allocate data may set
this operation to NULL.

10.1.2 SUNNonlinearSolver set functions

The following set functions are used to supply nonlinear solver modules with functions defined by the
sundials integrators and to modify solver parameters. Only the routine for setting the nonlinear
system defining function (SUNNonlinSolSetSysFn is required. All other set functions are optional.

SUNNonlinSolSetSysFn

Call retval = SUNNonlinSolSetSysFn(NLS, SysFn);

Description The required function SUNNonlinSolSetSysFn is used to provide the nonlinear solver
with the function defining the nonlinear system. This is the function F (y) in F (y) = 0
for SUNNONLINEARSOLVER ROOTFIND modules or G(y) in G(y) = y for
SUNNONLINEARSOLVER FIXEDPOINT modules.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

SysFn (SUNNonlinSolSysFn) the function defining the nonlinear system. See section
10.1.4 for the definition of SUNNonlinSolSysFn.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

SUNNonlinSolSetLSetupFn

Call retval = SUNNonlinSolSetLSetupFn(NLS, LSetupFn);

Description The optional function SUNNonlinSolLSetupFn is called by sundials integrators to
provide the nonlinear solver with access to its linear solver setup function.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

LSetupFn (SUNNonlinSolLSetupFn) a wrapper function to the sundials integrator’s
linear solver setup function. See section 10.1.4 for the definition of
SUNNonlinLSetupFn.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

Notes The SUNNonlinLSetupFn function sets up the linear system Ax = b where A = ∂F
∂y is

the linearization of the nonlinear residual function F (y) = 0 (when using sunlinsol
direct linear solvers) or calls the user-defined preconditioner setup function (when using
sunlinsol iterative linear solvers). sunnonlinsol implementations that do not require
solving this system, do not utilize sunlinsol linear solvers, or use sunlinsol linear
solvers that do not require setup may set this operation to NULL.
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SUNNonlinSolSetLSolveFn

Call retval = SUNNonlinSolSetLSolveFn(NLS, LSolveFn);

Description The optional function SUNNonlinSolSetLSolveFn is called by sundials integrators to
provide the nonlinear solver with access to its linear solver solve function.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

LSolveFn (SUNNonlinSolLSolveFn) a wrapper function to the sundials integrator’s
linear solver solve function. See section 10.1.4 for the definition of
SUNNonlinSolLSolveFn.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

Notes The SUNNonlinLSolveFn function solves the linear system Ax = b where A = ∂F
∂y is the

linearization of the nonlinear residual function F (y) = 0. sunnonlinsol implementa-
tions that do not require solving this system or do not use sunlinsol linear solvers may
set this operation to NULL.

SUNNonlinSolSetConvTestFn

Call retval = SUNNonlinSolSetConvTestFn(NLS, CTestFn);

Description The optional function SUNNonlinSolSetConvTestFn is used to provide the nonlinear
solver with a function for determining if the nonlinear solver iteration has converged.
This is typically called by sundials integrators to define their nonlinear convergence
criteria, but may be replaced by the user.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

CTestFn (SUNNonlineSolConvTestFn) a sundials integrator’s nonlinear solver conver-
gence test function. See section 10.1.4 for the definition of
SUNNonlinSolConvTestFn.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

Notes sunnonlinsol implementations utilizing their own convergence test criteria may set
this function to NULL.

SUNNonlinSolSetMaxIters

Call retval = SUNNonlinSolSetMaxIters(NLS, maxiters);

Description The optional function SUNNonlinSolSetMaxIters sets the maximum number of non-
linear solver iterations. This is typically called by sundials integrators to define their
default iteration limit, but may be adjusted by the user.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object.

maxiters (int) the maximum number of nonlinear iterations.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure (e.g., maxiters < 1).

10.1.3 SUNNonlinearSolver get functions

The following get functions allow sundials integrators to retrieve nonlinear solver statistics. The
routines to get the current total number of iterations (SUNNonlinSolGetNumIters) and number of
convergence failures (SUNNonlinSolGetNumConvFails) are optional. The routine to get the current
nonlinear solver iteration (SUNNonlinSolGetCurIter) is required when using the convergence test
provided by the sundials integrator or by the arkode and cvode linear solver interfaces. Otherwise,
SUNNonlinSolGetCurIter is optional.
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SUNNonlinSolGetNumIters

Call retval = SUNNonlinSolGetNumIters(NLS, numiters);

Description The optional function SUNNonlinSolGetNumIters returns the total number of nonlin-
ear solver iterations. This is typically called by the sundials integrator to store the
nonlinear solver statistics, but may also be called by the user.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

numiters (long int*) the total number of nonlinear solver iterations.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

SUNNonlinSolGetCurIter

Call retval = SUNNonlinSolGetCurIter(NLS, iter);

Description The function SUNNonlinSolGetCurIter returns the iteration index of the current non-
linear solve. This function is required when using sundials integrator-provided conver-
gence tests or when using a sunlinsol spils linear solver; otherwise it is optional.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

iter (int*) the nonlinear solver iteration in the current solve starting from zero.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

SUNNonlinSolGetNumConvFails

Call retval = SUNNonlinSolGetNumConvFails(NLS, nconvfails);

Description The optional function SUNNonlinSolGetNumConvFails returns the total number of non-
linear solver convergence failures. This may be called by the sundials integrator to
store the nonlinear solver statistics, but may also be called by the user.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

nconvfails (long int*) the total number of nonlinear solver convergence failures.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

10.1.4 Functions provided by SUNDIALS integrators

To interface with sunnonlinsol modules, the sundials integrators supply a variety of routines
for evaluating the nonlinear system, calling the sunlinsol setup and solve functions, and testing
the nonlinear iteration for convergence. These integrator-provided routines translate between the
user-supplied ODE or DAE systems and the generic interfaces to the nonlinear or linear systems of
equations that result in their solution. The types for functions provided to a sunnonlinsol module
are defined in the header file sundials/sundials nonlinearsolver.h, and are described below.

SUNNonlinSolSysFn

Definition typedef int (*SUNNonlinSolSysFn)(N Vector y, N Vector F, void* mem);

Purpose These functions evaluate the nonlinear system F (y) for SUNNONLINEARSOLVER ROOTFIND

type modules or G(y) for SUNNONLINEARSOLVER FIXEDPOINT type modules. Memory
for F must by be allocated prior to calling this function. The vector y must be left
unchanged.

Arguments y is the state vector at which the nonlinear system should be evaluated.

F is the output vector containing F (y) or G(y), depending on the solver type.
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mem is the sundials integrator memory structure.

Return value The return value retval (of type int) is zero for a successul solve, a positive value for
a recoverable error, and a negative value for an unrecoverable error.

SUNNonlinSolLSetupFn

Definition typedef int (*SUNNonlinSolLSetupFn)(N Vector y, N Vector F,

booleantype jbad,

booleantype* jcur, void* mem);

Purpose These functions are wrappers to the sundials integrator’s function for setting up linear
solves with sunlinsol modules.

Arguments y is the state vector at which the linear system should be setup.

F is the value of the nonlinear system function at y.

jbad is an input indicating whether the nonlinear solver believes that A has gone stale
(SUNTRUE) or not (SUNFALSE).

jcur is an output indicating whether the routine has updated the Jacobian A (SUNTRUE)
or not (SUNFALSE).

mem is the sundials integrator memory structure.

Return value The return value retval (of type int) is zero for a successul solve, a positive value for
a recoverable error, and a negative value for an unrecoverable error.

Notes The SUNNonlinLSetupFn function sets up the linear system Ax = b where A = ∂F
∂y is

the linearization of the nonlinear residual function F (y) = 0 (when using sunlinsol
direct linear solvers) or calls the user-defined preconditioner setup function (when using
sunlinsol iterative linear solvers). sunnonlinsol implementations that do not require
solving this system, do not utilize sunlinsol linear solvers, or use sunlinsol linear
solvers that do not require setup may ignore these functions.

SUNNonlinSolLSolveFn

Definition typedef int (*SUNNonlinSolLSolveFn)(N Vector y, N Vector b, void* mem);

Purpose These functions are wrappers to the sundials integrator’s function for solving linear
systems with sunlinsol modules.

Arguments y is the input vector containing the current nonlinear iteration.

b contains the right-hand side vector for the linear solve on input and the solution
to the linear system on output.

mem is the sundials integrator memory structure.

Return value The return value retval (of type int) is zero for a successul solve, a positive value for
a recoverable error, and a negative value for an unrecoverable error.

Notes The SUNNonlinLSolveFn function solves the linear system Ax = b where A = ∂F
∂y is the

linearization of the nonlinear residual function F (y) = 0. sunnonlinsol implementa-
tions that do not require solving this system or do not use sunlinsol linear solvers may
ignore these functions.

SUNNonlinSolConvTestFn

Definition typedef int (*SUNNonlinSolConvTestFn)(SUNNonlinearSolver NLS, N Vector y,

N Vector del, realtype tol,

N Vector ewt, void* mem);

Purpose These functions are sundials integrator-specific convergence tests for nonlinear solvers
and are typically supplied by each sundials integrator, but users may supply custom
problem-specific versions as desired.
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Arguments NLS is the sunnonlinsol object.

y is the current nonlinear iterate.

del is the difference between the current and prior nonlinear iterates.

tol is the nonlinear solver tolerance.

ewt is the weight vector used in computing weighted norms.

mem is the sundials integrator memory structure.

Return value The return value of this routine will be a negative value if an unrecoverable error oc-
curred or one of the following:

SUN NLS SUCCESS the iteration is converged.

SUN NLS CONTINUE the iteration has not converged, keep iterating.

SUN NLS CONV RECVR the iteration appears to be diverging, try to recover.

Notes The tolerance passed to this routine by sundials integrators is the tolerance in a
weighted root-mean-squared norm with error weight vector ewt. sunnonlinsol mod-
ules utilizing their own convergence criteria may ignore these functions.

10.1.5 SUNNonlinearSolver return codes

The functions provided to sunnonlinsol modules by each sundials integrator, and functions within
the sundials-provided sunnonlinsol implementations utilize a common set of return codes, shown
below in Table 10.1. Here, negative values correspond to non-recoverable failures, positive values to
recoverable failures, and zero to a successful call.

Table 10.1: Description of the SUNNonlinearSolver return codes

Name Value Description

SUN NLS SUCCESS 0 successful call or converged solve

SUN NLS CONTINUE 1 the nonlinear solver is not converged, keep iterating

SUN NLS CONV RECVR 2 the nonlinear solver appears to be diverging, try to recover

SUN NLS MEM NULL -1 a memory argument is NULL

SUN NLS MEM FAIL -2 a memory access or allocation failed

SUN NLS ILL INPUT -3 an illegal input option was provided

10.1.6 The generic SUNNonlinearSolver module

sundials integrators interact with specific sunnonlinsol implementations through the generic sun-
nonlinsol module on which all other sunnonlinsol implementations are built. The
SUNNonlinearSolver type is a pointer to a structure containing an implementation-dependent content
field and an ops field. The type SUNNonlinearSolver is defined as follows:

typedef struct _generic_SUNNonlinearSolver *SUNNonlinearSolver;

struct _generic_SUNNonlinearSolver {

void *content;

struct _generic_SUNNonlinearSolver_Ops *ops;

};

where the generic SUNNonlinearSolver Ops structure is a list of pointers to the various actual non-
linear solver operations provided by a specific implementation. The generic SUNNonlinearSolver Ops

structure is defined as
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struct _generic_SUNNonlinearSolver_Ops {

SUNNonlinearSolver_Type (*gettype)(SUNNonlinearSolver);

int (*initialize)(SUNNonlinearSolver);

int (*setup)(SUNNonlinearSolver, N_Vector, void*);

int (*solve)(SUNNonlinearSolver, N_Vector, N_Vector,

N_Vector, realtype, booleantype, void*);

int (*free)(SUNNonlinearSolver);

int (*setsysfn)(SUNNonlinearSolver, SUNNonlinSolSysFn);

int (*setlsetupfn)(SUNNonlinearSolver, SUNNonlinSolLSetupFn);

int (*setlsolvefn)(SUNNonlinearSolver, SUNNonlinSolLSolveFn);

int (*setctestfn)(SUNNonlinearSolver, SUNNonlinSolConvTestFn);

int (*setmaxiters)(SUNNonlinearSolver, int);

int (*getnumiters)(SUNNonlinearSolver, long int*);

int (*getcuriter)(SUNNonlinearSolver, int*);

int (*getnumconvfails)(SUNNonlinearSolver, long int*);

};

The generic sunnonlinsol module defines and implements the nonlinear solver operations defined
in Sections 10.1.1 – 10.1.3. These routines are in fact only wrappers to the nonlinear solver op-
erations provided by a particular sunnonlinsol implementation, which are accessed through the
ops field of the SUNNonlinearSolver structure. To illustrate this point we show below the imple-
mentation of a typical nonlinear solver operation from the generic sunnonlinsol module, namely
SUNNonlinSolSolve, which solves the nonlinear system and returns a flag denoting a successful or
failed solve:

int SUNNonlinSolSolve(SUNNonlinearSolver NLS,

N_Vector y0, N_Vector y,

N_Vector w, realtype tol,

booleantype callLSetup, void* mem)

{

return((int) NLS->ops->solve(NLS, y0, y, w, tol, callLSetup, mem));

}

10.1.7 Usage with sensitivity enabled integrators

When used with sundials packages that support sensitivity analysis capabilities (e.g., cvodes and
idas) a special nvector module is used to interface with sunnonlinsol modules for solves involving
sensitivity vectors stored in an nvector array. As described below, the nvector senswrapper
module is an nvector implementation where the vector content is an nvector array. This wrapper
vector allows sunnonlinsol modules to operate on data stored as a collection of vectors.

For all sundials-provided sunnonlinsol modules a special constructor wrapper is provided so
users do not need to interact directly with the nvector senswrapper module. These constructors
follow the naming convention SUNNonlinSol ***Sens(count,...) where *** is the name of the
sunnonlinsol module, count is the size of the vector wrapper, and ... are the module-specific
constructor arguments.

The NVECTOR SENSWRAPPER module

This section describes the nvector senswrapper implementation of an nvector. To access the
nvector senswrapper module, include the header file
sundials/sundials nvector senswrapper.h.

The nvector senswrapper module defines an N Vector implementing all of the standard vectors
operations defined in Table 7.2 but with some changes to how operations are computed in order to
accommodate operating on a collection of vectors.
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1. Element-wise vector operations are computed on a vector-by-vector basis. For example, the
linear sum of two wrappers containing nv vectors of length n, N VLinearSum(a,x,b,y,z), is
computed as

zj,i = axj,i + byj,i, i = 0, . . . , n− 1, j = 0, . . . , nv − 1.

2. The dot product of two wrappers containing nv vectors of length n is computed as if it were the
dot product of two vectors of length nnv. Thus d = N VDotProd(x,y) is

d =

nv−1∑
j=0

n−1∑
i=0

xj,iyj,i.

3. All norms are computed as the maximum of the individual norms of the nv vectors in the
wrapper. For example, the weighted root mean square norm m = N VWrmsNorm(x, w) is

m = max
j

√√√√( 1

n

n−1∑
i=0

(xj,iwj,i)
2

)

To enable usage alongside other nvector modules the nvector senswrapper functions imple-
menting vector operations have SensWrapper appended to the generic vector operation name.

The nvector senswrapper module provides the following constructors for creating an nvec-
tor senswrapper:

N VNewEmpty SensWrapper

Call w = N VNewEmpty SensWrapper(count);

Description The function N VNewEmpty SensWrapper creates an empty nvector senswrapper
wrapper with space for count vectors.

Arguments count (int) the number of vectors the wrapper will contain.

Return value The return value w (of type N Vector) will be a nvector object if the constructor exits
successfully, otherwise w will be NULL.

N VNew SensWrapper

Call w = N VNew SensWrapper(count, y);

Description The function N VNew SensWrapper creates an nvector senswrapper wrapper con-
taining count vectors cloned from y.

Arguments count (int) the number of vectors the wrapper will contain.

y (N Vector) the template vectors to use in creating the vector wrapper.

Return value The return value w (of type N Vector) will be a nvector object if the constructor exits
successfully, otherwise w will be NULL.

The nvector senswrapper implementation of the nvector module defines the content field
of the N Vector to be a structure containing an N Vector array, the number of vectors in the vector
array, and a boolean flag indicating ownership of the vectors in the vector array.

struct _N_VectorContent_SensWrapper {

N_Vector* vecs;

int nvecs;

booleantype own_vecs;

};

The following macros are provided to access the content of an nvector senswrapper vector.
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• NV CONTENT SW(v) - provides access to the content structure

• NV VECS SW(v) - provides access to the vector array

• NV NVECS SW(v) - provides access to the number of vectors

• NV OWN VECS SW(v) - provides access to the ownership flag

• NV VEC SW(v,i) - provides access to the i-th vector in the vector array

10.1.8 Implementing a Custom SUNNonlinearSolver Module

A sunnonlinsol implementation must do the following:

1. Specify the content of the sunnonlinsol module.

2. Define and implement the required nonlinear solver operations defined in Sections 10.1.1 – 10.1.3.
Note that the names of the module routines should be unique to that implementation in order to
permit using more than one sunnonlinsol module (each with different SUNNonlinearSolver

internal data representations) in the same code.

3. Define and implement a user-callable constructor to create a SUNNonlinearSolver object.

Additionally, a SUNNonlinearSolver implementation may do the following:

1. Define and implement additional user-callable “set” routines acting on the SUNNonlinearSolver
object, e.g., for setting various configuration options to tune the performance of the nonlinear
solve algorithm.

2. Provide additional user-callable “get” routines acting on the SUNNonlinearSolver object, e.g.,
for returning various solve statistics.

10.2 The SUNNonlinearSolver Newton implementation

This section describes the sunnonlinsol implementation of Newton’s method. To access the sunnon-
linsol newton module, include the header file sunnonlinsol/sunnonlinsol newton.h. We note
that the sunnonlinsol newton module is accessible from sundials integrators without separately
linking to the libsundials sunnonlinsolnewton module library.

10.2.1 SUNNonlinearSolver Newton description

To find the solution to
F (y) = 0 (10.1)

given an initial guess y(0), Newton’s method computes a series of approximate solutions

y(m+1) = y(m) + δ(m+1) (10.2)

where m is the Newton iteration index, and the Newton update δ(m+1) is the solution of the linear
system

A(y(m))δ(m+1) = −F (y(m)) , (10.3)

in which A is the Jacobian matrix
A ≡ ∂F/∂y . (10.4)

Depending on the linear solver used, the sunnonlinsol newton module will employ either a Modi-
fied Newton method, or an Inexact Newton method [4, 7, 15, 17, 32]. When used with a direct linear
solver, the Jacobian matrix A is held constant during the Newton iteration, resulting in a Modified
Newton method. With a matrix-free iterative linear solver, the iteration is an Inexact Newton method.
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In both cases, calls to the integrator-supplied SUNNonlinSolLSetupFn function are made infre-
quently to amortize the increased cost of matrix operations (updating A and its factorization within
direct linear solvers, or updating the preconditioner within iterative linear solvers). Specifically, sun-
nonlinsol newton will call the SUNNonlinSolLSetupFn function in two instances:

(a) when requested by the integrator (the input callLSetSetup is SUNTRUE) before attempting the
Newton iteration, or

(b) when reattempting the nonlinear solve after a recoverable failure occurs in the Newton iteration
with stale Jacobian information (jcur is SUNFALSE). In this case, sunnonlinsol newton will
set jbad to SUNTRUE before calling the SUNNonlinSolLSetupFn function.

Whether the Jacobian matrix A is fully or partially updated depends on logic unique to each integrator-
supplied SUNNonlinSolSetupFn routine. We refer to the discussion of nonlinear solver strategies
provided in Chapter 2 for details on this decision.

The default maximum number of iterations and the stopping criteria for the Newton iteration
are supplied by the sundials integrator when sunnonlinsol newton is attached to it. Both the
maximum number of iterations and the convergence test function may be modified by the user by
calling the SUNNonlinSolSetMaxIters and/or SUNNonlinSolSetConvTestFn functions after attaching
the sunnonlinsol newton object to the integrator.

10.2.2 SUNNonlinearSolver Newton functions

The sunnonlinsol newton module provides the following constructors for creating a
SUNNonlinearSolver object.

SUNNonlinSol Newton

Call NLS = SUNNonlinSol Newton(y);

Description The function SUNNonlinSol Newton creates a SUNNonlinearSolver object for use with
sundials integrators to solve nonlinear systems of the form F (y) = 0 using Newton’s
method.

Arguments y (N Vector) a template for cloning vectors needed within the solver.

Return value The return value NLS (of type SUNNonlinearSolver) will be a sunnonlinsol object if
the constructor exits successfully, otherwise NLS will be NULL.

F2003 Name This function is callable as FSUNNonlinSol Newton when using the Fortran 2003 inter-
face module.

SUNNonlinSol NewtonSens

Call NLS = SUNNonlinSol NewtonSens(count, y);

Description The function SUNNonlinSol NewtonSens creates a SUNNonlinearSolver object for use
with sundials sensitivity enabled integrators (cvodes and idas) to solve nonlinear
systems of the form F (y) = 0 using Newton’s method.

Arguments count (int) the number of vectors in the nonlinear solve. When integrating a system
containing Ns sensitivities the value of count is:

• Ns+1 if using a simultaneous corrector approach.

• Ns if using a staggered corrector approach.

y (N Vector) a template for cloning vectors needed within the solver.

Return value The return value NLS (of type SUNNonlinearSolver) will be a sunnonlinsol object if
the constructor exits successfully, otherwise NLS will be NULL.

F2003 Name This function is callable as FSUNNonlinSol NewtonSens when using the Fortran 2003
interface module.
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The sunnonlinsol newton module implements all of the functions defined in sections 10.1.1 – 10.1.3
except for the SUNNonlinSolSetup function. The sunnonlinsol newton functions have the same
names as those defined by the generic sunnonlinsol API with Newton appended to the function
name. Unless using the sunnonlinsol newton module as a standalone nonlinear solver the generic
functions defined in sections 10.1.1 – 10.1.3 should be called in favor of the sunnonlinsol newton-
specific implementations.

The sunnonlinsol newton module also defines the following additional user-callable function.

SUNNonlinSolGetSysFn Newton

Call retval = SUNNonlinSolGetSysFn Newton(NLS, SysFn);

Description The function SUNNonlinSolGetSysFn Newton returns the residual function that defines
the nonlinear system.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

SysFn (SUNNonlinSolSysFn*) the function defining the nonlinear system.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

Notes This function is intended for users that wish to evaluate the nonlinear residual in a
custom convergence test function for the sunnonlinsol newton module. We note
that sunnonlinsol newton will not leverage the results from any user calls to SysFn.

F2003 Name This function is callable as FSUNNonlinSolGetSysFn Newton when using the Fortran
2003 interface module.

10.2.3 SUNNonlinearSolver Newton Fortran interfaces

The sunnonlinsol newton module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunnonlinsol newton mod Fortran module defines interfaces to all sunnonlinsol newton
C functions using the intrinsic iso c binding module which provides a standardized mechanism
for interoperating with C. As noted in the C function descriptions above, the interface functions
are named after the corresponding C function, but with a leading ‘F’. For example, the function
SUNNonlinSol Newton is interfaced as FSUNNonlinSol Newton.

The Fortran 2003 sunnonlinsol newton interface module can be accessed with the use state-
ment, i.e. use fsunnonlinsol newton mod, and linking to the library
libsundials fsunnonlinsolnewton mod.lib in addition to the C library. For details on where the
library and module file fsunnonlinsol newton mod.mod are installed see Appendix A. We note that
the module is accessible from the Fortran 2003 sundials integrators without separately linking to
the libsundials fsunnonlinsolnewton mod library.

FORTRAN 77 interface functions

For sundials integrators that include a Fortran 77 interface, the sunnonlinsol newton module
also includes a Fortran-callable function for creating a SUNNonlinearSolver object.

FSUNNEWTONINIT

Call FSUNNEWTONINIT(code, ier);

Description The function FSUNNEWTONINIT can be called for Fortran programs to create a
SUNNonlinearSolver object for use with sundials integrators to solve nonlinear sys-
tems of the form F (y) = 0 with Newton’s method.
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Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, and 4
for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

10.2.4 SUNNonlinearSolver Newton content

The sunnonlinsol newton module defines the content field of a SUNNonlinearSolver as the fol-
lowing structure:

struct _SUNNonlinearSolverContent_Newton {

SUNNonlinSolSysFn Sys;

SUNNonlinSolLSetupFn LSetup;

SUNNonlinSolLSolveFn LSolve;

SUNNonlinSolConvTestFn CTest;

N_Vector delta;

booleantype jcur;

int curiter;

int maxiters;

long int niters;

long int nconvfails;

};

These entries of the content field contain the following information:
Sys - the function for evaluating the nonlinear system,

LSetup - the package-supplied function for setting up the linear solver,

LSolve - the package-supplied function for performing a linear solve,

CTest - the function for checking convergence of the Newton iteration,

delta - the Newton iteration update vector,

jcur - the Jacobian status (SUNTRUE = current, SUNFALSE = stale),

curiter - the current number of iterations in the solve attempt,

maxiters - the maximum number of Newton iterations allowed in a solve, and

niters - the total number of nonlinear iterations across all solves.

nconvfails - the total number of nonlinear convergence failures across all solves.

10.3 The SUNNonlinearSolver FixedPoint implementation

This section describes the sunnonlinsol implementation of a fixed point (functional) iteration with
optional Anderson acceleration. To access the sunnonlinsol fixedpoint module, include the header
file sunnonlinsol/sunnonlinsol fixedpoint.h. We note that the sunnonlinsol fixedpoint mod-
ule is accessible from sundials integrators without separately linking to the
libsundials sunnonlinsolfixedpoint module library.

10.3.1 SUNNonlinearSolver FixedPoint description

To find the solution to
G(y) = y (10.5)

given an initial guess y(0), the fixed point iteration computes a series of approximate solutions

y(n+1) = G(y(n)) (10.6)
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where n is the iteration index. The convergence of this iteration may be accelerated using Anderson’s
method [3, 45, 18, 35]. With Anderson acceleration using subspace size m, the series of approximate
solutions can be formulated as the linear combination

y(n+1) =

mn∑
i=0

α
(n)
i G(y(n−mn+i)) (10.7)

where mn = min{m,n} and the factors

α(n) = (α
(n)
0 , . . . , α(n)

mn
) (10.8)

solve the minimization problem minα ‖FnαT ‖2 under the constraint that
∑mn

i=0 αi = 1 where

Fn = (fn−mn
, . . . , fn) (10.9)

with fi = G(y(i)) − y(i). Due to this constraint, in the limit of m = 0 the accelerated fixed point
iteration formula (10.7) simplifies to the standard fixed point iteration (10.6).

Following the recommendations made in [45], the sunnonlinsol fixedpoint implementation
computes the series of approximate solutions as

y(n+1) = G(y(n))−
mn−1∑
i=0

γ
(n)
i ∆gn−mn+i (10.10)

with ∆gi = G(y(i+1))−G(y(i)) and where the factors

γ(n) = (γ
(n)
0 , . . . , γ

(n)
mn−1) (10.11)

solve the unconstrained minimization problem minγ ‖fn −∆Fnγ
T ‖2 where

∆Fn = (∆fn−mn , . . . ,∆fn−1), (10.12)

with ∆fi = fi+1 − fi. The least-squares problem is solved by applying a QR factorization to ∆Fn =
QnRn and solving Rnγ = QTnfn.

The acceleration subspace size m is required when constructing the sunnonlinsol fixedpoint
object. The default maximum number of iterations and the stopping criteria for the fixed point
iteration are supplied by the sundials integrator when sunnonlinsol fixedpoint is attached to
it. Both the maximum number of iterations and the convergence test function may be modified
by the user by calling SUNNonlinSolSetMaxIters and SUNNonlinSolSetConvTestFn functions after
attaching the sunnonlinsol fixedpoint object to the integrator.

10.3.2 SUNNonlinearSolver FixedPoint functions

The sunnonlinsol fixedpoint module provides the following constructors for creating a
SUNNonlinearSolver object.

SUNNonlinSol FixedPoint

Call NLS = SUNNonlinSol FixedPoint(y, m);

Description The function SUNNonlinSol FixedPoint creates a SUNNonlinearSolver object for use
with sundials integrators to solve nonlinear systems of the form G(y) = y.

Arguments y (N Vector) a template for cloning vectors needed within the solver

m (int) the number of acceleration vectors to use

Return value The return value NLS (of type SUNNonlinearSolver) will be a sunnonlinsol object if
the constructor exits successfully, otherwise NLS will be NULL.

F2003 Name This function is callable as FSUNNonlinSol FixedPoint when using the Fortran 2003
interface module.



10.3 The SUNNonlinearSolver FixedPoint implementation 319

SUNNonlinSol FixedPointSens

Call NLS = SUNNonlinSol FixedPointSens(count, y, m);

Description The function SUNNonlinSol FixedPointSens creates a SUNNonlinearSolver object for
use with sundials sensitivity enabled integrators (cvodes and idas) to solve nonlinear
systems of the form G(y) = y.

Arguments count (int) the number of vectors in the nonlinear solve. When integrating a system
containing Ns sensitivities the value of count is:

• Ns+1 if using a simultaneous corrector approach.

• Ns if using a staggered corrector approach.

y (N Vector) a template for cloning vectors needed within the solver.

m (int) the number of acceleration vectors to use.

Return value The return value NLS (of type SUNNonlinearSolver) will be a sunnonlinsol object if
the constructor exits successfully, otherwise NLS will be NULL.

F2003 Name This function is callable as FSUNNonlinSol FixedPointSens when using the Fortran
2003 interface module.

Since the accelerated fixed point iteration (10.6) does not require the setup or solution of any linear
systems, the sunnonlinsol fixedpoint module implements all of the functions defined in sections
10.1.1 – 10.1.3 except for the SUNNonlinSolSetup, SUNNonlinSolSetLSetupFn, and
SUNNonlinSolSetLSolveFn functions, that are set to NULL. The sunnonlinsol fixedpoint func-
tions have the same names as those defined by the generic sunnonlinsol API with FixedPoint

appended to the function name. Unless using the sunnonlinsol fixedpoint module as a stan-
dalone nonlinear solver the generic functions defined in sections 10.1.1 – 10.1.3 should be called in
favor of the sunnonlinsol fixedpoint-specific implementations.

The sunnonlinsol fixedpoint module also defines the following additional user-callable func-
tion.

SUNNonlinSolGetSysFn FixedPoint

Call retval = SUNNonlinSolGetSysFn FixedPoint(NLS, SysFn);

Description The function SUNNonlinSolGetSysFn FixedPoint returns the fixed-point function that
defines the nonlinear system.

Arguments NLS (SUNNonlinearSolver) a sunnonlinsol object

SysFn (SUNNonlinSolSysFn*) the function defining the nonlinear system.

Return value The return value retval (of type int) should be zero for a successful call, and a negative
value for a failure.

Notes This function is intended for users that wish to evaluate the fixed-point function in a
custom convergence test function for the sunnonlinsol fixedpoint module. We note
that sunnonlinsol fixedpoint will not leverage the results from any user calls to
SysFn.

F2003 Name This function is callable as FSUNNonlinSolGetSysFn FixedPoint when using the For-
tran 2003 interface module.

10.3.3 SUNNonlinearSolver FixedPoint Fortran interfaces

The sunnonlinsol fixedpoint module provides a Fortran 2003 module as well as Fortran 77
style interface functions for use from Fortran applications.
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FORTRAN 2003 interface module

The fsunnonlinsol fixedpoint mod Fortran module defines interfaces to all
sunnonlinsol fixedpoint C functions using the intrinsic iso c binding module which provides a
standardized mechanism for interoperating with C. As noted in the C function descriptions above, the
interface functions are named after the corresponding C function, but with a leading ‘F’. For example,
the function SUNNonlinSol FixedPoint is interfaced as FSUNNonlinSol FixedPoint.

The Fortran 2003 sunnonlinsol fixedpoint interface module can be accessed with the use

statement, i.e. use fsunnonlinsol fixedpoint mod, and linking to the library
libsundials fsunnonlinsolfixedpoint mod.lib in addition to the C library. For details on where
the library and module file fsunnonlinsol fixedpoint mod.mod are installed see Appendix A. We
note that the module is accessible from the Fortran 2003 sundials integrators without separately
linking to the libsundials fsunnonlinsolfixedpoint mod library.

FORTRAN 77 interface functions

For sundials integrators that include a Fortran 77 interface, the sunnonlinsol fixedpoint mod-
ule also includes a Fortran-callable function for creating a SUNNonlinearSolver object.

FSUNFIXEDPOINTINIT

Call FSUNFIXEDPOINTINIT(code, m, ier);

Description The function FSUNFIXEDPOINTINIT can be called for Fortran programs to create a
SUNNonlinearSolver object for use with sundials integrators to solve nonlinear sys-
tems of the form G(y) = y.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, and 4
for arkode).

m (int*) is an integer input specifying the number of acceleration vectors.

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

10.3.4 SUNNonlinearSolver FixedPoint content

The sunnonlinsol fixedpoint module defines the content field of a SUNNonlinearSolver as the
following structure:

struct _SUNNonlinearSolverContent_FixedPoint {

SUNNonlinSolSysFn Sys;

SUNNonlinSolConvTestFn CTest;

int m;

int *imap;

realtype *R;

realtype *gamma;

realtype *cvals;

N_Vector *df;

N_Vector *dg;

N_Vector *q;

N_Vector *Xvecs;

N_Vector yprev;

N_Vector gy;

N_Vector fold;

N_Vector gold;

N_Vector delta;
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int curiter;

int maxiters;

long int niters;

long int nconvfails;

};

The following entries of the content field are always allocated:
Sys - function for evaluating the nonlinear system,

CTest - function for checking convergence of the fixed point iteration,

yprev - N Vector used to store previous fixed-point iterate,

gy - N Vector used to store G(y) in fixed-point algorithm,

delta - N Vector used to store difference between successive fixed-point iterates,

curiter - the current number of iterations in the solve attempt,

maxiters - the maximum number of fixed-point iterations allowed in a solve, and

niters - the total number of nonlinear iterations across all solves.

nconvfails - the total number of nonlinear convergence failures across all solves.

m - number of acceleration vectors,

If Anderson acceleration is requested (i.e., m > 0 in the call to SUNNonlinSol FixedPoint), then the
following items are also allocated within the content field:
imap - index array used in acceleration algorithm (length m)

R - small matrix used in acceleration algorithm (length m*m)

gamma - small vector used in acceleration algorithm (length m)

cvals - small vector used in acceleration algorithm (length m+1)

df - array of N Vectors used in acceleration algorithm (length m)

dg - array of N Vectors used in acceleration algorithm (length m)

q - array of N Vectors used in acceleration algorithm (length m)

Xvecs - N Vector pointer array used in acceleration algorithm (length m+1)

fold - N Vector used in acceleration algorithm

gold - N Vector used in acceleration algorithm





Appendix A

SUNDIALS Package Installation
Procedure

The installation of any sundials package is accomplished by installing the sundials suite as a whole,
according to the instructions that follow. The same procedure applies whether or not the downloaded
file contains one or all solvers in sundials.

The sundials suite (or individual solvers) are distributed as compressed archives (.tar.gz).
The name of the distribution archive is of the form solver-x.y.z.tar.gz, where solver is one of:
sundials, cvode, cvodes, arkode, ida, idas, or kinsol, and x.y.z represents the version number
(of the sundials suite or of the individual solver). To begin the installation, first uncompress and
expand the sources, by issuing

% tar xzf solver-x.y.z.tar.gz

This will extract source files under a directory solver-x.y.z.
Starting with version 2.6.0 of sundials, CMake is the only supported method of installation.

The explanations of the installation procedure begins with a few common observations:

• The remainder of this chapter will follow these conventions:

solverdir is the directory solver-x.y.z created above; i.e., the directory containing the sundi-
als sources.

builddir is the (temporary) directory under which sundials is built.

instdir is the directory under which the sundials exported header files and libraries will be
installed. Typically, header files are exported under a directory instdir/include while
libraries are installed under instdir/CMAKE INSTALL LIBDIR, with instdir and
CMAKE INSTALL LIBDIR specified at configuration time.

• For sundials CMake-based installation, in-source builds are prohibited; in other words, the
build directory builddir can not be the same as solverdir and such an attempt will lead to
an error. This prevents “polluting” the source tree and allows efficient builds for different
configurations and/or options.

• The installation directory instdir can not be the same as the source directory solverdir. !

• By default, only the libraries and header files are exported to the installation directory instdir.
If enabled by the user (with the appropriate toggle for CMake), the examples distributed with
sundials will be built together with the solver libraries but the installation step will result
in exporting (by default in a subdirectory of the installation directory) the example sources
and sample outputs together with automatically generated configuration files that reference the
installed sundials headers and libraries. As such, these configuration files for the sundials ex-
amples can be used as “templates” for your own problems. CMake installs CMakeLists.txt files
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and also (as an option available only under Unix/Linux) Makefile files. Note this installation
approach also allows the option of building the sundials examples without having to install
them. (This can be used as a sanity check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX
modules. (Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX
shared libraries would result in “undefined symbol” errors at link time.)

A.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix
and Linux Makefiles, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the
same configuration file. In addition, CMake also provides a GUI front end and which allows an
interactive build and installation process.

The sundials build process requires CMake version 3.1.3 or higher and a working C compiler. On
Unix-like operating systems, it also requires Make (and curses, including its development libraries,
for the GUI front end to CMake, ccmake), while on Windows it requires Visual Studio. CMake is con-
tinually adding new features, and the latest version can be downloaded from http://www.cmake.org.
Build instructions for CMake (only necessary for Unix-like systems) can be found on the CMake web-
site. Once CMake is installed, Linux/Unix users will be able to use ccmake, while Windows users will
be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install sundials, it is always
required to use a separate build directory. While in-source builds are possible, they are explicitly
prohibited by the sundials CMake scripts (one of the reasons being that, unlike autotools, CMake
does not provide a make distclean procedure and it is therefore difficult to clean-up the source tree
after an in-source build). By ensuring a separate build directory, it is an easy task for the user to
clean-up all traces of the build by simply removing the build directory. CMake does generate a make

clean which will remove files generated by the compiler and linker.

A.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The instdir defaults to /usr/local and can be changed by setting the
CMAKE INSTALL PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based
GUI by using the ccmake command. Examples for using both methods will be presented. For the
examples shown it is assumed that there is a top level sundials directory with appropriate source,
build and install directories:

% mkdir (...)sundials/instdir

% mkdir (...)sundials/builddir

% cd (...)sundials/builddir

Building with the GUI

Using CMake with the GUI follows this general process:

• Select and modify values, run configure (c key)

• New values are denoted with an asterisk

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will toggle the value

– If it is string or file, it will allow editing of the string



A.1 CMake-based installation 325

– For file and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced variables, toggle to advanced mode (t key)

• To search for a variable press / key, and to repeat the search, press the n key

To build the default configuration using the GUI, from the builddir enter the ccmake command
and point to the solverdir:

% ccmake ../solverdir

The default configuration screen is shown in Figure A.1.

Figure A.1: Default configuration screen. Note: Initial screen is empty. To get this default config-
uration, press ’c’ repeatedly (accepting default values denoted with asterisk) until the ’g’ option is
available.

The default instdir for both sundials and corresponding examples can be changed by setting the
CMAKE INSTALL PREFIX and the EXAMPLES INSTALL PATH as shown in figure A.2.

Pressing the (g key) will generate makefiles including all dependencies and all rules to build sun-
dials on this system. Back at the command prompt, you can now run:
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Figure A.2: Changing the instdir for sundials and corresponding examples

% make

To install sundials in the installation directory specified in the configuration, simply run:

% make install

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with
the cmake command. The following will build the default configuration:

% cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> ../solverdir

% make

% make install

A.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based sundials configuration is provide below.
Note that the default values shown are for a typical configuration on a Linux system and are provided
as illustration only.



A.1 CMake-based installation 327

BLAS ENABLE - Enable BLAS support
Default: OFF
Note: Setting this option to ON will trigger additional CMake options. See additional informa-
tion on building with BLAS enabled in A.1.4.

BLAS LIBRARIES - BLAS library
Default: /usr/lib/libblas.so
Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

BUILD ARKODE - Build the ARKODE library
Default: ON

BUILD CVODE - Build the CVODE library
Default: ON

BUILD CVODES - Build the CVODES library
Default: ON

BUILD IDA - Build the IDA library
Default: ON

BUILD IDAS - Build the IDAS library
Default: ON

BUILD KINSOL - Build the KINSOL library
Default: ON

BUILD SHARED LIBS - Build shared libraries
Default: ON

BUILD STATIC LIBS - Build static libraries
Default: ON

CMAKE BUILD TYPE - Choose the type of build, options are: None (CMAKE C FLAGS used), Debug,
Release, RelWithDebInfo, and MinSizeRel

Default:
Note: Specifying a build type will trigger the corresponding build type specific compiler flag
options below which will be appended to the flags set by CMAKE <language> FLAGS.

CMAKE C COMPILER - C compiler
Default: /usr/bin/cc

CMAKE C FLAGS - Flags for C compiler
Default:

CMAKE C FLAGS DEBUG - Flags used by the C compiler during debug builds
Default: -g

CMAKE C FLAGS MINSIZEREL - Flags used by the C compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE C FLAGS RELEASE - Flags used by the C compiler during release builds
Default: -O3 -DNDEBUG

CMAKE CXX COMPILER - C++ compiler
Default: /usr/bin/c++
Note: A C++ compiler (and all related options) are only triggered if C++ examples are enabled
(EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ applications by
default without setting any additional configuration options.
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CMAKE CXX FLAGS - Flags for C++ compiler
Default:

CMAKE CXX FLAGS DEBUG - Flags used by the C++ compiler during debug builds
Default: -g

CMAKE CXX FLAGS MINSIZEREL - Flags used by the C++ compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE CXX FLAGS RELEASE - Flags used by the C++ compiler during release builds
Default: -O3 -DNDEBUG

CMAKE Fortran COMPILER - Fortran compiler
Default: /usr/bin/gfortran
Note: Fortran support (and all related options) are triggered only if either Fortran-C sup-
port is enabled (FCMIX ENABLE is ON) or BLAS/LAPACK support is enabled (BLAS ENABLE or
LAPACK ENABLE is ON).

CMAKE Fortran FLAGS - Flags for Fortran compiler
Default:

CMAKE Fortran FLAGS DEBUG - Flags used by the Fortran compiler during debug builds
Default: -g

CMAKE Fortran FLAGS MINSIZEREL - Flags used by the Fortran compiler during release minsize builds
Default: -Os

CMAKE Fortran FLAGS RELEASE - Flags used by the Fortran compiler during release builds
Default: -O3

CMAKE INSTALL PREFIX - Install path prefix, prepended onto install directories
Default: /usr/local
Note: The user must have write access to the location specified through this option. Ex-
ported sundials header files and libraries will be installed under subdirectories include and
CMAKE INSTALL LIBDIR of CMAKE INSTALL PREFIX, respectively.

CMAKE INSTALL LIBDIR - Library installation directory
Default:
Note: This is the directory within CMAKE INSTALL PREFIX that the sundials libraries will be
installed under. The default is automatically set based on the operating system using the
GNUInstallDirs CMake module.

Fortran INSTALL MODDIR - Fortran module installation directory
Default: fortran

CUDA ENABLE - Build the sundials cuda vector module.
Default: OFF

EXAMPLES ENABLE C - Build the sundials C examples
Default: ON

EXAMPLES ENABLE CUDA - Build the sundials cuda examples
Default: OFF
Note: You need to enable cuda support to build these examples.

EXAMPLES ENABLE CXX - Build the sundials C++ examples
Default: OFF unless Trilinos ENABLE is ON.

EXAMPLES ENABLE F77 - Build the sundials Fortran77 examples
Default: ON (if F77 INTERFACE ENABLE is ON)
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EXAMPLES ENABLE F90 - Build the sundials Fortran90/Fortran2003 examples
Default: ON (if F77 INTERFACE ENABLE or F2003 INTERFACE ENABLE is ON)

EXAMPLES INSTALL - Install example files
Default: ON
Note: This option is triggered when any of the sundials example programs are enabled
(EXAMPLES ENABLE <language> is ON). If the user requires installation of example programs
then the sources and sample output files for all sundials modules that are currently enabled
will be exported to the directory specified by EXAMPLES INSTALL PATH. A CMake configuration
script will also be automatically generated and exported to the same directory. Additionally, if
the configuration is done under a Unix-like system, makefiles for the compilation of the example
programs (using the installed sundials libraries) will be automatically generated and exported
to the directory specified by EXAMPLES INSTALL PATH.

EXAMPLES INSTALL PATH - Output directory for installing example files
Default: /usr/local/examples
Note: The actual default value for this option will be an examples subdirectory created under
CMAKE INSTALL PREFIX.

F77 INTERFACE ENABLE - Enable Fortran-C support via the Fortran 77 interfaces
Default: OFF

F2003 INTERFACE ENABLE - Enable Fortran-C support via the Fortran 2003 interfaces
Default: OFF

HYPRE ENABLE - Enable hypre support
Default: OFF
Note: See additional information on building with hypre enabled in A.1.4.

HYPRE INCLUDE DIR - Path to hypre header files

HYPRE LIBRARY DIR - Path to hypre installed library files

KLU ENABLE - Enable KLU support
Default: OFF
Note: See additional information on building with KLU enabled in A.1.4.

KLU INCLUDE DIR - Path to SuiteSparse header files

KLU LIBRARY DIR - Path to SuiteSparse installed library files

LAPACK ENABLE - Enable LAPACK support
Default: OFF
Note: Setting this option to ON will trigger additional CMake options. See additional informa-
tion on building with LAPACK enabled in A.1.4.

LAPACK LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

MPI ENABLE - Enable MPI support (build the parallel nvector).
Default: OFF
Note: Setting this option to ON will trigger several additional options related to MPI.

MPI C COMPILER - mpicc program
Default:
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MPI CXX COMPILER - mpicxx program
Default:
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON) and C++ examples are
enabled (EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ MPI appli-
cations by default without setting any additional configuration options other than MPI ENABLE.

MPI Fortran COMPILER - mpif77 or mpif90 program
Default:
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON) and Fortran-C support
is enabled (F77 INTERFACE ENABLE or F2003 INTERFACE ENABLE is ON).

MPIEXEC EXECUTABLE - Specify the executable for running MPI programs
Default: mpirun
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON).

OPENMP ENABLE - Enable OpenMP support (build the OpenMP nvector).
Default: OFF

OPENMP DEVICE ENABLE - Enable OpenMP device offloading (build the OpenMPDEV nvector) if sup-
ported by the provided compiler.
Default: OFF

SKIP OPENMP DEVICE CHECK - advanced option - Skip the check done to see if the OpenMP provided
by the compiler supports OpenMP device offloading.
Default: OFF

PETSC ENABLE - Enable petsc support
Default: OFF
Note: See additional information on building with petsc enabled in A.1.4.

PETSC INCLUDE DIR - Path to petsc header files

PETSC LIBRARY DIR - Path to petsc installed library files

PTHREAD ENABLE - Enable Pthreads support (build the Pthreads nvector).
Default: OFF

RAJA ENABLE - Enable raja support (build the raja nvector).
Default: OFF
Note: You need to enable cuda in order to build the raja vector module.

SUNDIALS F77 FUNC CASE - advanced option - Specify the case to use in the Fortran name-mangling
scheme, options are: lower or upper
Default:
Note: The build system will attempt to infer the Fortran name-mangling scheme using the
Fortran compiler. This option should only be used if a Fortran compiler is not available or
to override the inferred or default (lower) scheme if one can not be determined. If used,
SUNDIALS F77 FUNC UNDERSCORES must also be set.

SUNDIALS F77 FUNC UNDERSCORES - advanced option - Specify the number of underscores to append
in the Fortran name-mangling scheme, options are: none, one, or two
Default:
Note: The build system will attempt to infer the Fortran name-mangling scheme using the
Fortran compiler. This option should only be used if a Fortran compiler is not available
or to override the inferred or default (one) scheme if one can not be determined. If used,
SUNDIALS F77 FUNC CASE must also be set.



A.1 CMake-based installation 331

SUNDIALS INDEX TYPE - advanced option - Integer type used for sundials indices. The size must
match the size provided for the
SUNDIALS INDEX SIZE option.
Default:
Note: In past SUNDIALS versions, a user could set this option to INT64 T to use 64-bit integers,
or INT32 T to use 32-bit integers. Starting in SUNDIALS 3.2.0, these special values are dep-
recated. For SUNDIALS 3.2.0 and up, a user will only need to use the SUNDIALS INDEX SIZE

option in most cases.

SUNDIALS INDEX SIZE - Integer size (in bits) used for indices in sundials, options are: 32 or 64
Default: 64
Note: The build system tries to find an integer type of appropriate size. Candidate 64-bit
integer types are (in order of preference): int64 t, int64, long long, and long. Candidate
32-bit integers are (in order of preference): int32 t, int, and long. The advanced option,
SUNDIALS INDEX TYPE can be used to provide a type not listed here.

SUNDIALS PRECISION - Precision used in sundials, options are: double, single, or extended
Default: double

SUPERLUMT ENABLE - Enable SuperLU MT support
Default: OFF
Note: See additional information on building with SuperLU MT enabled in A.1.4.

SUPERLUMT INCLUDE DIR - Path to SuperLU MT header files (typically SRC directory)

SUPERLUMT LIBRARY DIR - Path to SuperLU MT installed library files

SUPERLUMT THREAD TYPE - Must be set to Pthread or OpenMP
Default: Pthread

Trilinos ENABLE - Enable Trilinos support (build the Tpetra nvector).
Default: OFF

Trilinos DIR - Path to the Trilinos install directory.
Default:

TRILINOS INTERFACE C COMPILER - advanced option - Set the C compiler for building the Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C compiler exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE C COMPILER or MPI C COMPILER if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same compiler that was used to build the Trilinos library.

TRILINOS INTERFACE C COMPILER FLAGS - advanced option - Set the C compiler flags for Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C compiler flags exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE C FLAGS if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same flags that were used to build the Trilinos library.

TRILINOS INTERFACE CXX COMPILER - advanced option - Set the C++ compiler for builing Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C++ compiler exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE CXX COMPILER or MPI CXX COMPILER if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same compiler that was used to build the Trilinos library.

TRILINOS INTERFACE CXX COMPILER FLAGS - advanced option - Set the C++ compiler flags for Trili-
nos interface (i.e., nvector trilinos and the examples that use it).
Default: The C++ compiler flags exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE CXX FLAGS if USE XSDK DEFAULTS=ON.
Note: Is is recommended to use the same flags that were used to build the Trilinos library.
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USE GENERIC MATH - Use generic (stdc) math libraries
Default: ON

xSDK Configuration Options

sundials supports CMake configuration options defined by the Extreme-scale Scientific Software
Development Kit (xSDK) community policies (see https://xsdk.info for more information). xSDK
CMake options are unused by default but may be activated by setting USE XSDK DEFAULTS to ON.

When xSDK options are active, they will overwrite the corresponding sundials option and may!

have different default values (see details below). As such the equivalent sundials options should
not be used when configuring with xSDK options. In the GUI front end to CMake (ccmake), setting
USE XSDK DEFAULTS to ON will hide the corresponding sundials options as advanced CMake variables.
During configuration, messages are output detailing which xSDK flags are active and the equivalent
sundials options that are replaced. Below is a complete list xSDK options and the corresponding
sundials options if applicable.

TPL BLAS LIBRARIES - BLAS library
Default: /usr/lib/libblas.so
sundials equivalent: BLAS LIBRARIES

Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

TPL ENABLE BLAS - Enable BLAS support
Default: OFF
sundials equivalent: BLAS ENABLE

TPL ENABLE HYPRE - Enable hypre support
Default: OFF
sundials equivalent: HYPRE ENABLE

TPL ENABLE KLU - Enable KLU support
Default: OFF
sundials equivalent: KLU ENABLE

TPL ENABLE PETSC - Enable petsc support
Default: OFF
sundials equivalent: PETSC ENABLE

TPL ENABLE LAPACK - Enable LAPACK support
Default: OFF
sundials equivalent: LAPACK ENABLE

TPL ENABLE SUPERLUMT - Enable SuperLU MT support
Default: OFF
sundials equivalent: SUPERLUMT ENABLE

TPL HYPRE INCLUDE DIRS - Path to hypre header files
sundials equivalent: HYPRE INCLUDE DIR

TPL HYPRE LIBRARIES - hypre library
sundials equivalent: N/A

TPL KLU INCLUDE DIRS - Path to KLU header files
sundials equivalent: KLU INCLUDE DIR

TPL KLU LIBRARIES - KLU library
sundials equivalent: N/A
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TPL LAPACK LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
sundials equivalent: LAPACK LIBRARIES

Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

TPL PETSC INCLUDE DIRS - Path to petsc header files
sundials equivalent: PETSC INCLUDE DIR

TPL PETSC LIBRARIES - petsc library
sundials equivalent: N/A

TPL SUPERLUMT INCLUDE DIRS - Path to SuperLU MT header files
sundials equivalent: SUPERLUMT INCLUDE DIR

TPL SUPERLUMT LIBRARIES - SuperLU MT library
sundials equivalent: N/A

TPL SUPERLUMT THREAD TYPE - SuperLU MT library thread type
sundials equivalent: SUPERLUMT THREAD TYPE

USE XSDK DEFAULTS - Enable xSDK default configuration settings
Default: OFF
sundials equivalent: N/A
Note: Enabling xSDK defaults also sets CMAKE BUILD TYPE to Debug

XSDK ENABLE FORTRAN - Enable sundials Fortran interfaces
Default: OFF
sundials equivalent: F77 INTERFACE ENABLE/F2003 INTERFACE ENABLE

XSDK INDEX SIZE - Integer size (bits) used for indices in sundials, options are: 32 or 64
Default: 32
sundials equivalent: SUNDIALS INDEX SIZE

XSDK PRECISION - Precision used in sundials, options are: double, single, or quad
Default: double
sundials equivalent: SUNDIALS PRECISION

A.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.
To configure sundials using the default C and Fortran compilers, and default mpicc and mpif77

parallel compilers, enable compilation of examples, and install libraries, headers, and example sources
under subdirectories of /home/myname/sundials/, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DMPI_ENABLE=ON \

> -DFCMIX_ENABLE=ON \

> /home/myname/sundials/solverdir

%

% make install

%

To disable installation of the examples, use:
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% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DMPI_ENABLE=ON \

> -DFCMIX_ENABLE=ON \

> -DEXAMPLES_INSTALL=OFF \

> /home/myname/sundials/solverdir

%

% make install

%

A.1.4 Working with external Libraries

The sundials suite contains many options to enable implementation flexibility when developing so-
lutions. The following are some notes addressing specific configurations when using the supported
third party libraries. When building sundials as a shared library external libraries any used with
sundials must also be build as a shared library or as a static library compiled with the -fPIC flag.!

Building with BLAS

sundials does not utilize BLAS directly but it may be needed by other external libraries that sun-
dials can be built with (e.g. LAPACK, petsc, SuperLU MT, etc.). To enable BLAS, set the
BLAS ENABLE option to ON. If the directory containing the BLAS library is in the LD LIBRARY PATH

environment variable, CMake will set the BLAS LIBRARIES variable accordingly, otherwise CMake will
attempt to find the BLAS library in standard system locations. To explicitly tell CMake what libraries
to use, the BLAS LIBRARIES variable can be set to the desired library. Example:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DBLAS_ENABLE=ON \

> -DBLAS_LIBRARIES=/myblaspath/lib/libblas.so \

> -DSUPERLUMT_ENABLE=ON \

> -DSUPERLUMT_INCLUDE_DIR=/mysuperlumtpath/SRC

> -DSUPERLUMT_LIBRARY_DIR=/mysuperlumtpath/lib

> /home/myname/sundials/solverdir

%

% make install

%

When allowing CMake to automatically locate the LAPACK library, CMake may also locate the!

corresponding BLAS library.
If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the op-

tions SUNDIALS F77 FUNC CASE and SUNDIALS F77 FUNC UNDERSCORES must be set in order to bypass
the check for a Fortran compiler and define the name-mangling scheme. The defaults for these options
in earlier versions of sundials were lower and one respectively.

Building with LAPACK

To enable LAPACK, set the LAPACK ENABLE option to ON. If the directory containing the LAPACK li-
brary is in the LD LIBRARY PATH environment variable, CMake will set the LAPACK LIBRARIES variable
accordingly, otherwise CMake will attempt to find the LAPACK library in standard system locations.
To explicitly tell CMake what library to use, the LAPACK LIBRARIES variable can be set to the de-
sired libraries. When setting the LAPACK location explicitly the location of the corresponding BLAS!

library will also need to be set. Example:
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% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DBLAS_ENABLE=ON \

> -DBLAS_LIBRARIES=/mylapackpath/lib/libblas.so \

> -DLAPACK_ENABLE=ON \

> -DLAPACK_LIBRARIES=/mylapackpath/lib/liblapack.so \

> /home/myname/sundials/solverdir

%

% make install

%

When allowing CMake to automatically locate the LAPACK library, CMake may also locate the !

corresponding BLAS library.
If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the op-

tions SUNDIALS F77 FUNC CASE and SUNDIALS F77 FUNC UNDERSCORES must be set in order to bypass
the check for a Fortran compiler and define the name-mangling scheme. The defaults for these options
in earlier versions of sundials were lower and one respectively.

Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas
A&M University website: http://faculty.cse.tamu.edu/davis/suitesparse.html. sundials has
been tested with SuiteSparse version 4.5.3. To enable KLU, set KLU ENABLE to ON, set KLU INCLUDE DIR

to the include path of the KLU installation and set KLU LIBRARY DIR to the lib path of the KLU
installation. The CMake configure will result in populating the following variables: AMD LIBRARY,
AMD LIBRARY DIR, BTF LIBRARY, BTF LIBRARY DIR, COLAMD LIBRARY, COLAMD LIBRARY DIR, and
KLU LIBRARY.

Building with SuperLU MT

The SuperLU MT libraries are available for download from the Lawrence Berkeley National Labo-
ratory website: http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/#superlu mt. sundials has been
tested with SuperLU MT version 3.1. To enable SuperLU MT, set SUPERLUMT ENABLE to ON, set
SUPERLUMT INCLUDE DIR to the SRC path of the SuperLU MT installation, and set the variable
SUPERLUMT LIBRARY DIR to the lib path of the SuperLU MT installation. At the same time, the
variable SUPERLUMT THREAD TYPE must be set to either Pthread or OpenMP.
Do not mix thread types when building sundials solvers. If threading is enabled for sundials by
having either OPENMP ENABLE or PTHREAD ENABLE set to ON then SuperLU MT should be set to use
the same threading type. !

Building with PETSc

The petsc libraries are available for download from the Argonne National Laboratory website: http://www.mcs.anl.gov/petsc.
sundials has been tested with petsc version 3.7.2. To enable petsc, set PETSC ENABLE to ON, set
PETSC INCLUDE DIR to the include path of the petsc installation, and set the variable PETSC LIBRARY DIR

to the lib path of the petsc installation.

Building with hypre

The hypre libraries are available for download from the Lawrence Livermore National Laboratory
website: http://computation.llnl.gov/projects/hypre. sundials has been tested with hypre
version 2.11.1. To enable hypre, set HYPRE ENABLE to ON, set HYPRE INCLUDE DIR to the include

path of the hypre installation, and set the variable HYPRE LIBRARY DIR to the lib path of the hypre
installation.
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Building with CUDA

sundials cuda modules and examples have been tested with version 8.0 of the cuda toolkit. To
build them, you need to install the Toolkit and compatible NVIDIA drivers. Both are available for
download from the NVIDIA website: https://developer.nvidia.com/cuda-downloads. To enable
cuda, set CUDA ENABLE to ON. If cuda is installed in a nonstandard location, you may be prompted to
set the variable CUDA TOOLKIT ROOT DIR with your cuda Toolkit installation path. To enable cuda
examples, set EXAMPLES ENABLE CUDA to ON.

Building with RAJA

raja is a performance portability layer developed by Lawrence Livermore National Laboratory and
can be obtained from https://github.com/LLNL/RAJA. sundials raja modules and examples have
been tested with raja version 0.3. Building sundials raja modules requires a cuda-enabled raja
installation. To enable raja, set CUDA ENABLE and RAJA ENABLE to ON. If raja is installed in a
nonstandard location you will be prompted to set the variable RAJA DIR with the path to the raja
CMake configuration file. To enable building the raja examples set EXAMPLES ENABLE CUDA to ON.

Building with Trilinos

Trilinos is a suite of numerical libraries developed by Sandia National Laboratories. It can be obtained
at https://github.com/trilinos/Trilinos. sundials Trilinos modules and examples have been
tested with Trilinos version 12.14. To enable Trilinos, set Trilinos ENABLE to ON. If Trilinos is installed
in a nonstandard location you will be prompted to set the variable Trilinos DIR with the path to
the Trilinos CMake configuration file. It is desireable to build the Trilinos vector interface with same
compiler and options that were used to build Trilinos. CMake will try to find the correct compiler
settings automatically from the Trilinos configuration file. If that is not successful, the compilers and
options can be manually set with the following CMake variables:

• Trilinos INTERFACE C COMPILER

• Trilinos INTERFACE C COMPILER FLAGS

• Trilinos INTERFACE CXX COMPILER

• Trilinos INTERFACE CXX COMPILER FLAGS

A.1.5 Testing the build and installation

If sundials was configured with EXAMPLES ENABLE <language> options to ON, then a set of regression
tests can be run after building with the make command by running:

% make test

Additionally, if EXAMPLES INSTALL was also set to ON, then a set of smoke tests can be run after
installing with the make install command by running:

% make test_install

A.2 Building and Running Examples

Each of the sundials solvers is distributed with a set of examples demonstrating basic usage. To
build and install the examples, set at least of the EXAMPLES ENABLE <language> options to ON,
and set EXAMPLES INSTALL to ON. Specify the installation path for the examples with the variable
EXAMPLES INSTALL PATH. CMake will generate CMakeLists.txt configuration files (and Makefile

files if on Linux/Unix) that reference the installed sundials headers and libraries.
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Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as
well as serve as a template for creating user developed solutions. To use the supplied Makefile simply
run make to compile and generate the executables. To use CMake from within the installed example
directory, run cmake (or ccmake to use the GUI) followed by make to compile the example code.
Note that if CMake is used, it will overwrite the traditional Makefile with a new CMake-generated
Makefile. The resulting output from running the examples can be compared with example output
bundled in the sundials distribution.
NOTE: There will potentially be differences in the output due to machine architecture, compiler
versions, use of third party libraries etc. !

A.3 Configuring, building, and installing on Windows

CMake can also be used to build sundials on Windows. To build sundials for use with Visual
Studio the following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the solverdir

2. Create a separate builddir

3. Open a Visual Studio Command Prompt and cd to builddir

4. Run cmake-gui ../solverdir

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE INSTALL PREFIX to instdir

(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Run msbuild ALL BUILD.vcxproj

(b) Run msbuild INSTALL.vcxproj

The resulting libraries will be in the instdir. The sundials project can also now be opened in Visual
Studio. Double click on the ALL BUILD.vcxproj file to open the project. Build the whole solution to
create the sundials libraries. To use the sundials libraries in your own projects, you must set the
include directories for your project, add the sundials libraries to your project solution, and set the
sundials libraries as dependencies for your project.

A.4 Installed libraries and exported header files

Using the CMake sundials build system, the command

% make install

will install the libraries under libdir and the public header files under includedir. The values for these
directories are instdir/CMAKE INSTALL LIBDIR and instdir/include, respectively. The location can be
changed by setting the CMake variable CMAKE INSTALL PREFIX. Although all installed libraries reside
under libdir/CMAKE INSTALL LIBDIR, the public header files are further organized into subdirectories
under includedir/include.

The installed libraries and exported header files are listed for reference in Table A.1. The file
extension .lib is typically .so for shared libraries and .a for static libraries. Note that, in the Tables,
names are relative to libdir for libraries and to includedir for header files.
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A typical user program need not explicitly include any of the shared sundials header files from
under the includedir/include/sundials directory since they are explicitly included by the appropriate
solver header files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and
safe to do so, and would be useful, for example, if the functions declared in sundials dense.h are to
be used in building a preconditioner.
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Table A.1: sundials libraries and header files
shared Libraries n/a

Header files sundials/sundials config.h
sundials/sundials fconfig.h
sundials/sundials types.h
sundials/sundials math.h
sundials/sundials nvector.h
sundials/sundials fnvector.h
sundials/sundials matrix.h
sundials/sundials linearsolver.h
sundials/sundials iterative.h
sundials/sundials direct.h
sundials/sundials dense.h
sundials/sundials band.h
sundials/sundials nonlinearsolver.h
sundials/sundials version.h
sundials/sundials mpi types.h

nvector serial Libraries libsundials nvecserial.lib
libsundials fnvecserial mod.lib
libsundials fnvecserial.a

Header files nvector/nvector serial.h
Module
files

fnvector serial mod.mod

nvector parallel Libraries libsundials nvecparallel.lib libsundials fnvecparallel.a
Header files nvector/nvector parallel.h

nvector openmp Libraries libsundials nvecopenmp.lib
libsundials fnvecopenmp mod.lib
libsundials fnvecopenmp.a

Header files nvector/nvector openmp.h
Module
files

fnvector openmp mod.mod

nvector openmpdev Libraries libsundials nvecopenmpdev.lib
Header files nvector/nvector openmpdev.h

nvector pthreads Libraries libsundials nvecpthreads.lib
libsundials fnvecpthreads mod.lib
libsundials fnvecpthreads.a

Header files nvector/nvector pthreads.h
Module
files

fnvector pthreads mod.mod

nvector parhyp Libraries libsundials nvecparhyp.lib
Header files nvector/nvector parhyp.h

continued on next page
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nvector petsc Libraries libsundials nvecpetsc.lib
Header files nvector/nvector petsc.h

nvector cuda Libraries libsundials nveccuda.lib
Libraries libsundials nvecmpicuda.lib
Header files nvector/nvector cuda.h

nvector/nvector mpicuda.h
nvector/cuda/ThreadPartitioning.hpp
nvector/cuda/Vector.hpp
nvector/cuda/VectorKernels.cuh

nvector raja Libraries libsundials nveccudaraja.lib
Libraries libsundials nveccudampiraja.lib
Header files nvector/nvector raja.h

nvector/nvector mpiraja.h
nvector/raja/Vector.hpp

nvector trilinos Libraries libsundials nvectrilinos.lib
Header files nvector/nvector trilinos.h

nvector/trilinos/SundialsTpetraVectorInterface.hpp
nvector/trilinos/SundialsTpetraVectorKernels.hpp

sunmatrix band Libraries libsundials sunmatrixband.lib
libsundials fsunmatrixband mod.lib
libsundials fsunmatrixband.a

Header files sunmatrix/sunmatrix band.h
Module
files

fsunmatrix band mod.mod

sunmatrix dense Libraries libsundials sunmatrixdense.lib
libsundials fsunmatrixdense mod.lib
libsundials fsunmatrixdense.a

Header files sunmatrix/sunmatrix dense.h
Module
files

fsunmatrix dense mod.mod

sunmatrix sparse Libraries libsundials sunmatrixsparse.lib
libsundials fsunmatrixsparse mod.lib
libsundials fsunmatrixsparse.a

Header files sunmatrix/sunmatrix sparse.h
Module
files

fsunmatrix sparse mod.mod

sunlinsol band Libraries libsundials sunlinsolband.lib
libsundials fsunlinsolband mod.lib
libsundials fsunlinsolband.a

Header files sunlinsol/sunlinsol band.h
Module
files

fsunlinsol band mod.mod

continued on next page
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sunlinsol dense Libraries libsundials sunlinsoldense.lib
libsundials fsunlinsoldense mod.lib
libsundials fsunlinsoldense.a

Header files sunlinsol/sunlinsol dense.h
Module
files

fsunlinsol dense mod.mod

sunlinsol klu Libraries libsundials sunlinsolklu.lib
libsundials fsunlinsolklu mod.lib
libsundials fsunlinsolklu.a

Header files sunlinsol/sunlinsol klu.h
Module
files

fsunlinsol klu mod.mod

sunlinsol lapackband Libraries libsundials sunlinsollapackband.lib
libsundials fsunlinsollapackband.a

Header files sunlinsol/sunlinsol lapackband.h
sunlinsol lapackdense Libraries libsundials sunlinsollapackdense.lib

libsundials fsunlinsollapackdense.a
Header files sunlinsol/sunlinsol lapackdense.h

sunlinsol pcg Libraries libsundials sunlinsolpcg.lib
libsundials fsunlinsolpcg mod.lib
libsundials fsunlinsolpcg.a

Header files sunlinsol/sunlinsol pcg.h
Module
files

fsunlinsol pcg mod.mod

sunlinsol spbcgs Libraries libsundials sunlinsolspbcgs.lib
libsundials fsunlinsolspbcgs mod.lib
libsundials fsunlinsolspbcgs.a

Header files sunlinsol/sunlinsol spbcgs.h
Module
files

fsunlinsol spbcgs mod.mod

sunlinsol spfgmr Libraries libsundials sunlinsolspfgmr.lib
libsundials fsunlinsolspfgmr mod.lib
libsundials fsunlinsolspfgmr.a

Header files sunlinsol/sunlinsol spfgmr.h
Module
files

fsunlinsol spfgmr mod.mod

sunlinsol spgmr Libraries libsundials sunlinsolspgmr.lib
libsundials fsunlinsolspgmr mod.lib
libsundials fsunlinsolspgmr.a

Header files sunlinsol/sunlinsol spgmr.h
Module
files

fsunlinsol spgmr mod.mod

continued on next page
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sunlinsol sptfqmr Libraries libsundials sunlinsolsptfqmr.lib
libsundials fsunlinsolsptfqmr mod.lib
libsundials fsunlinsolsptfqmr.a

Header files sunlinsol/sunlinsol sptfqmr.h
Module
files

fsunlinsol sptfqmr mod.mod

sunlinsol superlumt Libraries libsundials sunlinsolsuperlumt.lib
libsundials fsunlinsolsuperlumt.a

Header files sunlinsol/sunlinsol superlumt.h
sunnonlinsol newton Libraries libsundials sunnonlinsolnewton.lib

libsundials fsunnonlinsolnewton mod.lib
libsundials fsunnonlinsolnewton.a

Header files sunnonlinsol/sunnonlinsol newton.h
Module
files

fsunnonlinsol newton mod.mod

sunnonlinsol fixedpoint Libraries libsundials sunnonlinsolfixedpoint.lib
libsundials fsunnonlinsolfixedpoint.a
libsundials fsunnonlinsolfixedpoint mod.lib

Header files sunnonlinsol/sunnonlinsol fixedpoint.h
Module
files

fsunnonlinsol fixedpoint mod.mod

cvode Libraries libsundials cvode.lib libsundials fcvode.a
Header files cvode/cvode.h cvode/cvode impl.h

cvode/cvode direct.h cvode/cvode ls.h
cvode/cvode spils.h cvode/cvode bandpre.h
cvode/cvode bbdpre.h

Module
files

fcvode mod.mod

cvodes Libraries libsundials cvodes.lib
Header files cvodes/cvodes.h cvodes/cvodes impl.h

cvodes/cvodes direct.h cvodes/cvodes ls.h
cvodes/cvodes spils.h cvodes/cvodes bandpre.h
cvodes/cvodes bbdpre.h

arkode Libraries libsundials arkode.lib libsundials farkode.a
Header files arkode/arkode.h arkode/arkode impl.h

arkode/arkode ls.h arkode/arkode bandpre.h
arkode/arkode bbdpre.h

ida Libraries libsundials ida.lib libsundials fida.a
Header files ida/ida.h ida/ida impl.h

ida/ida direct.h ida/ida ls.h
ida/ida spils.h ida/ida bbdpre.h

idas Libraries libsundials idas.lib
continued on next page
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Header files idas/idas.h idas/idas impl.h
idas/idas direct.h idas/idas ls.h
idas/idas spils.h idas/idas bbdpre.h

kinsol Libraries libsundials kinsol.lib libsundials fkinsol.a
Header files kinsol/kinsol.h kinsol/kinsol impl.h

kinsol/kinsol direct.h kinsol/kinsol ls.h
kinsol/kinsol spils.h kinsol/kinsol bbdpre.h





Appendix B

CVODES Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

B.1 CVODES input constants

cvodes main solver module

CV ADAMS 1 Adams-Moulton linear multistep method.
CV BDF 2 BDF linear multistep method.
CV NORMAL 1 Solver returns at specified output time.
CV ONE STEP 2 Solver returns after each successful step.
CV SIMULTANEOUS 1 Simultaneous corrector forward sensitivity method.
CV STAGGERED 2 Staggered corrector forward sensitivity method.
CV STAGGERED1 3 Staggered (variant) corrector forward sensitivity method.
CV CENTERED 1 Central difference quotient approximation (2nd order) of the

sensitivity RHS.
CV FORWARD 2 Forward difference quotient approximation (1st order) of the

sensitivity RHS.

cvodes adjoint solver module

CV HERMITE 1 Use Hermite interpolation.
CV POLYNOMIAL 2 Use variable-degree polynomial interpolation.

Iterative linear solver modules

PREC NONE 0 No preconditioning
PREC LEFT 1 Preconditioning on the left only.
PREC RIGHT 2 Preconditioning on the right only.
PREC BOTH 3 Preconditioning on both the left and the right.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

B.2 CVODES output constants
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cvodes main solver module

CV SUCCESS 0 Successful function return.
CV TSTOP RETURN 1 CVode succeeded by reaching the specified stopping point.
CV ROOT RETURN 2 CVode succeeded and found one or more roots.
CV WARNING 99 CVode succeeded but an unusual situation occurred.
CV TOO MUCH WORK -1 The solver took mxstep internal steps but could not reach tout.
CV TOO MUCH ACC -2 The solver could not satisfy the accuracy demanded by the user

for some internal step.
CV ERR FAILURE -3 Error test failures occurred too many times during one internal

time step or minimum step size was reached.
CV CONV FAILURE -4 Convergence test failures occurred too many times during one

internal time step or minimum step size was reached.
CV LINIT FAIL -5 The linear solver’s initialization function failed.
CV LSETUP FAIL -6 The linear solver’s setup function failed in an unrecoverable

manner.
CV LSOLVE FAIL -7 The linear solver’s solve function failed in an unrecoverable

manner.
CV RHSFUNC FAIL -8 The right-hand side function failed in an unrecoverable manner.
CV FIRST RHSFUNC ERR -9 The right-hand side function failed at the first call.
CV REPTD RHSFUNC ERR -10 The right-hand side function had repetead recoverable errors.
CV UNREC RHSFUNC ERR -11 The right-hand side function had a recoverable error, but no

recovery is possible.
CV RTFUNC FAIL -12 The rootfinding function failed in an unrecoverable manner.
CV NLS INIT FAIL -13 The nonlinear solver’s init routine failed.
CV NLS SETUP FAIL -14 The nonlinear solver’s setup routine failed.
CV CONSTR FAIL -15 The inequality constraints were violated and the solver was un-

able to recover.
CV MEM FAIL -20 A memory allocation failed.
CV MEM NULL -21 The cvode mem argument was NULL.
CV ILL INPUT -22 One of the function inputs is illegal.
CV NO MALLOC -23 The cvode memory block was not allocated by a call to

CVodeMalloc.
CV BAD K -24 The derivative order k is larger than the order used.
CV BAD T -25 The time t is outside the last step taken.
CV BAD DKY -26 The output derivative vector is NULL.
CV TOO CLOSE -27 The output and initial times are too close to each other.
CV NO QUAD -30 Quadrature integration was not activated.
CV QRHSFUNC FAIL -31 The quadrature right-hand side function failed in an unrecov-

erable manner.
CV FIRST QRHSFUNC ERR -32 The quadrature right-hand side function failed at the first call.
CV REPTD QRHSFUNC ERR -33 The quadrature ight-hand side function had repetead recover-

able errors.
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CV UNREC QRHSFUNC ERR -34 The quadrature right-hand side function had a recoverable er-
ror, but no recovery is possible.

CV NO SENS -40 Forward sensitivity integration was not activated.
CV SRHSFUNC FAIL -41 The sensitivity right-hand side function failed in an unrecover-

able manner.
CV FIRST SRHSFUNC ERR -42 The sensitivity right-hand side function failed at the first call.
CV REPTD SRHSFUNC ERR -43 The sensitivity ight-hand side function had repetead recover-

able errors.
CV UNREC SRHSFUNC ERR -44 The sensitivity right-hand side function had a recoverable error,

but no recovery is possible.
CV BAD IS -45 The sensitivity index is larger than the number of sensitivities

computed.
CV NO QUADSENS -50 Forward sensitivity integration was not activated.
CV QSRHSFUNC FAIL -51 The sensitivity right-hand side function failed in an unrecover-

able manner.
CV FIRST QSRHSFUNC ERR -52 The sensitivity right-hand side function failed at the first call.
CV REPTD QSRHSFUNC ERR -53 The sensitivity ight-hand side function had repetead recover-

able errors.
CV UNREC QSRHSFUNC ERR -54 The sensitivity right-hand side function had a recoverable error,

but no recovery is possible.

cvodes adjoint solver module

CV NO ADJ -101 Adjoint module was not initialized.
CV NO FWD -102 The forward integration was not yet performed.
CV NO BCK -103 No backward problem was specified.
CV BAD TB0 -104 The final time for the adjoint problem is outside the interval

over which the forward problem was solved.
CV REIFWD FAIL -105 Reinitialization of the forward problem failed at the first check-

point.
CV FWD FAIL -106 An error occurred during the integration of the forward prob-

lem.
CV GETY BADT -107 Wrong time in interpolation function.

cvls linear solver interface

CVLS SUCCESS 0 Successful function return.
CVLS MEM NULL -1 The cvode mem argument was NULL.
CVLS LMEM NULL -2 The cvls linear solver has not been initialized.
CVLS ILL INPUT -3 The cvls solver is not compatible with the current nvector

module, or an input value was illegal.
CVLS MEM FAIL -4 A memory allocation request failed.
CVLS PMEM NULL -5 The preconditioner module has not been initialized.
CVLS JACFUNC UNRECVR -6 The Jacobian function failed in an unrecoverable manner.
CVLS JACFUNC RECVR -7 The Jacobian function had a recoverable error.
CVLS SUNMAT FAIL -8 An error occurred with the current sunmatrix module.
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CVLS SUNLS FAIL -9 An error occurred with the current sunlinsol module.
CVLS NO ADJ -101 The combined forward-backward problem has not been initial-

ized.
CVLS LMEMB NULL -102 The linear solver was not initialized for the backward phase.

cvdiag linear solver module

CVDIAG SUCCESS 0 Successful function return.
CVDIAG MEM NULL -1 The cvode mem argument was NULL.
CVDIAG LMEM NULL -2 The cvdiag linear solver has not been initialized.
CVDIAG ILL INPUT -3 The cvdiag solver is not compatible with the current nvector

module.
CVDIAG MEM FAIL -4 A memory allocation request failed.
CVDIAG INV FAIL -5 A diagonal element of the Jacobian was 0.
CVDIAG RHSFUNC UNRECVR -6 The right-hand side function failed in an unrecoverable manner.
CVDIAG RHSFUNC RECVR -7 The right-hand side function had a recoverable error.
CVDIAG NO ADJ -101 The combined forward-backward problem has not been initial-

ized.
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