
User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0)

Daniel R. Reynolds1, David J. Gardner2,
Alan C. Hindmarsh2, Carol S. Woodward2

and Jean M. Sexton1,

1Department of Mathematics
Southern Methodist University

2Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

February 12, 2019

LLNL-SM-668082

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor Southern Methodist University,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or repre-
sents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government, Lawrence Livermore National Security,
LLC, or Southern Methodist University. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States government, Lawrence Livermore National Security, LLC, or Southern Methodist
University, and shall not be used for advertising or product endorsement purposes.

Approved for public release; further dissemination unlimited

CONTENTS

1 Introduction 3
1.1 Changes from previous versions . 4
1.2 Reading this User Guide . 10
1.3 SUNDIALS Release License . 11

2 Mathematical Considerations 13
2.1 Adaptive single-step methods . 13
2.2 Interpolation . 14
2.3 ARKStep – Additive Runge-Kutta methods . 15
2.4 ERKStep – Explicit Runge-Kutta methods . 16
2.5 MRIStep – Multirate infinitesimal step methods . 16
2.6 Error norms . 17
2.7 Time step adaptivity . 18
2.8 Explicit stability . 21
2.9 Algebraic solvers . 22
2.10 Rootfinding . 30

3 Code Organization 33
3.1 ARKode organization . 35

4 Using ARKStep for C and C++ Applications 37
4.1 Access to library and header files . 37
4.2 Data Types . 38
4.3 Header Files . 39
4.4 A skeleton of the user’s main program . 40
4.5 User-callable functions . 44
4.6 User-supplied functions . 96
4.7 Preconditioner modules . 108

5 FARKODE, an Interface Module for FORTRAN Applications 117
5.1 Important note on portability . 117
5.2 Fortran Data Types . 117

6 Using ERKStep for C and C++ Applications 153
6.1 Access to library and header files . 153
6.2 Data Types . 153
6.3 Header Files . 154
6.4 A skeleton of the user’s main program . 155
6.5 ERKStep User-callable functions . 157
6.6 User-supplied functions . 183

i

7 Using MRIStep for C and C++ Applications 187
7.1 Access to library and header files . 187
7.2 Data Types . 187
7.3 Header Files . 188
7.4 A skeleton of the user’s main program . 189
7.5 MRIStep User-callable functions . 191
7.6 User-supplied functions . 206

8 Butcher Table Data Structure 209
8.1 ARKodeButcherTable functions . 210

9 Vector Data Structures 213
9.1 Description of the NVECTOR Modules . 213
9.2 Description of the NVECTOR operations . 215
9.3 The NVECTOR_SERIAL Module . 223
9.4 The NVECTOR_PARALLEL Module . 226
9.5 The NVECTOR_OPENMP Module . 229
9.6 The NVECTOR_PTHREADS Module . 232
9.7 The NVECTOR_PARHYP Module . 236
9.8 The NVECTOR_PETSC Module . 238
9.9 The NVECTOR_CUDA Module . 240
9.10 The NVECTOR_RAJA Module . 244
9.11 The NVECTOR_OPENMPDEV Module . 247
9.12 NVECTOR Examples . 250
9.13 NVECTOR functions required by ARKode . 253

10 Matrix Data Structures 255
10.1 Description of the SUNMATRIX Modules . 255
10.2 Description of the SUNMATRIX operations . 256
10.3 Compatibility of SUNMATRIX types . 258
10.4 The SUNMATRIX_DENSE Module . 258
10.5 The SUNMATRIX_BAND Module . 262
10.6 The SUNMATRIX_SPARSE Module . 268
10.7 SUNMATRIX Examples . 274
10.8 SUNMATRIX functions required by ARKode . 274

11 Description of the SUNLinearSolver module 277
11.1 The SUNLinearSolver API . 278
11.2 ARKode SUNLinearSolver interface . 286
11.3 The SUNLinSol_Dense Module . 288
11.4 The SUNLinSol_Band Module . 290
11.5 The SUNLinSol_LapackDense Module . 292
11.6 The SUNLinSol_LapackBand Module . 294
11.7 The SUNLinSol_KLU Module . 296
11.8 The SUNLinSol_SuperLUMT Module . 300
11.9 The SUNLinSol_SPGMR Module . 303
11.10 The SUNLinSol_SPFGMR Module . 307
11.11 The SUNLinSol_SPBCGS Module . 312
11.12 The SUNLinSol_SPTFQMR Module . 316
11.13 The SUNLinSol_PCG Module . 319
11.14 SUNLinearSolver Examples . 324

12 Nonlinear Solver Data Structures 325
12.1 Description of the SUNNonlinearSolver Module . 325

ii

13 ARKode Installation Procedure 339
13.1 CMake-based installation . 340
13.2 Installed libraries and exported header files . 354

14 Appendix: ARKode Constants 357
14.1 ARKode input constants . 357
14.2 ARKode output constants . 358

15 Appendix: Butcher tables 361
15.1 Explicit Butcher tables . 362
15.2 Implicit Butcher tables . 372
15.3 Additive Butcher tables . 381

Bibliography 383

Index 387

iii

iv

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

This is the documentation for ARKode, an adaptive step time integration package for stiff, nonstiff and mixed
stiff/nonstiff systems of ordinary differential equations (ODEs) using Runge-Kutta (i.e. one-step, multi-stage) meth-
ods. The ARKode solver is a component of the SUNDIALS suite of nonlinear and differential/algebraic equation
solvers. It is designed to have a similar user experience to the CVODE solver, including user modes to allow adaptive
integration to specified output times, return after each internal step and root-finding capabilities, and for calculations in
serial, using shared-memory parallelism (via OpenMP, Pthreads, CUDA, Raja) or distributed-memory parallelism (via
MPI). The default integration and solver options should apply to most users, though control over nearly all internal
parameters and time adaptivity algorithms is enabled through optional interface routines.

ARKode is written in C, with C++ and Fortran interfaces.

ARKode is developed by Southern Methodist University, with support by the US Department of Energy through the
FASTMath SciDAC Institute, under subcontract B598130 from Lawrence Livermore National Laboratory.

CONTENTS 1

https://computation.llnl.gov/casc/sundials/main.html
https://computation.llnl.gov/casc/sundials/description/description.html#descr_cvode
http://www.smu.edu
http://www.doe.gov
http://www.fastmath-scidac.org/
http://www.llnl.gov

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The ARKode infrastructure provides adaptive-step time integration modules for stiff, nonstiff and mixed stiff/nonstiff
systems of ordinary differential equations (ODEs). ARKode itself is structured to support a wide range of one-step (but
multi-stage) methods, allowing for rapid development of parallel implementations of state-of-the-art time integration
methods. At present, ARKode is packaged with two time-stepping modules, ARKStep and ERKStep.

ARKStep supports ODE systems posed in split, linearly-implicit form,

𝑀�̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓𝐼(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0, (1.1)

where 𝑡 is the independent variable, 𝑦 is the set of dependent variables (in R𝑁), 𝑀 is a user-specified, nonsingular
operator from R𝑁 to R𝑁 , and the right-hand side function is partitioned into up to two components:

• 𝑓𝐸(𝑡, 𝑦) contains the “nonstiff” time scale components to be integrated explicitly, and

• 𝑓𝐼(𝑡, 𝑦) contains the “stiff” time scale components to be integrated implicitly.

Either of these operators may be disabled, allowing for fully explicit, fully implicit, or combination implicit-explicit
(ImEx) time integration.

The algorithms used in ARKStep are adaptive- and fixed-step additive Runge Kutta methods. Such methods are
defined through combining two complementary Runge-Kutta methods: one explicit (ERK) and the other diagonally
implicit (DIRK). Through appropriately partitioning the ODE right-hand side into explicit and implicit components
(1.1), such methods have the potential to enable accurate and efficient time integration of stiff, nonstiff, and mixed
stiff/nonstiff systems of ordinary differential equations. A key feature allowing for high efficiency of these methods
is that only the components in 𝑓𝐼(𝑡, 𝑦) must be solved implicitly, allowing for splittings tuned for use with optimal
implicit solver algorithms.

This framework allows for significant freedom over the constitutive methods used for each component, and ARKode
is packaged with a wide array of built-in methods for use. These built-in Butcher tables include adaptive explicit
methods of orders 2-8, adaptive implicit methods of orders 2-5, and adaptive ImEx methods of orders 3-5.

ERKStep focuses specifically on problems posed in explicit form,

�̇� = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. (1.2)

allowing for increased computational efficiency and memory savings. The algorithms used in ERKStep are adaptive-
and fixed-step explicit Runge Kutta methods. As with ARKStep, the ERKStep module is packaged with adaptive
explicit methods of orders 2-8.

For problems that include nonzero implicit term 𝑓𝐼(𝑡, 𝑦), the resulting implicit system (assumed nonlinear, unless
specified otherwise) is solved approximately at each integration step, using a modified Newton method, inexact New-
ton method, or an accelerated fixed-point solver. For the Newton-based methods and the serial or threaded NVECTOR
modules in SUNDIALS, ARKode may use a variety of linear solvers provided with SUNDIALS, including both di-
rect (dense, band, or sparse) and preconditioned Krylov iterative (GMRES [SS1986], BiCGStab [V1992], TFQMR
[F1993], FGMRES [S1993], or PCG [HS1952]) linear solvers. When used with the MPI-based parallel, PETSc,
hypre, CUDA, and Raja NVECTOR modules, or a user-provided vector data structure, only the Krylov solvers are

3

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

available, although a user may supply their own linear solver for any data structures if desired. For the serial or
threaded vector structures, we provide a banded preconditioner module called ARKBANDPRE that may be used
with the Krylov solvers, while for the MPI-based parallel vector structure there is a preconditioner module called
ARKBBDPRE which provides a band-block-diagonal preconditioner. Additionally, a user may supply more optimal,
problem-specific preconditioner routines.

1.1 Changes from previous versions

1.1.1 Changes in v3.1.0

An additional NVECTOR implementation was added for the Tpetra vector from the Trilinos library to facilitate inter-
operability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user documenta-
tion and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA en-
ables all examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA NVECTOR is
enabled).

The implementation header file arkode_impl.h is no longer installed. This means users who are directly manipulating
the ARKodeMem structure will need to update their code to use ARKode’s public API.

Python is no longer required to run make test and make test_install.

Fixed a bug in ARKodeButcherTable_Write when printing a Butcher table without an embedding.

1.1.2 Changes in v3.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

1.1.3 Changes in v3.0.1

A bug in ARKode where single precision builds would fail to compile has been fixed.

1.1.4 Changes in v3.0.0

The ARKode library has been entirely rewritten to support a modular approach to one-step methods, which should
allow rapid research and development of novel integration methods without affecting existing solver functionality.
To support this, the existing ARK-based methods have been encapsulated inside the new ARKStep time-stepping
module. Two new time-stepping modules have been added:

• The ERKStep module provides an optimized implementation for explicit Runge-Kutta methods with reduced
storage and number of calls to the ODE right-hand side function.

• The MRIStep module implements two-rate explicit-explicit multirate infinitesimal step methods utilizing dif-
ferent step sizes for slow and fast processes in an additive splitting.

This restructure has resulted in numerous small changes to the user interface, particularly the suite of “Set” routines
for user-provided solver parameters and and “Get” routines to access solver statistics, that are now prefixed with the
name of time-stepping module (e.g., ARKStep or ERKStep) instead of ARKode. Aside from affecting the names of
these routines, user-level changes have been kept to a minimum. However, we recommend that users consult both this
documentation and the ARKode example programs for further details on the updated infrastructure.

4 Chapter 1. Introduction

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

As part of the ARKode restructuring an ARKodeButcherTable structure has been added for storing Butcher tables.
Functions for creating new Butcher tables and checking their analytic order are provided along with other utility
routines. For more details see Butcher Table Data Structure.

Two changes were made in the initial step size algorithm:

• Fixed an efficiency bug where an extra call to the right hand side function was made.

• Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm would exit with
the step size calculated on the penultimate iteration. Now it will exit with the step size calculated on the final
iteration.

ARKode’s dense output infrastructure has been improved to support higher-degree Hermite polynomial interpolants
(up to degree 5) over the last successful time step.

ARKode’s previous direct and iterative linear solver interfaces, ARKDLS and ARKSPILS, have been merged into a
single unified linear solver interface, ARKLS, to support any valid SUNLINSOL module. This includes DIRECT and
ITERATIVE types as well as the new MATRIX_ITERATIVE type. Details regarding how ARKLS utilizes linear
solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinSol implementations
are included in the chapter Description of the SUNLinearSolver module. All ARKode examples programs and the
standalone linear solver examples have been updated to use the unified linear solver interface.

The user interface for the new ARKLS module is very similar to the previous ARKDLS and ARKSPILS interfaces.
Additionally, we note that Fortran users will need to enlarge their iout array of optional integer outputs, and update
the indices that they query for certain linear-solver-related statistics.

The names of all constructor routines for SUNDIALS-provided SUNLinSol implementations have been up-
dated to follow the naming convention SUNLinSol_* where * is the name of the linear solver. The new
names are SUNLinSol_Band, SUNLinSol_Dense, SUNLinSol_KLU, SUNLinSol_LapackBand,
SUNLinSol_LapackDense, SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR,
SUNLinSol_SPGMR, SUNLinSol_SPTFQMR, and SUNLinSol_SuperLUMT. Solver-specific “set” rou-
tine names have been similarly standardized. To minimize challenges in user migration to the new names, the previous
routine names may still be used; these will be deprecated in future releases, so we recommend that users migrate to
the new names soon. All ARKode example programs and the standalone linear solver examples have been updated to
use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through the SUNNON-
LINSOL API. This API will ease the addition of new nonlinear solver options and allow for external or user-supplied
nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules are described in Nonlinear Solver
Data Structures and follow the same object oriented design and implementation used by the NVector, SUNMatrix, and
SUNLinSol modules. Currently two SUNNONLINSOL implementations are provided, SUNNonlinSol_Newton and
SUNNonlinSol_FixedPoint. These replicate the previous integrator specific implementations of a Newton iteration
and an accelerated fixed-point iteration, respectively. Example programs using each of these nonlinear solver mod-
ules in a standalone manner have been added and all ARKode example programs have been updated to use generic
SUNNonlinSol modules.

As with previous versions, ARKode will use the Newton solver (now provided by SUNNonlinSol_Newton) by default.
Use of the ARKStepSetLinear() routine (previously named ARKodeSetLinear) will indicate that the problem
is linearly-implicit, using only a single Newton iteration per implicit stage. Users wishing to switch to the accelerated
fixed-point solver are now required to create a SUNNonlinSol_FixedPoint object and attach that to ARKode, instead
of calling the previous ARKodeSetFixedPoint routine. See the documentation sections A skeleton of the user’s
main program, Nonlinear solver interface functions, and The SUNNonlinearSolver_FixedPoint implementation for
further details, or the serial C example program ark_brusselator_fp.c for an example.

Three fused vector operations and seven vector array operations have been added to the NVECTOR API.
These optional operations are disabled by default and may be activated by calling vector specific routines af-
ter creating an NVector (see Description of the NVECTOR Modules for more details). The new operations

1.1. Changes from previous versions 5

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

are intended to increase data reuse in vector operations, reduce parallel communication on distributed mem-
ory systems, and lower the number of kernel launches on systems with accelerators. The fused operations
are N_VLinearCombination, N_VScaleAddMulti, and N_VDotProdMulti, and the vector array opera-
tions are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_VConstVectorArray,
N_VWrmsNormVectorArray, N_VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray,
and N_VLinearCombinationVectorArray. If an NVector implementation defines any of these operations
as NULL, then standard NVector operations will automatically be called as necessary to complete the computation.

Multiple changes to the CUDA NVECTOR were made:

• Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead of an
N_VectorContent_Cuda object.

• Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.

• Added N_VGetLocalLength_Cuda to return the local vector length.

• Added N_VGetMPIComm_Cuda to return the MPI communicator used.

• Removed the accessor functions in the namespace suncudavec.

• Added the ability to set the cudaStream_t used for execution of the CUDA NVECTOR kernels. See the
function N_VSetCudaStreams_Cuda.

• Added N_VNewManaged_Cuda, N_VMakeManaged_Cuda, and N_VIsManagedMemory_Cuda func-
tions to accommodate using managed memory with the CUDA NVECTOR.

Multiple changes to the RAJA NVECTOR were made:

• Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.

• Added N_VGetLocalLength_Raja to return the local vector length.

• Added N_VGetMPIComm_Raja to return the MPI communicator used.

• Removed the accessor functions in the namespace sunrajavec.

A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added, NVEC-
TOR_OpenMPDEV. See The NVECTOR_OPENMPDEV Module for more details.

1.1.5 Changes in v2.2.1

Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the allocated vector
data.

Fixed library installation path for multiarch systems. This fix changes the default library installa-
tion path to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/lib.
CMAKE_INSTALL_LIBDIR is automatically set, but is available as a CMAKE option that can modified.

1.1.6 Changes in v2.2.0

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when using a GPU system.
The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA NVECTOR library to libsundials_nveccudaraja.lib from
libsundials_nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA currently.

Several changes were made to the build system:

6 Chapter 1. Introduction

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• CMake 3.1.3 is now the minimum required CMake version.

• Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the
SUNDIALS_INDEX_SIZE CMake option to select the sunindextype integer size.

• The native CMake FindMPI module is now used to locate an MPI installation.

• If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE_<language>_COMPILER can compile MPI programs before trying to locate and use an MPI in-
stallation.

• The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER, MPI_CXX_COMPILER, MPI_Fortran_COMPILER, and MPIEXEC_EXECUTABLE.

• When a Fortran name-mangling scheme is needed (e.g., LAPACK_ENABLE is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the in-
ferred or default scheme needs to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and
SUNDIALS_F77_FUNC_UNDERSCORES can be used to manually set the name-mangling scheme and bypass
trying to infer the scheme.

• Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make the
CMake configuration file structure more modular.

1.1.7 Changes in v2.1.2

Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared libraries
on OSX.

Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for the
SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type __int64.

Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in the
full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architectures.

Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module to more optimally handle
the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity pattern. The sum
now occurs in-place, by performing the sum backwards in the existing storage. However, it is still more efficient if the
user-supplied Jacobian routine allocates storage for the sum 𝐼 +𝛾𝐽 or 𝑀 +𝛾𝐽 manually (with zero entries if needed).

Changed LICENSE install path to instdir/include/sundials.

1.1.8 Changes in v2.1.1

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was called multiple times
then the solver memory was reallocated (without being freed).

Fixed a minor bug in the ARKReInit routine, where a flag was incorrectly set to indicate that the problem had been
resized (instead of just re-initialized).

Fixed C++11 compiler errors/warnings about incompatible use of string literals.

Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function to be used (to
avoid compiler warnings).

Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).

Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.

1.1. Changes from previous versions 7

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Added missing #include <stdio.h> in NVECTOR and SUNMATRIX header files.

Added missing prototype for ARKSpilsGetNumMTSetups.

Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWrmsNormMask and revised the RAJA
NVECTOR implementation of N_VWrmsNormMask to work with mask arrays using values other than zero or one.
Replaced double with realtype in the RAJA vector test functions.

Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix or SUNLinearSolver
module (e.g. iterative linear solvers, explicit methods, fixed point solver, etc.).

1.1.9 Changes in v2.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g. N_VPrintFile_Serial).

Added make test and make test_install options to the build system for testing SUNDIALS after building
with make and installing with make install respectively.

1.1.10 Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been updated.
The goal of the redesign of these interfaces was to provide more encapsulation and ease in interfacing custom linear
solvers and interoperability with linear solver libraries.

Specific changes include:

• Added generic SUNMATRIX module with three provided implementations: dense, banded and sparse. These
replicate previous SUNDIALS Dls and Sls matrix structures in a single object-oriented API.

• Added example problems demonstrating use of generic SUNMATRIX modules.

• Added generic SUNLINEARSOLVER module with eleven provided implementations: dense, banded, LAPACK
dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR, SPFGMR, PCG. These replicate
previous SUNDIALS generic linear solvers in a single object-oriented API.

• Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

• Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear
solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER objects.

• Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU,
ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils interfaces and SUNLIN-
EARSOLVER/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate Jacobian solver
available to CVODE and CVODES.

• Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLINEARSOLVER
objects, along with updated Dls and Spils linear solver interfaces.

• Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow specification of a user-
provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-provided
Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton iteration can be
amortized between multiple JTimes calls.

Two additional NVECTOR implementations were added – one for CUDA and one for RAJA vectors. These vectors
are supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors both
move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts the
right-hand-side function evaluation on the device. In addition, these vectors assume the problem fits on one GPU.
Further information about RAJA, users are referred to the web site, https://software.llnl.gov/RAJA/. These additions
are accompanied by additions to various interface functions and to user documentation.

8 Chapter 1. Introduction

https://software.llnl.gov/RAJA/

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit
integer data index type. sunindextype is defined to be int32_t or int64_t when portable types are supported,
otherwise it is defined as int or long int. The Fortran interfaces continue to use long int for indices, except
for their sparse matrix interface that now uses the new sunindextype. This new flexible capability for index types
includes interfaces to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how
the user configures SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been
changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data struc-
tures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use in
Fortran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release version in-
formation at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scientific
software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of separate BLAS_ENABLE
and BLAS_LIBRARIES CMake variables, additional error checking during CMake configuration, minor bug fixes,
and renaming CMake options to enable/disable examples for greater clarity and an added option to enable/disable
Fortran 77 examples. These changes included changing ENABLE_EXAMPLES to ENABLE_EXAMPLES_C, changing
CXX_ENABLE to EXAMPLES_ENABLE_CXX, changing F90_ENABLE to EXAMPLES_ENABLE_F90, and adding
an EXAMPLES_ENABLE_F77 option.

Corrections and additions were made to the examples, to installation-related files, and to the user documentation.

1.1.11 Changes in v1.1.0

We have included numerous bugfixes and enhancements since the v1.0.2 release.

The bugfixes include:

• For each linear solver, the various solver performance counters are now initialized to 0 in both the solver speci-
fication function and in the solver’s linit function. This ensures that these solver counters are initialized upon
linear solver instantiation as well as at the beginning of the problem solution.

• The choice of the method vs embedding the Billington and TRBDF2 explicit Runge-Kutta methods were
swapped, since in those the lower-order coefficients result in an A-stable method, while the higher-order co-
efficients do not. This change results in significantly improved robustness when using those methods.

• A bug was fixed for the situation where a user supplies a vector of absolute tolerances, and also uses the vector
Resize() functionality.

• A bug was fixed wherein a user-supplied Butcher table without an embedding is supplied, and the user is running
with either fixed time steps (or they do adaptivity manually); previously this had resulted in an error since the
embedding order was below 1.

• Numerous aspects of the documentation were fixed and/or clarified.

The feature changes/enhancements include:

• Two additional NVECTOR implementations were added – one for Hypre (parallel) ParVector vectors, and one
for PETSc vectors. These additions are accompanied by additions to various interface functions and to user
documentation.

1.1. Changes from previous versions 9

https://xsdk.info

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR module
name.

• A memory leak was fixed in the banded preconditioner and banded-block-diagonal preconditioner interfaces. In
addition, updates were done to return integers from linear solver and preconditioner ‘free’ routines.

• The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions and
corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for CSR
format when using KLU.

• The ARKode implicit predictor algorithms were updated: methods 2 and 3 were improved slightly, a new
predictor approach was added, and the default choice was modified.

• The underlying sparse matrix structure was enhanced to allow both CSR and CSC matrices, with CSR supported
by the KLU linear solver interface. ARKode interfaces to the KLU solver from both C and Fortran were updated
to enable selection of sparse matrix type, and a Fortran-90 CSR example program was added.

• The missing ARKSpilsGetNumMtimesEvals() function was added – this had been included in the previ-
ous documentation but had not been implemented.

• The handling of integer codes for specifying built-in ARKode Butcher tables was enhanced. While a global
numbering system is still used, methods now have #defined names to simplify the user interface and to streamline
incorporation of new Butcher tables into ARKode.

• The maximum number of Butcher table stages was increased from 8 to 15 to accommodate very high order
methods, and an 8th-order adaptive ERK method was added.

• Support was added for the explicit and implicit methods in an additive Runge-Kutta method to utilize different
stage times, solution and embedding coefficients, to support new SSP-ARK methods.

• The FARKODE interface was extended to include a routine to set scalar/array-valued residual tolerances, to
support Fortran applications with non-identity mass-matrices.

1.2 Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We expect that some
readers will want to concentrate on the general instructions, while others will refer mostly to the examples, and the
organization is intended to accommodate both styles.

The structure of this document is as follows:

• In the next section we provide a thorough presentation of the underlying mathematics used within the ARKode
family of solvers.

• We follow this with an overview of how the source code for ARKode is organized.

• The largest section follows, providing a full account of the ARKStep module user interface, including a descrip-
tion of all user-accessible functions and outlines for usage in serial and parallel applications. Since ARKode is
written in C, we first present a section on using ARKStep for C and C++ applications, followed with a separate
section on using ARKode within Fortran applications.

• The much smaller section describing the ERKStep time-stepping module, using ERKStep for C and C++ appli-
cations, follows.

• Subsequent sections discuss shared features between ARKode and the rest of the SUNDIALS library: vector
data structures, matrix data structures, linear solver data structures, and the installation procedure.

• The final sections catalog the full set of ARKode constants, that are used for both input specifications and return
codes, and the full set of Butcher tables that are packaged with ARKode.

10 Chapter 1. Introduction

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

1.3 SUNDIALS Release License

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an additional
notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUNDIALS
packages.

PLEASE NOTE If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, Su-
perLU_MT, PETSc, or hypre), be sure to review the respective license of the package as that license may have more
restrictive terms than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked
KLU, the build is subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not
the SUNDIALS BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (c) 2002-2019, Lawrence Livermore National Security and Southern Methodist University.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘’AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

1.3. SUNDIALS Release License 11

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)

UCRL-CODE-155951 (CVODE)

UCRL-CODE-155950 (CVODES)

UCRL-CODE-155952 (IDA)

UCRL-CODE-237203 (IDAS)

LLNL-CODE-665877 (KINSOL)

12 Chapter 1. Introduction

CHAPTER

TWO

MATHEMATICAL CONSIDERATIONS

ARKode solves ODE initial value problems (IVP) in R𝑁 posed in linearly-implicit form,

𝑀�̇� = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. (2.1)

Here, 𝑡 is the independent variable (e.g. time), and the dependent variables are given by 𝑦 ∈ R𝑁 , where we use the
notation �̇� to denote 𝑑𝑦

𝑑𝑡 .

𝑀 is a user-specified nonsingular operator from R𝑁 → R𝑁 . This operator is currently assumed to be independent
of both 𝑡 and 𝑦. For standard systems of ordinary differential equations and for problems arising from the spatial
semi-discretization of partial differential equations using finite difference, finite volume, or spectral finite element
methods, 𝑀 is typically the identity matrix, 𝐼 . For PDEs using standard finite-element spatial semi-discretizations,
𝑀 is typically a well-conditioned mass matrix that is fixed throughout a simulation (except in the case of a spatially-
adaptive method, where 𝑀 can change between, but not within, time steps).

The ODE right-hand side is given by the function 𝑓(𝑡, 𝑦), i.e. in general we make no assumption that the problem (2.1)
is autonomous (𝑓 = 𝑓(𝑦)). In general, the time integration methods within ARKode support additive splittings of this
right-hand side function, as described in the subsections that follow. Through these splittings, the time-stepping meth-
ods currently supplied with ARKode are designed to solve stiff, nonstiff, or mixed stiff/nonstiff problems. Roughly
speaking, stiffness is characterized by the presence of at least one rapidly damped mode, whose time constant is small
compared to the time scale of the solution itself.

In the sub-sections that follow, we elaborate on the numerical methods utilized in ARKode. We first discuss the “single-
step” nature of the ARKode infrastructure, including its usage modes and approaches for interpolated solution output.
We then discuss the current suite of time-stepping modules supplied with ARKode, including the ARKStep module
for additive Runge-Kutta methods, the ERKStep module that is optimized for explicit Runge-Kutta methods, and the
MRIStep module for two-rate explicit-explicit multirate infinitesimal step methods. We then discuss the adaptive
temporal error controllers shared by the time-stepping modules, including discussion of our choice of norms for
measuring errors within various components of the solver.

We then discuss the nonlinear and linear solver strategies used by ARKode’s time-stepping modules for solving im-
plicit algebraic systems that arise in computing each stage and/or step: nonlinear solvers, linear solvers, precondi-
tioners, error control within iterative nonlinear and linear solvers, algorithms for initial predictors for implicit stage
solutions, and approaches for handling non-identity mass-matrices.

We conclude with a section describing ARKode’s rootfinding capabilities, that may be used to stop integration of a
problem prematurely based on traversal of roots in user-specified functions.

2.1 Adaptive single-step methods

The ARKode infrastructure is designed to support single-step, IVP integration methods, i.e.

𝑦𝑛 = 𝜙(𝑦𝑛−1, ℎ𝑛)

13

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

where 𝑦𝑛−1 is an approximation to the solution 𝑦(𝑡𝑛−1), 𝑦𝑛 is an approximation to the solution 𝑦(𝑡𝑛), 𝑡𝑛 = 𝑡𝑛−1+ℎ𝑛,
and the approximation method is represented by the function 𝜙.

The choice of step size ℎ𝑛 is determined by the time-stepping method (based on user-provided inputs, typically accu-
racy requirements). However, users may place minimum/maximum bounds on ℎ𝑛 if desired.

ARKode’s time stepping modules may be run in a variety of “modes”:

• NORMAL – The solver will take internal steps until it has just overtaken a user-specified output time, 𝑡out, in
the direction of integration, i.e. 𝑡𝑛−1 < 𝑡out ≤ 𝑡𝑛 for forward integration, or 𝑡𝑛 ≤ 𝑡out < 𝑡𝑛−1 for backward
integration. It will then compute an approximation to the solution 𝑦(𝑡out) by interpolation (using one of the
dense output routines described in the section Interpolation).

• ONE-STEP – The solver will only take a single internal step 𝑦𝑛−1 → 𝑦𝑛 and then return control back to the
calling program. If this step will overtake 𝑡out then the solver will again return an interpolated result; otherwise
it will return a copy of the internal solution 𝑦𝑛.

• NORMAL-TSTOP – The solver will take internal steps until the next step will overtake 𝑡out. It will then limit
this next step so that 𝑡𝑛 = 𝑡𝑛−1 + ℎ𝑛 = 𝑡out, and once the step completes it will return a copy of the internal
solution 𝑦𝑛.

• ONE-STEP-TSTOP – The solver will check whether the next step will overtake 𝑡out – if not then this mode is
identical to “one-step” above; otherwise it will limit this next step so that 𝑡𝑛 = 𝑡𝑛−1 + ℎ𝑛 = 𝑡out. In either case,
once the step completes it will return a copy of the internal solution 𝑦𝑛.

We note that interpolated solutions may be slightly less accurate than the internal solutions produced by the solver.
Hence, to ensure that the returned value has full method accuracy one of the “tstop” modes may be used.

2.2 Interpolation

As mentioned above, the time-stepping modules in ARKode support interpolation of solutions 𝑦(𝑡out) where 𝑡out occurs
within a completed time step from 𝑡𝑛−1 → 𝑡𝑛. Additionally, this module supports extrapolation of solutions to 𝑡
outside this interval (e.g. to construct predictors for iterative nonlinear and linear solvers). To this end, ARKode
currently supports construction of polynomial interpolants 𝑝𝑞(𝑡) of polynomial order up to 𝑞 = 5, although this
polynomial order may be adjusted by the user.

These interpolants are either of Lagrange or Hermite form, and use the data {𝑦𝑛−1, 𝑓𝑛−1, 𝑦𝑛, 𝑓𝑛}, where here we
use the simplified notation 𝑓𝑘 to denote 𝑓(𝑡𝑘, 𝑦𝑘). Defining a normalized “time” variable, 𝜏 , for the most-recently-
computed solution interval 𝑡𝑛−1 → 𝑡𝑛 as

𝜏(𝑡) =
𝑡− 𝑡𝑛−1

ℎ𝑛
,

we then construct the interpolants 𝑝𝑞(𝑡) as follows:

• 𝑞 = 0: constant interpolant

𝑝0(𝜏) =
𝑦𝑛−1 + 𝑦𝑛

2
.

• 𝑞 = 1: linear Lagrange interpolant

𝑝1(𝜏) = −𝜏 𝑦𝑛−1 + (1 + 𝜏) 𝑦𝑛.

• 𝑞 = 2: quadratic Hermite interpolant

𝑝2(𝜏) = 𝜏2 𝑦𝑛−1 + (1− 𝜏2) 𝑦𝑛 + ℎ(𝜏 + 𝜏2) 𝑓𝑛.

14 Chapter 2. Mathematical Considerations

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• 𝑞 = 3: cubic Hermite interpolant

𝑝3(𝜏) = (3𝜏2 + 2𝜏3) 𝑦𝑛−1 + (1− 3𝜏2 − 2𝜏3) 𝑦𝑛 + ℎ(𝜏2 + 𝜏3) 𝑓𝑛−1 + ℎ(𝜏 + 2𝜏2 + 𝜏3) 𝑓𝑛.

We note that although interpolants of order > 5 are possible, these are not currently implemented due to their increased
computing and storage costs. However, these may be added in future releases.

2.3 ARKStep – Additive Runge-Kutta methods

The ARKStep time-stepping module in ARKode is designed for IVP of the form

𝑀�̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓𝐼(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0, (2.2)

i.e. the right-hand side function is additively split into two components:

• 𝑓𝐸(𝑡, 𝑦) contains the “nonstiff” components of the system. This will be integrated using an explicit method.

• 𝑓𝐼(𝑡, 𝑦) contains the “stiff” components of the system. This will be integrated using an implicit method.

In solving the IVP (2.2), ARKStep utilizes variable-step, embedded, additive Runge-Kutta methods (ARK), corre-
sponding to algorithms of the form

𝑀𝑧𝑖 = 𝑀𝑦𝑛−1 + ℎ𝑛

𝑖−1∑︁
𝑗=1

𝐴𝐸
𝑖,𝑗𝑓𝐸(𝑡𝐸𝑛,𝑗 , 𝑧𝑗) + ℎ𝑛

𝑖∑︁
𝑗=1

𝐴𝐼
𝑖,𝑗𝑓𝐼(𝑡𝐼𝑛,𝑗 , 𝑧𝑗), 𝑖 = 1, . . . , 𝑠,

𝑀𝑦𝑛 = 𝑀𝑦𝑛−1 + ℎ𝑛

𝑠∑︁
𝑖=1

(︀
𝑏𝐸𝑖 𝑓𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) + 𝑏𝐼𝑖 𝑓𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

)︀
,

𝑀𝑦𝑛 = 𝑀𝑦𝑛−1 + ℎ𝑛

𝑠∑︁
𝑖=1

(︁
�̃�𝐸𝑖 𝑓𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) + �̃�𝐼𝑖 𝑓𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

)︁
.

(2.3)

Here 𝑦𝑛 are embedded solutions that approximate 𝑦(𝑡𝑛) that are used for error estimation; these typically have slightly
lower accuracy than the computed solutions 𝑦𝑛. The internal stage times are abbreviated using the notation 𝑡𝐸𝑛,𝑗 =

𝑡𝑛−1 + 𝑐𝐸𝑗 ℎ𝑛 and 𝑡𝐼𝑛,𝑗 = 𝑡𝑛−1 + 𝑐𝐼𝑗ℎ𝑛. The ARK method is primarily defined through the coefficients 𝐴𝐸 ∈ R𝑠×𝑠,
𝐴𝐼 ∈ R𝑠×𝑠, 𝑏𝐸 ∈ R𝑠, 𝑏𝐼 ∈ R𝑠, 𝑐𝐸 ∈ R𝑠 and 𝑐𝐼 ∈ R𝑠, that correspond with the explicit and implicit Butcher tables.
Additional coefficients �̃�𝐸 ∈ R𝑠 and �̃�𝐼 ∈ R𝑠 are used to construct the embedding 𝑦𝑛. We note that ARKStep currently
enforces the constraint that the explicit and implicit methods in an ARK pair must share the same number of stages, 𝑠;
however it allows the possibility for different explicit and implicit stage times, i.e. 𝑐𝐸 need not equal 𝑐𝐼 .

The user of ARKStep must choose appropriately between one of three classes of methods: ImEx, explicit, and implicit.
All of ARKode’s available Butcher tables encoding the coefficients 𝑐𝐸 , 𝑐𝐼 , 𝐴𝐸 , 𝐴𝐼 , 𝑏𝐸 , 𝑏𝐼 , �̃�𝐸 and �̃�𝐼 are further
described in the Appendix: Butcher tables.

For mixed stiff/nonstiff problems, a user should provide both of the functions 𝑓𝐸 and 𝑓𝐼 that define the IVP system.
For such problems, ARKStep currently implements the ARK methods proposed in [KC2003], allowing for methods
having order of accuracy 𝑞 = {3, 4, 5}; the tables for these methods are given in the section Additive Butcher tables.
Additionally, user-defined ARK tables are supported.

For nonstiff problems, a user may specify that 𝑓𝐼 = 0, i.e. the equation (2.2) reduces to the non-split IVP

𝑀 �̇� = 𝑓𝐸(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. (2.4)

In this scenario, the coefficients 𝐴𝐼 = 0, 𝑐𝐼 = 0, 𝑏𝐼 = 0 and �̃�𝐼 = 0 in (2.3), and the ARK methods reduce to classical
explicit Runge-Kutta methods (ERK). For these classes of methods, ARKode provides coefficients with orders of ac-
curacy 𝑞 = {2, 3, 4, 5, 6, 8}, with embeddings of orders 𝑝 = {1, 2, 3, 4, 5, 7}. These default to the Heun-Euler-2-1-2,

2.3. ARKStep – Additive Runge-Kutta methods 15

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Bogacki-Shampine-4-2-3, Zonneveld-5-3-4, Cash-Karp-6-4-5, Verner-8-5-6 and Fehlberg-13-7-8 methods, respec-
tively. As with ARK methods, user-defined ERK tables are supported.

Finally, for stiff problems the user may specify that 𝑓𝐸 = 0, so the equation (2.2) reduces to the non-split IVP

𝑀 �̇� = 𝑓𝐼(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. (2.5)

Similarly to ERK methods, in this scenario the coefficients 𝐴𝐸 = 0, 𝑐𝐸 = 0, 𝑏𝐸 = 0 and �̃�𝐸 = 0 in (2.3), and the ARK
methods reduce to classical diagonally-implicit Runge-Kutta methods (DIRK). For these classes of methods, ARKode
provides tables with orders of accuracy 𝑞 = {2, 3, 4, 5}, with embeddings of orders 𝑝 = {1, 2, 3, 4}. These default to
the SDIRK-2-1-2, ARK-4-2-3 (implicit), SDIRK-5-3-4 and ARK-8-4-5 (implicit) methods, respectively. Again, user-
defined DIRK tables are supported.

2.4 ERKStep – Explicit Runge-Kutta methods

The ERKStep time-stepping module in ARKode is designed for IVP of the form

�̇� = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. (2.6)

For such problems, ERKStep provides variable-step, embedded, explicit Runge-Kutta methods (ERK), corresponding
to algorithms of the form

𝑧𝑖 = 𝑦𝑛−1 + ℎ𝑛

𝑖−1∑︁
𝑗=1

𝐴𝑖,𝑗𝑓(𝑡𝑛,𝑗 , 𝑧𝑗), 𝑖 = 1, . . . , 𝑠,

𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑛

𝑠∑︁
𝑖=1

𝑏𝑖𝑓(𝑡𝑛,𝑖, 𝑧𝑖),

𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑛

𝑠∑︁
𝑖=1

�̃�𝑖𝑓(𝑡𝑛,𝑖, 𝑧𝑖),

(2.7)

where the variables have the same meanings as in the previous section. We note that the problem (2.6) is fully
encapsulated in the more general problems (2.4), and that the algorithm (2.7) is similarly encapsulated in the more
general algorithm (2.3). While it therefore follows that ARKStep can be used to solve every problem solvable by
ERKStep, using the same set of methods, we include ERKStep as a distinct time-stepping module since this simplified
form admits a more efficient and memory-friendly solution process than when considering the more general form.

2.5 MRIStep – Multirate infinitesimal step methods

The MRIStep time-stepping module in ARKode is designed for IVP of the form

�̇� = 𝑓𝑠(𝑡, 𝑦) + 𝑓𝑓 (𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0. (2.8)

i.e. the right-hand side function is additively split into two components:

• 𝑓𝑠(𝑡, 𝑦) contains the “slow” components of the system. This will be integrated using a large time step ℎ𝑠.

• 𝑓𝑓 (𝑡, 𝑦) contains the “fast” components of the system. This will be integrated using a small time step ℎ𝑓 .

For such problems, MRIStep provides fixed-step multirate infinitesimal step methods (see [SKAW2009],
[SKAW2012a], and [SKAW2012b]) that combine two Runge-Kutta methods. The slow (outer) method is an 𝑠 stage

16 Chapter 2. Mathematical Considerations

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

explicit Runge-Kutta method where the stage values and the new solution are computed by solving an auxiliary ODE
with a fast (inner) Runge-Kutta method. This corresponds to the algorithm

𝑤1 = 𝑦𝑛,

𝑟𝑖 =

𝑖−1∑︁
𝑗=1

(𝐴𝑠
𝑖,𝑗 −𝐴𝑠

𝑖−1,𝑗)𝑓𝑠(𝑤𝑗),

𝑣𝑖(𝜏𝑖−1) = 𝑤𝑖−1,

𝑑𝑣𝑖
𝑑𝜏

= 𝑓𝑓 (𝑣𝑖) +
1

𝑐𝑠𝑖 − 𝑐𝑠𝑖−1

𝑟𝑖, 𝜏 ∈ [𝜏𝑖−1, 𝜏𝑖], 𝑖 = 2, . . . , 𝑠 + 1

𝑤𝑖 = 𝑣𝑖(𝜏𝑖),

𝑦𝑛+1 = 𝑤𝑠+1,

(2.9)

where the slow stages 𝑤𝑖 at times 𝜏𝑖 = 𝑡𝑛 + 𝑐𝑠𝑖ℎ𝑠 are computed by solving the 𝑣𝑖 fast ODE on [𝜏𝑖−1, 𝜏𝑖] with the initial
condition 𝑤𝑖−1, forcing term 𝑟𝑖, and 𝐴𝑠

𝑠+1,𝑗 = 𝑏𝑠𝑗 .

The MRIStep module provides a thrid order explicit-explicit method using the Knoth-Wolke-3-3 ERK for the slow
and fast method. User-defined tables are also supported. A user defined method will be first to thrid order accurate
depending on the slow and fast tables provided. If both the slow and fast tables are second order, then the overall
method will also be second order. If the slow and fast tables are both third order and the slow method satisfies an
auxiliary condition (see [SKAW2012a]), then the overall method will also be thrid order.

Note that at this time the MRIStep module only supports explicit fast and slow tables where the stage times of the slow
table must be unique and orderd (i.e., 𝑐𝑠𝑖 > 𝑐𝑠𝑖−1) and the final stage time must be less than 1.

2.6 Error norms

In the process of controlling errors at various levels (time integration, nonlinear solution, linear solution), the methods
in ARKode use a weighted root-mean-square norm, denoted ‖ · ‖WRMS, for all error-like quantities,

‖𝑣‖WRMS =

(︃
1

𝑁

𝑁∑︁
𝑖=1

(𝑣𝑖 𝑤𝑖)
2

)︃1/2

. (2.10)

The utility of this norm arises in the specification of the weighting vector 𝑤, that combines the units of the problem
with user-supplied values that specify an “acceptable” level of error. To this end, we construct an error weight vector
using the most-recent step solution and user-supplied relative and absolute tolerances, namely

𝑤𝑖 =
1

𝑅𝑇𝑂𝐿 · |𝑦𝑛−1,𝑖|+ 𝐴𝑇𝑂𝐿𝑖
. (2.11)

Since 1/𝑤𝑖 represents a tolerance in the 𝑖-th component of the solution vector 𝑦, a vector whose WRMS norm is 1
is regarded as “small.” For brevity, unless specified otherwise we will drop the subscript WRMS on norms in the
remainder of this section.

Additionally, for problems involving a non-identity mass matrix, 𝑀 ̸= 𝐼 , the units of equation (2.2) may differ from
the units of the solution 𝑦. In this case, we may additionally construct a residual weight vector,

𝑤𝑖 =
1

𝑅𝑇𝑂𝐿 · | [𝑀𝑦𝑛−1]𝑖 |+ 𝐴𝑇𝑂𝐿′
𝑖

, (2.12)

where the user may specify a separate absolute residual tolerance value or array, 𝐴𝑇𝑂𝐿′. The choice of weighting
vector used in any given norm is determined by the quantity being measured: values having “solution” units use (2.11),
whereas values having “equation” units use (2.12). Obviously, for problems with 𝑀 = 𝐼 , the solution and equation
units are identical, so the solvers in ARKode will use (2.11) when computing all error norms.

2.6. Error norms 17

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

2.7 Time step adaptivity

A critical component of IVP “solvers” (rather than just time-steppers) is their adaptive control of local truncation error
(LTE). At every step, we estimate the local error, and ensure that it satisfies tolerance conditions. If this local error test
fails, then the step is recomputed with a reduced step size. To this end, the Runge-Kutta methods packaged within both
the ARKStep and ERKStep modules admit an embedded solution 𝑦𝑛, as shown in equations (2.3) and (2.7). Generally,
these embedded solutions attain a slightly lower order of accuracy than the computed solution 𝑦𝑛. Denoting the order
of accuracy for 𝑦𝑛 as 𝑞 and for 𝑦𝑛 as 𝑝, most of these embedded methods satisfy 𝑝 = 𝑞 − 1. These values of 𝑞 and 𝑝
correspond to the global orders of accuracy for the method and embedding, hence each admit local truncation errors
satisfying [HW1993]

‖𝑦𝑛 − 𝑦(𝑡𝑛)‖ = 𝐶ℎ𝑞+1
𝑛 +𝒪(ℎ𝑞+2

𝑛),

‖𝑦𝑛 − 𝑦(𝑡𝑛)‖ = 𝐷ℎ𝑝+1
𝑛 +𝒪(ℎ𝑝+2

𝑛),
(2.13)

where 𝐶 and 𝐷 are constants independent of ℎ𝑛, and where we have assumed exact initial conditions for the step, i.e.
𝑦𝑛−1 = 𝑦(𝑡𝑛−1). Combining these estimates, we have

‖𝑦𝑛 − 𝑦𝑛‖ = ‖𝑦𝑛 − 𝑦(𝑡𝑛)− 𝑦𝑛 + 𝑦(𝑡𝑛)‖ ≤ ‖𝑦𝑛 − 𝑦(𝑡𝑛)‖+ ‖𝑦𝑛 − 𝑦(𝑡𝑛)‖ ≤ 𝐷ℎ𝑝+1
𝑛 +𝒪(ℎ𝑝+2

𝑛).

We therefore use the norm of the difference between 𝑦𝑛 and 𝑦𝑛 as an estimate for the LTE at the step 𝑛

𝑀𝑇𝑛 = 𝛽 (𝑦𝑛 − 𝑦𝑛) = 𝛽ℎ𝑛

𝑠∑︁
𝑖=1

[︁(︁
𝑏𝐸𝑖 − �̃�𝐸𝑖

)︁
𝑓𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) +

(︁
𝑏𝐼𝑖 − �̃�𝐼𝑖

)︁
𝑓𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

]︁
(2.14)

for ARK methods, and similarly for ERK methods. Here, 𝛽 > 0 is an error bias to help account for the error constant
𝐷; the default value of this constant is 𝛽 = 1.5, which may be modified by the user.

With this LTE estimate, the local error test is simply ‖𝑇𝑛‖ < 1 since this norm includes the user-specified tolerances.
If this error test passes, the step is considered successful, and the estimate is subsequently used to estimate the next
step size, the algorithms used for this purpose are described below in the section Asymptotic error control. If the error
test fails, the step is rejected and a new step size ℎ′ is then computed using the same error controller as for successful
steps. A new attempt at the step is made, and the error test is repeated. If the error test fails twice, then ℎ′/ℎ is limited
above to 0.3, and limited below to 0.1 after an additional step failure. After seven error test failures, control is returned
to the user with a failure message. We note that all of the constants listed above are only the default values; each may
be modified by the user.

We define the step size ratio between a prospective step ℎ′ and a completed step ℎ as 𝜂, i.e. 𝜂 = ℎ′/ℎ. This value is
subsequently bounded from above by 𝜂max to ensure that step size adjustments are not overly aggressive. This upper
bound changes according to the step and history,

𝜂max =

⎧⎪⎨⎪⎩
etamx1, on the first step (default is 10000),
growth, on general steps (default is 20),
1, if the previous step had an error test failure.

A flowchart detailing how the time steps are modified at each iteration to ensure solver convergence and successful
steps is given in the figure below. Here, all norms correspond to the WRMS norm, and the error adaptivity function
arkAdapt is supplied by one of the error control algorithms discussed in the subsections below.

For some problems it may be preferable to avoid small step size adjustments. This can be especially true for problems
that construct a Newton Jacobian matrix or a preconditioner for a nonlinear or an iterative linear solve, where this con-
struction is computationally expensive, and where convergence can be seriously hindered through use of an inaccurate
matrix. To accommodate these scenarios, the step is left unchanged when 𝜂 ∈ [𝜂𝐿, 𝜂𝑈]. The default values for this
interval are 𝜂𝐿 = 1 and 𝜂𝑈 = 1.5, and may be modified by the user.

We note that any choices for 𝜂 (or equivalently, ℎ′) are subsequently constrained by the optional user-supplied bounds
ℎmin and ℎmax. Additionally, the time-stepping algorithms in ARKode may similarly limit ℎ′ to adhere to a user-
provided “TSTOP” stopping point, 𝑡stop.

18 Chapter 2. Mathematical Considerations

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

2.7. Time step adaptivity 19

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

2.7.1 Asymptotic error control

As mentioned above, the time-stepping modules in ARKode adapt the step size in order to attain local errors within
desired tolerances of the true solution. These adaptivity algorithms estimate the prospective step size ℎ′ based on the
asymptotic local error estimates (2.13). We define the values 𝜀𝑛, 𝜀𝑛−1 and 𝜀𝑛−2 as

𝜀𝑘 ≡ ‖𝑇𝑘‖ = 𝛽‖𝑦𝑘 − 𝑦𝑘‖,

corresponding to the local error estimates for three consecutive steps, 𝑡𝑛−3 → 𝑡𝑛−2 → 𝑡𝑛−1 → 𝑡𝑛. These local
error history values are all initialized to 1 upon program initialization, to accommodate the few initial time steps of a
calculation where some of these error estimates have not yet been computed. With these estimates, ARKode supports
a variety of error control algorithms, as specified in the subsections below.

PID controller

This is the default time adaptivity controller used by the ARKStep and ERKStep modules. It derives from those found
in [KC2003], [S1998], [S2003] and [S2006], and uses all three of the local error estimates 𝜀𝑛, 𝜀𝑛−1 and 𝜀𝑛−2 in
determination of a prospective step size,

ℎ′ = ℎ𝑛 𝜀−𝑘1/𝑝
𝑛 𝜀

𝑘2/𝑝
𝑛−1 𝜀

−𝑘3/𝑝
𝑛−2 ,

where the constants 𝑘1, 𝑘2 and 𝑘3 default to 0.58, 0.21 and 0.1, respectively, and may be modied by the user. In this
estimate, a floor of 𝜀 > 10−10 is enforced to avoid division-by-zero errors.

PI controller

Like with the previous method, the PI controller derives from those found in [KC2003], [S1998], [S2003] and [S2006],
but it differs in that it only uses the two most recent step sizes in its adaptivity algorithm,

ℎ′ = ℎ𝑛 𝜀−𝑘1/𝑝
𝑛 𝜀

𝑘2/𝑝
𝑛−1 .

Here, the default values of 𝑘1 and 𝑘2 default to 0.8 and 0.31, respectively, though they may be changed by the user.

I controller

This is the standard time adaptivity control algorithm in use by most publicly-available ODE solver codes. It bases the
prospective time step estimate entirely off of the current local error estimate,

ℎ′ = ℎ𝑛 𝜀−𝑘1/𝑝
𝑛 .

By default, 𝑘1 = 1, but that may be modified by the user.

Explicit Gustafsson controller

This step adaptivity algorithm was proposed in [G1991], and is primarily useful with explicit Runge-Kutta methods.
In the notation of our earlier controllers, it has the form

ℎ′ =

{︃
ℎ1 𝜀

−1/𝑝
1 , on the first step,

ℎ𝑛 𝜀
−𝑘1/𝑝
𝑛 (𝜀𝑛/𝜀𝑛−1)

𝑘2/𝑝 , on subsequent steps.
(2.15)

The default values of 𝑘1 and 𝑘2 are 0.367 and 0.268, respectively, and may be modified by the user.

20 Chapter 2. Mathematical Considerations

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Implicit Gustafsson controller

A version of the above controller suitable for implicit Runge-Kutta methods was introduced in [G1994], and has the
form

ℎ′ =

{︃
ℎ1𝜀

−1/𝑝
1 , on the first step,

ℎ𝑛 (ℎ𝑛/ℎ𝑛−1) 𝜀
−𝑘1/𝑝
𝑛 (𝜀𝑛/𝜀𝑛−1)

−𝑘2/𝑝 , on subsequent steps.
(2.16)

The algorithm parameters default to 𝑘1 = 0.98 and 𝑘2 = 0.95, but may be modified by the user.

ImEx Gustafsson controller

An ImEx version of these two preceding controllers is also available. This approach computes the estimates ℎ′
1 arising

from equation (2.15) and the estimate ℎ′
2 arising from equation (2.16), and selects

ℎ′ =
ℎ

|ℎ|
min {|ℎ′

1|, |ℎ′
2|} .

Here, equation (2.15) uses 𝑘1 and 𝑘2 with default values of 0.367 and 0.268, while equation (2.16) sets both parameters
to the input 𝑘3 that defaults to 0.95. All of these values may be modified by the user.

User-supplied controller

Finally, ARKode’s time-stepping modules allow the user to define their own time step adaptivity function,

ℎ′ = 𝐻(𝑦, 𝑡, ℎ𝑛, ℎ𝑛−1, ℎ𝑛−2, 𝜀𝑛, 𝜀𝑛−1, 𝜀𝑛−2, 𝑞, 𝑝),

to allow for problem-specific choices, or for continued experimentation with temporal error controllers.

2.8 Explicit stability

For problems that involve a nonzero explicit component, i.e. 𝑓𝐸(𝑡, 𝑦) ̸= 0 in ARKStep or for any problem in ERKStep,
explicit and ImEx Runge-Kutta methods may benefit from additional user-supplied information regarding the explicit
stability region. All ARKode adaptivity methods utilize estimates of the local error, and it is often the case that such
local error control will be sufficient for method stability, since unstable steps will typically exceed the error control
tolerances. However, for problems in which 𝑓𝐸(𝑡, 𝑦) includes even moderately stiff components, and especially for
higher-order integration methods, it may occur that a significant number of attempted steps will exceed the error
tolerances. While these steps will automatically be recomputed, such trial-and-error can result in an unreasonable
number of failed steps, increasing the cost of the computation. In these scenarios, a stability-based time step controller
may also be useful.

Since the maximum stable explicit step for any method depends on the problem under consideration, in that the
value (ℎ𝑛𝜆) must reside within a bounded stability region, where 𝜆 are the eigenvalues of the linearized operator
𝜕𝑓𝐸/𝜕𝑦, information on the maximum stable step size is not readily available to ARKode’s time-stepping modules.
However, for many problems such information may be easily obtained through analysis of the problem itself, e.g. in
an advection-diffusion calculation 𝑓𝐼 may contain the stiff diffusive components and 𝑓𝐸 may contain the comparably
nonstiff advection terms. In this scenario, an explicitly stable step ℎexp would be predicted as one satisfying the
Courant-Friedrichs-Lewy (CFL) stability condition for the advective portion of the problem,

|ℎexp| <
∆𝑥

|𝜆|

where ∆𝑥 is the spatial mesh size and 𝜆 is the fastest advective wave speed.

2.8. Explicit stability 21

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

In these scenarios, a user may supply a routine to predict this maximum explicitly stable step size, |ℎexp|. If a value
for |ℎexp| is supplied, it is compared against the value resulting from the local error controller, |ℎacc|, and the eventual
time step used will be limited accordingly,

ℎ′ =
ℎ

|ℎ|
min{𝑐 |ℎexp|, |ℎacc|}.

Here the explicit stability step factor 𝑐 > 0 (often called the “CFL number”) defaults to 1/2 but may be modified by
the user.

2.8.1 Fixed time stepping

While both the ARKStep and ERKStep time-stepping modules are designed for tolerance-based time step adaptivity,
they additionally support a “fixed-step” mode. This mode is typically used for debugging purposes, for verification
against hand-coded Runge-Kutta methods, or for problems where the time steps should be chosen based on other
problem-specific information. In this mode, all internal time step adaptivity is disabled:

• temporal error control is disabled,

• nonlinear or linear solver non-convergence will result in an error (instead of a step size adjustment),

• no check against an explicit stability condition is performed.

Additional information on this mode is provided in the sections ARKStep Optional Inputs and ERKStep Optional
Inputs.

2.9 Algebraic solvers

When solving a problem involving either a nonzero implicit component, 𝑓𝐼(𝑡, 𝑦) ̸= 0, or a non-identity mass matrix,
𝑀 ̸= 𝐼 , systems of linear or nonlinear algebraic equations must be solved at each stage and/or step of the method.
This section therefore focuses on the variety of mathematical methods provided in the ARKode infrastructure for
such problems, including nonlinear solvers, linear solvers, preconditioners, iterative solver error control, implicit
predictors, and techniques used for simplifying the above solves when using non-time-dependent mass-matrices.

2.9.1 Nonlinear solver methods

For both the DIRK and ARK methods corresponding to (2.2) and (2.5), an implicit system

𝐺(𝑧𝑖) ≡𝑀𝑧𝑖 − ℎ𝑛𝐴
𝐼
𝑖,𝑖𝑓𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)− 𝑎𝑖 = 0 (2.17)

must be solved for each stage 𝑧𝑖, 𝑖 = 1, . . . , 𝑠, where we have the data

𝑎𝑖 ≡

⎛⎝𝑦𝑛−1 + ℎ𝑛

𝑖−1∑︁
𝑗=1

[︀
𝐴𝐸

𝑖,𝑗𝑓𝐸(𝑡𝐸𝑛,𝑗 , 𝑧𝑗) + 𝐴𝐼
𝑖,𝑗𝑓𝐼(𝑡𝐼𝑛,𝑗 , 𝑧𝑗)

]︀⎞⎠
for the ARK methods, or

𝑎𝑖 ≡

⎛⎝𝑦𝑛−1 + ℎ𝑛

𝑖−1∑︁
𝑗=1

𝐴𝐼
𝑖,𝑗𝑓𝐼(𝑡𝐼𝑛,𝑗 , 𝑧𝑗)

⎞⎠
for the DIRK methods. Here, if 𝑓𝐼(𝑡, 𝑦) depends nonlinearly on 𝑦 then (2.17) corresponds to a nonlinear system of
equations; if 𝑓𝐼(𝑡, 𝑦) depends linearly on 𝑦 then this is a linear system of equations.

22 Chapter 2. Mathematical Considerations

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

For systems of either type, ARKode provides a choice of solution strategies. The default solver choice is a variant of
Newton’s method,

𝑧
(𝑚+1)
𝑖 = 𝑧

(𝑚)
𝑖 + 𝛿(𝑚+1), (2.18)

where 𝑚 is the Newton iteration index, and the Newton update 𝛿(𝑚+1) in turn requires the solution of the Newton
linear system

𝒜
(︁
𝑡𝐼𝑛,𝑖, 𝑧

(𝑚)
𝑖

)︁
𝛿(𝑚+1) = −𝐺

(︁
𝑧
(𝑚)
𝑖

)︁
, (2.19)

in which

𝒜(𝑡, 𝑧) ≈𝑀 − 𝛾𝐽(𝑡, 𝑧), 𝐽(𝑡, 𝑧) =
𝜕𝑓𝐼(𝑡, 𝑧)

𝜕𝑧
, and 𝛾 = ℎ𝑛𝐴

𝐼
𝑖,𝑖. (2.20)

When the problem involves an identity mass matrix, then as an alternative to Newton’s method, ARKode provides a
fixed point iteration for solving the stages 𝑧𝑖, 𝑖 = 1, . . . , 𝑠,

𝑧
(𝑚+1)
𝑖 = Φ

(︁
𝑧
(𝑚)
𝑖

)︁
≡ 𝑧

(𝑚)
𝑖 −𝐺

(︁
𝑧
(𝑚)
𝑖

)︁
, 𝑚 = 0, 1, . . . (2.21)

This iteration may additionally be improved using a technique called “Anderson acceleration” [WN2011]. Unlike with
Newton’s method, these methods do not require the solution of a linear system at each iteration, instead opting for
solution of a low-dimensional least-squares solution to construct the nonlinear update.

Finally, if the user specifies that 𝑓𝐼(𝑡, 𝑦) depends linearly on 𝑦, and if the Newton-based nonlinear solver is chosen,
then the problem (2.17) will be solved using only a single Newton iteration. In this case, an additional user-supplied
argument indicates whether this Jacobian is time-dependent or not, signaling whether the Jacobian or preconditioner
needs to be recomputed at each stage or time step, or if it can be reused throughout the full simulation.

The optimal choice of solver (Newton vs fixed-point) is highly problem dependent. Since fixed-point solvers do not
require the solution of any linear systems, each iteration may be significantly less costly than their Newton counter-
parts. However, this can come at the cost of slower convergence (or even divergence) in comparison with Newton-like
methods. On the other hand, these fixed-point solvers do allow for user specification of the Anderson-accelerated sub-
space size, 𝑚𝑘. While the required amount of solver memory for acceleration grows proportionately to 𝑚𝑘𝑁 , larger
values of 𝑚𝑘 may result in faster convergence. In our experience, this improvement is most significant for “small”
values, e.g. 1 ≤ 𝑚𝑘 ≤ 5, and that larger values of 𝑚𝑘 may not result in improved convergence.

While a Newton-based iteration is the default solver due to its increased robustness on very stiff problems, we strongly
recommend that users also consider the fixed-point solver when attempting a new problem.

For either the Newton or fixed-point solvers, it is well-known that both the efficiency and robustness of the algorithm
intimately depend on the choice of a good initial guess. The initial guess for these solvers is a prediction 𝑧

(0)
𝑖 that is

computed explicitly from previously-computed data (e.g. 𝑦𝑛−2, 𝑦𝑛−1, and 𝑧𝑗 where 𝑗 < 𝑖). Additional information
on the specific predictor algorithms is provided in the following section, Implicit predictors.

2.9.2 Linear solver methods

When a Newton-based method is chosen for solving each nonlinear system, a linear system of equations must be
solved at each nonlinear iteration. For this solve ARKode provides several choices, including the option of a user-
supplied linear solver module. The linear solver modules distributed with SUNDIALS are organized into two families:
a direct family comprising direct linear solvers for dense, banded or sparse matrices, and a spils family comprising
scaled, preconditioned, iterative (Krylov) linear solvers. The methods offered through these modules are as follows:

• dense direct solvers, using either an internal SUNDIALS implementation or a BLAS/LAPACK implementation
(serial version only),

• band direct solvers, using either an internal SUNDIALS implementation or a BLAS/LAPACK implementation
(serial version only),

2.9. Algebraic solvers 23

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• sparse direct solvers, using either the KLU sparse matrix library [KLU], or the OpenMP or PThreads-enabled
SuperLU_MT sparse matrix library [SuperLUMT] [Note that users will need to download and install the KLU
or SuperLU_MT packages independent of ARKode],

• SPGMR, a scaled, preconditioned GMRES (Generalized Minimal Residual) solver,

• SPFGMR, a scaled, preconditioned FGMRES (Flexible Generalized Minimal Residual) solver,

• SPBCGS, a scaled, preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable) solver,

• SPTFQMR, a scaled, preconditioned TFQMR (Transpose-free Quasi-Minimal Residual) solver, or

• PCG, a preconditioned CG (Conjugate Gradient method) solver for symmetric linear systems.

For large stiff systems where direct methods are often infeasible, the combination of an implicit integrator and a
preconditioned Krylov method can yield a powerful tool because it combines established methods for stiff integration,
nonlinear solver iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant sources of
stiffness, in the form of a user-supplied preconditioner matrix [BH1989]. We note that the direct linear solver modules
currently provided by SUNDIALS are only designed to be used with the serial and threaded vector representations.

Matrix-based linear solvers

In the case that a matrix-based linear solver is used, a modified Newton iteration is utilized. In a modified newton
iteration, the matrix𝒜 is held fixed for multiple Newton iterations. More precisely, each Newton iteration is computed
from the modified equation

𝒜
(︀
𝑡, 𝑧
)︀
𝛿(𝑚+1) = −𝐺

(︁
𝑧
(𝑚)
𝑖

)︁
, (2.22)

in which

𝒜(𝑡, 𝑧) ≈𝑀 − 𝛾𝐽(𝑡, 𝑧), and 𝛾 = ℎ̃𝐴𝐼
𝑖,𝑖. (2.23)

Here, the solution 𝑧, time 𝑡, and step size ℎ̃ upon which the modified equation rely, are merely values of these quantities
from a previous iteration. In other words, the matrix 𝒜 is only computed rarely, and reused for repeated solves. The
frequency at which 𝒜 is recomputed defaults to 20 time steps, but may be modified by the user.

When using the dense and band SUNMatrix objects for the linear systems (2.22), the Jacobian 𝐽 may be supplied
by a user routine, or approximated internally by finite-differences. In the case of differencing, we use the standard
approximation

𝐽𝑖,𝑗(𝑡, 𝑧) ≈ 𝑓𝐼,𝑖(𝑡, 𝑧 + 𝜎𝑗𝑒𝑗)− 𝑓𝐼,𝑖(𝑡, 𝑧)

𝜎𝑗
,

where 𝑒𝑗 is the 𝑗-th unit vector, and the increments 𝜎𝑗 are given by

𝜎𝑗 = max

{︂√
𝑈 |𝑧𝑗 |,

𝜎0

𝑤𝑗

}︂
.

Here 𝑈 is the unit roundoff, 𝜎0 is a small dimensionless value, and 𝑤𝑗 is the error weight defined in (2.11). In the
dense case, this approach requires 𝑁 evaluations of 𝑓𝐼 , one for each column of 𝐽 . In the band case, the columns of
𝐽 are computed in groups, using the Curtis-Powell-Reid algorithm, with the number of 𝑓𝐼 evaluations equal to the
matrix bandwidth.

We note that with sparse and user-supplied SUNMatrix objects, the Jacobian must be supplied by a user routine.

24 Chapter 2. Mathematical Considerations

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Matrix-free iterative linear solvers

In the case that a matrix-free iterative linear solver is chosen, an inexact Newton iteration is utilized. Here, the matrix
𝒜 is not itself constructed since the algorithms only require the product of this matrix with a given vector. Additionally,
each Newton system (2.19) is not solved completely, since these linear solvers are iterative (hence the “inexact” in the
name). As a result. for these linear solvers 𝒜 is applied in a matrix-free manner,

𝒜(𝑡, 𝑧) 𝑣 = 𝑀𝑣 − 𝛾 𝐽(𝑡, 𝑧) 𝑣.

The matrix-vector products 𝑀𝑣 must be provided through a user-supplied routine; the matrix-vector products 𝐽𝑣
are obtained by either calling an optional user-supplied routine, or through a finite difference approximation to the
directional derivative:

𝐽(𝑡, 𝑧) 𝑣 ≈ 𝑓𝐼(𝑡, 𝑧 + 𝜎𝑣)− 𝑓𝐼(𝑡, 𝑧)

𝜎
,

where the increment 𝜎 = 1/‖𝑣‖ to ensure that ‖𝜎𝑣‖ = 1.

As with the modified Newton method that reused𝒜 between solves, the inexact Newton iteration may also recompute
the preconditioner 𝑃 infrequently to balance the high costs of matrix construction and factorization against the reduced
convergence rate that may result from a stale preconditioner.

Updating the linear solver

In cases where recomputation of the Newton matrix 𝒜 or preconditioner 𝑃 is lagged, these structures will be recom-
puted only in the following circumstances:

• when starting the problem,

• when more than 20 steps have been taken since the last update (this value may be modified by the user),

• when the value 𝛾 of 𝛾 at the last update satisfies |𝛾/𝛾 − 1| > 0.2 (this value may be modified by the user),

• when a non-fatal convergence failure just occurred,

• when an error test failure just occurred, or

• if the problem is linearly implicit and 𝛾 has changed by a factor larger than 100 times machine epsilon.

When an update is forced due to a convergence failure, an update of𝒜 or 𝑃 may or may not involve a re-evaluation of
𝐽 (in 𝒜) or of Jacobian data (in 𝑃), depending on whether errors in the Jacobian were the likely cause of the failure.
More generally, the decision is made to re-evaluate 𝐽 (or instruct the user to update 𝑃) when:

• starting the problem,

• more than 50 steps have been taken since the last evaluation,

• a convergence failure occurred with an outdated matrix, and the value 𝛾 of 𝛾 at the last update satisfies
|𝛾/𝛾 − 1| > 0.2,

• a convergence failure occurred that forced a step size reduction, or

• if the problem is linearly implicit and 𝛾 has changed by a factor larger than 100 times machine epsilon.

However, for linear solvers and preconditioners that do not rely on costly matrix construction and factorization op-
erations (e.g. when using a geometric multigrid method as preconditioner), it may be more efficient to update these
structures more frequently than the above heuristics specify, since the increased rate of linear/nonlinear solver conver-
gence may more than account for the additional cost of Jacobian/preconditioner construction. To this end, a user may
specify that the system matrix 𝒜 and/or preconditioner 𝑃 should be recomputed more frequently.

As will be further discussed in the section Preconditioning, in the case of most Krylov methods, preconditioning may
be applied on the left, right, or on both sides of 𝒜, with user-supplied routines for the preconditioner setup and solve
operations.

2.9. Algebraic solvers 25

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

2.9.3 Iteration Error Control

Nonlinear iteration error control

The stopping test for all of the nonlinear solver algorithms is related to the temporal local error test, with the goal of
keeping the nonlinear iteration errors from interfering with local error control. Denoting the final computed value of
each stage solution as 𝑧(𝑚)

𝑖 , and the true stage solution solving (2.17) as 𝑧𝑖, we want to ensure that the iteration error
𝑧𝑖 − 𝑧

(𝑚)
𝑖 is “small” (recall that a norm less than 1 is already considered within an acceptable tolerance).

To this end, we first estimate the linear convergence rate 𝑅𝑖 of the nonlinear iteration. We initialize 𝑅𝑖 = 1, and reset
it to this value whenever𝒜 or 𝑃 are updated. After computing a nonlinear correction 𝛿(𝑚) = 𝑧

(𝑚)
𝑖 −𝑧

(𝑚−1)
𝑖 , if 𝑚 > 0

we update 𝑅𝑖 as

𝑅𝑖 ← max{0.3𝑅𝑖,
⃦⃦⃦
𝛿(𝑚)

⃦⃦⃦
/
⃦⃦⃦
𝛿(𝑚−1)

⃦⃦⃦
}.

where the factor 0.3 is user-modifiable.

Let 𝑦(𝑚)
𝑛 denote the time-evolved solution constructed using our approximate nonlinear stage solutions, 𝑧(𝑚)

𝑖 , and let
𝑦
(∞)
𝑛 denote the time-evolved solution constructed using exact nonlinear stage solutions. We then use the estimate⃦⃦⃦

𝑦(∞)
𝑛 − 𝑦(𝑚)

𝑛

⃦⃦⃦
≈ max

𝑖

⃦⃦⃦
𝑧
(𝑚+1)
𝑖 − 𝑧

(𝑚)
𝑖

⃦⃦⃦
≈ max

𝑖
𝑅𝑖

⃦⃦⃦
𝑧
(𝑚)
𝑖 − 𝑧

(𝑚−1)
𝑖

⃦⃦⃦
= max

𝑖
𝑅𝑖

⃦⃦⃦
𝛿(𝑚)

⃦⃦⃦
.

Therefore our convergence (stopping) test for the nonlinear iteration for each stage is

𝑅𝑖

⃦⃦⃦
𝛿(𝑚)

⃦⃦⃦
< 𝜖, (2.24)

where the factor 𝜖 has default value 0.1. We default to a maximum of 3 nonlinear iterations. We also declare the
nonlinear iteration to be divergent if any of the ratios ‖𝛿(𝑚)‖/‖𝛿(𝑚−1)‖ > 2.3 with 𝑚 > 0. If convergence fails in
the fixed point iteration, or in the Newton iteration with 𝐽 or 𝒜 current, we reduce the step size ℎ𝑛 by a factor of
0.25. The integration will be halted after 10 convergence failures, or if a convergence failure occurs with ℎ𝑛 = ℎmin.
However, since the nonlinearity of (2.17) may vary significantly based on the problem under consideration, these
default constants may all be modified by the user.

Linear iteration error control

When a Krylov method is used to solve the linear Newton systems (2.19), its errors must also be controlled. To this
end, we approximate the linear iteration error in the solution vector 𝛿(𝑚) using the preconditioned residual vector, e.g.
𝑟 = 𝑃𝒜𝛿(𝑚) + 𝑃𝐺 for the case of left preconditioning (the role of the preconditioner is further elaborated in the next
section). In an attempt to ensure that the linear iteration errors do not interfere with the nonlinear solution error and
local time integration error controls, we require that the norm of the preconditioned linear residual satisfies

‖𝑟‖ ≤ 𝜖𝐿𝜖

10
. (2.25)

Here 𝜖 is the same value as that is used above for the nonlinear error control. The factor of 10 is used to ensure that the
linear solver error does not adversely affect the nonlinear solver convergence. Smaller values for the parameter 𝜖𝐿 are
typically useful for strongly nonlinear or very stiff ODE systems, while easier ODE systems may benefit from a value
closer to 1. The default value is 𝜖𝐿 = 0.05, which may be modified by the user. We note that for linearly implicit
problems the tolerance (2.25) is similarly used for the single Newton iteration.

2.9.4 Preconditioning

When using an inexact Newton method to solve the nonlinear system (2.17), an iterative method is used repeatedly
to solve linear systems of the form 𝒜𝑥 = 𝑏, where 𝑥 is a correction vector and 𝑏 is a residual vector. If this iterative

26 Chapter 2. Mathematical Considerations

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

method is one of the scaled preconditioned iterative linear solvers supplied with SUNDIALS, their efficiency may
benefit tremendously from preconditioning. A system 𝒜𝑥 = 𝑏 can be preconditioned using any one of:

(𝑃−1𝒜)𝑥 = 𝑃−1𝑏 [left preconditioning],

(𝒜𝑃−1)𝑃𝑥 = 𝑏 [right preconditioning],

(𝑃−1
𝐿 𝒜𝑃

−1
𝑅)𝑃𝑅𝑥 = 𝑃−1

𝐿 𝑏 [left and right preconditioning].

These Krylov iterative methods are then applied to a system with the matrix 𝑃−1𝒜, 𝒜𝑃−1, or 𝑃−1
𝐿 𝒜𝑃

−1
𝑅 , instead of

𝒜. In order to improve the convergence of the Krylov iteration, the preconditioner matrix 𝑃 , or the product 𝑃𝐿𝑃𝑅 in
the third case, should in some sense approximate the system matrix 𝒜. Simultaneously, in order to be cost-effective
the matrix 𝑃 (or matrices 𝑃𝐿 and 𝑃𝑅) should be reasonably efficient to evaluate and solve. Finding an optimal point
in this trade-off between rapid convergence and low cost can be quite challenging. Good choices are often problem-
dependent (for example, see [BH1989] for an extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with SUNDIALS allow for all three types of preconditioning (left, right
or both), although for non-symmetric matrices 𝒜 we know of few situations where preconditioning on both sides is
superior to preconditioning on one side only (with the product 𝑃 = 𝑃𝐿𝑃𝑅). Moreover, for a given preconditioner
matrix, the merits of left vs. right preconditioning are unclear in general, so we recommend that the user experiment
with both choices. Performance can differ between these since the inverse of the left preconditioner is included in the
linear system residual whose norm is being tested in the Krylov algorithm. As a rule, however, if the preconditioner
is the product of two matrices, we recommend that preconditioning be done either on the left only or the right only,
rather than using one factor on each side. An exception to this rule is the PCG solver, that itself assumes a symmetric
matrix 𝒜, since the PCG algorithm in fact applies the single preconditioner matrix 𝑃 in both left/right fashion as
𝑃−1/2𝒜𝑃−1/2.

Typical preconditioners are based on approximations to the system Jacobian, 𝐽 = 𝜕𝑓𝐼/𝜕𝑦. Since the Newton iteration
matrix involved is𝒜 = 𝑀 − 𝛾𝐽 , any approximation 𝐽 to 𝐽 yields a matrix that is of potential use as a preconditioner,
namely 𝑃 = 𝑀 − 𝛾𝐽 . Because the Krylov iteration occurs within a Newton iteration and further also within a time
integration, and since each of these iterations has its own test for convergence, the preconditioner may use a very
crude approximation, as long as it captures the dominant numerical features of the system. We have found that the
combination of a preconditioner with the Newton-Krylov iteration, using even a relatively poor approximation to the
Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.9.5 Implicit predictors

For problems with implicit components, a prediction algorithm is employed for constructing the initial guesses for
each implicit Runge-Kutta stage, 𝑧(0)𝑖 . As is well-known with nonlinear solvers, the selection of a good initial guess
can have dramatic effects on both the speed and robustness of the solve, making the difference between rapid quadratic
convergence versus divergence of the iteration. To this end, a variety of prediction algorithms are provided. In each
case, the stage guesses 𝑧(0)𝑖 are constructed explicitly using readily-available information, including the previous step
solutions 𝑦𝑛−1 and 𝑦𝑛−2, as well as any previous stage solutions 𝑧𝑗 , 𝑗 < 𝑖. In most cases, prediction is performed
by constructing an interpolating polynomial through existing data, which is then evaluated at the desired stage time to
provide an inexpensive but (hopefully) reasonable prediction of the stage solution. Specifically, for most Runge-Kutta
methods each stage solution satisfies

𝑧𝑖 ≈ 𝑦(𝑡𝐼𝑛,𝑖),

so by constructing an interpolating polynomial 𝑝𝑞(𝑡) through a set of existing data, the initial guess at stage solutions
may be approximated as

𝑧
(0)
𝑖 = 𝑝𝑞(𝑡𝐼𝑛,𝑖). (2.26)

As the stage times for implicit ARK and DIRK stages usually satisfy 𝑐𝐼𝑗 > 0, it is typically the case that 𝑡𝐼𝑛,𝑗 is outside
of the time interval containing the data used to construct 𝑝𝑞(𝑡), hence (2.26) will correspond to an extrapolant instead

2.9. Algebraic solvers 27

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

of an interpolant. The dangers of using a polynomial interpolant to extrapolate values outside the interpolation interval
are well-known, with higher-order polynomials and predictions further outside the interval resulting in the greatest
potential inaccuracies.

The prediction algorithms available in ARKode therefore construct a variety of interpolants 𝑝𝑞(𝑡), having different
polynomial order and using different interpolation data, to support ‘optimal’ choices for different types of problems,
as described below.

Trivial predictor

The so-called “trivial predictor” is given by the formula

𝑝0(𝑡) = 𝑦𝑛−1.

While this piecewise-constant interpolant is clearly not a highly accurate candidate for problems with time-varying
solutions, it is often the most robust approach for highly stiff problems, or for problems with implicit constraints whose
violation may cause illegal solution values (e.g. a negative density or temperature).

Maximum order predictor

At the opposite end of the spectrum, ARKode’s interpolation module can be used to construct a higher-order polyno-
mial interpolant, 𝑝𝑞(𝑡), based on the two most-recently-computed solutions, {𝑦𝑛−2, 𝑓𝑛−2, 𝑦𝑛−1, 𝑓𝑛−1}. This can then
be used to extrapolate predicted stage solutions for each stage time 𝑡𝐼𝑛,𝑖. This polynomial order is the same as that
specified by the user for dense output.

Variable order predictor

This predictor attempts to use higher-order polynomials 𝑝𝑞(𝑡) for predicting earlier stages, and lower-order interpolants
for later stages. It uses the same interpolation module as described above, but chooses 𝑞 adaptively based on the stage
index 𝑖, under the (rather tenuous) assumption that the stage times are increasing, i.e. 𝑐𝐼𝑗 < 𝑐𝐼𝑘 for 𝑗 < 𝑘:

𝑞 = max{𝑞max − 𝑖, 1}.

Cutoff order predictor

This predictor follows a similar idea as the previous algorithm, but monitors the actual stage times to determine the
polynomial interpolant to use for prediction. Denoting 𝜏 = 𝑐𝐼𝑖

ℎ𝑛

ℎ𝑛−1
, the polynomial degree 𝑞 is chosen as:

𝑞 =

{︃
𝑞max, if 𝜏 < 1

2 ,

1, otherwise.

Bootstrap predictor

This predictor does not use any information from the preceding step, instead using information only within the current
step [𝑡𝑛−1, 𝑡𝑛]. In addition to using the solution and ODE right-hand side function, 𝑦𝑛−1 and 𝑓(𝑡𝑛−1, 𝑦𝑛−1), this
approach uses the right-hand side from a previously computed stage solution in the same step, 𝑓(𝑡𝑛−1 + 𝑐𝐼𝑗ℎ, 𝑧𝑗) to
construct a quadratic Hermite interpolant for the prediction. If we define the constants ℎ̃ = 𝑐𝐼𝑗ℎ and 𝜏 = 𝑐𝐼𝑖 ℎ, the
predictor is given by

𝑧
(0)
𝑖 = 𝑦𝑛−1 +

(︂
𝜏 − 𝜏2

2ℎ̃

)︂
𝑓(𝑡𝑛−1, 𝑦𝑛−1) +

𝜏2

2ℎ̃
𝑓(𝑡𝑛−1 + ℎ̃, 𝑧𝑗).

28 Chapter 2. Mathematical Considerations

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

For stages without a nonzero preceding stage time, i.e. 𝑐𝐼𝑗 ̸= 0 for 𝑗 < 𝑖, this method reduces to using the trivial

predictor 𝑧(0)𝑖 = 𝑦𝑛−1. For stages having multiple preceding nonzero 𝑐𝐼𝑗 , we choose the stage having largest 𝑐𝐼𝑗 value,
to minimize the level of extrapolation used in the prediction.

We note that in general, each stage solution 𝑧𝑗 has significantly worse accuracy than the time step solutions 𝑦𝑛−1, due
to the difference between the stage order and the method order in Runge-Kutta methods. As a result, the accuracy
of this predictor will generally be rather limited, but it is provided for problems in which this increased stage error is
better than the effects of extrapolation far outside of the previous time step interval [𝑡𝑛−2, 𝑡𝑛−1].

We further note that although this method could be used with non-identity mass matrix 𝑀 ̸= 𝐼 , support for that mode
is not currently implemented, so selection of this predictor in the case that 𝑀 ̸= 𝐼 will result in use of the trivial
predictor.

Minimum correction predictor

The last predictor is not interpolation based; instead it utilizes all existing stage information from the current step to
create a predictor containing all but the current stage solution. Specifically, as discussed in equations (2.3) and (2.17),
each stage solves a nonlinear equation

𝑧𝑖 = 𝑦𝑛−1 + ℎ𝑛

𝑖−1∑︁
𝑗=1

𝐴𝐸
𝑖,𝑗𝑓𝐸(𝑡𝐸𝑛,𝑗 , 𝑧𝑗) + ℎ𝑛

𝑖∑︁
𝑗=1

𝐴𝐼
𝑖,𝑗𝑓𝐼(𝑡𝐼𝑛,𝑗 , 𝑧𝑗),

⇔
𝐺(𝑧𝑖) ≡ 𝑧𝑖 − ℎ𝑛𝐴

𝐼
𝑖,𝑖𝑓𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)− 𝑎𝑖 = 0.

This prediction method merely computes the predictor 𝑧𝑖 as

𝑧𝑖 = 𝑦𝑛−1 + ℎ𝑛

𝑖−1∑︁
𝑗=1

𝐴𝐸
𝑖,𝑗𝑓𝐸(𝑡𝐸𝑛,𝑗 , 𝑧𝑗) + ℎ𝑛

𝑖−1∑︁
𝑗=1

𝐴𝐼
𝑖,𝑗𝑓𝐼(𝑡𝐼𝑛,𝑗 , 𝑧𝑗),

⇔
𝑧𝑖 = 𝑎𝑖.

We again note that although this method could be used with non-identity mass matrix 𝑀 ̸= 𝐼 , support for that mode
is not currently implemented, so selection of this predictor in the case that 𝑀 ̸= 𝐼 will result in use of the trivial
predictor.

2.9.6 Mass matrix solver

Within the algorithms described above, there are multiple locations where a matrix-vector product

𝑏 = 𝑀𝑣 (2.27)

or a linear solve

𝑥 = 𝑀−1𝑏 (2.28)

are required.

Of course, for problems in which 𝑀 = 𝐼 both of these operators are trivial. However for problems with non-identity
𝑀 , these linear solves (2.28) may be handled using any valid linear solver module, in the same manner as described
in the section Linear solver methods for solving the linear Newton systems.

At present, for DIRK and ARK problems using a matrix-based solver for the Newton nonlinear iterations, the type
of matrix (dense, band, sparse, or custom) for the Jacobian matrix 𝐽 must match the type of mass matrix 𝑀 , since

2.9. Algebraic solvers 29

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

these are combined to form the Newton system matrix 𝒜. When matrix-based methods are employed, the user must
supply a routine to compute 𝑀 in the appropriate form to match the structure of 𝒜, with a user-supplied routine of
type ARKLsMassFn(). This matrix structure is used internally to perform any requisite mass matrix-vector products
(2.27).

When matrix-free methods are selected, a routine must be supplied to perform the mass-matrix-vector product, 𝑀𝑣.
As with iterative solvers for the Newton systems, preconditioning may be applied to aid in solution of the mass matrix
systems (2.28). When using an iterative mass matrix linear solver, we require that the norm of the preconditioned
linear residual satisfies

‖𝑟‖ ≤ 𝜖𝐿𝜖, (2.29)

where again, 𝜖 is the nonlinear solver tolerance parameter from (2.24). When using iterative system and mass matrix
linear solvers, 𝜖𝐿 may be specified separately for both tolerances (2.25) and (2.29).

In the above algorithmic description there are three locations where a linear solve of the form (2.28) is required: (a) in
constructing the time-evolved solution 𝑦𝑛, (b) in estimating the local temporal truncation error, and (c) in constructing
predictors for the implicit solver iteration (see section Maximum order predictor). Specifically, to construct the time-
evolved solution 𝑦𝑛 from equation (2.3) we must solve

𝑀𝑦𝑛 = 𝑀𝑦𝑛−1 + ℎ𝑛

𝑠∑︁
𝑖=1

(︀
𝑏𝐸𝑖 𝑓𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) + 𝑏𝐼𝑖 𝑓𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

)︀
,

⇔

𝑀(𝑦𝑛 − 𝑦𝑛−1) = ℎ𝑛

𝑠∑︁
𝑖=1

(︀
𝑏𝐸𝑖 𝑓𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) + 𝑏𝐼𝑖 𝑓𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

)︀
,

⇔

𝑀𝜈 = ℎ𝑛

𝑠∑︁
𝑖=1

(︀
𝑏𝐸𝑖 𝑓𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) + 𝑏𝐼𝑖 𝑓𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

)︀
,

for the update 𝜈 = 𝑦𝑛 − 𝑦𝑛−1. For construction of the stages 𝑧𝑖 this requires no mass matrix solves (as these are
included in the nonlinear system solve). Similarly, in computing the local temporal error estimate 𝑇𝑛 from equation
(2.14) we must solve systems of the form

𝑀 𝑇𝑛 = ℎ

𝑠∑︁
𝑖=1

[︁(︁
𝑏𝐸𝑖 − �̃�𝐸𝑖

)︁
𝑓𝐸(𝑡𝐸𝑛,𝑖, 𝑧𝑖) +

(︁
𝑏𝐼𝑖 − �̃�𝐼𝑖

)︁
𝑓𝐼(𝑡𝐼𝑛,𝑖, 𝑧𝑖)

]︁
. (2.30)

Lastly, in constructing dense output and implicit predictors of order 2 or higher (as in the section Maximum order
predictor above), we must compute the derivative information 𝑓𝑘 from the equation

𝑀𝑓𝑘 = 𝑓𝐸(𝑡𝑘, 𝑦𝑘) + 𝑓𝐼(𝑡𝑘, 𝑦𝑘).

In total, these require only two mass-matrix linear solves (2.28) per attempted time step, with one more upon com-
pletion of a time step that meets the solution accuracy requirements. When fixed time-stepping is used (ℎ𝑛 = ℎ), the
solve (2.30) is not performed at each attempted step.

2.10 Rootfinding

Many of the time-stepping modules in ARKode also support a rootfinding feature. This means that, while integrating
the IVP (2.1), these can also find the roots of a set of user-defined functions 𝑔𝑖(𝑡, 𝑦) that depend on 𝑡 and the solution
vector 𝑦 = 𝑦(𝑡). The number of these root functions is arbitrary, and if more than one 𝑔𝑖 is found to have a root in
any given interval, the various root locations are found and reported in the order that they occur on the 𝑡 axis, in the
direction of integration.

30 Chapter 2. Mathematical Considerations

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of 𝑔𝑖(𝑡, 𝑦(𝑡)),
denoted 𝑔𝑖(𝑡) for short. If a user root function has a root of even multiplicity (no sign change), it will almost certainly
be missed due to the realities of floating-point arithmetic. If such a root is desired, the user should reformulate the root
function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any 𝑔𝑖(𝑡) over each time step taken, and then (when a sign
change is found) to home in on the root (or roots) with a modified secant method [HS1980]. In addition, each time 𝑔
is evaluated, ARKode checks to see if 𝑔𝑖(𝑡) = 0 exactly, and if so it reports this as a root. However, if an exact zero
of any 𝑔𝑖 is found at a point 𝑡, ARKode computes 𝑔(𝑡 + 𝛿) for a small increment 𝛿, slightly further in the direction of
integration, and if any 𝑔𝑖(𝑡 + 𝛿) = 0 also, ARKode stops and reports an error. This way, each time ARKode takes a
time step, it is guaranteed that the values of all 𝑔𝑖 are nonzero at some past value of 𝑡, beyond which a search for roots
is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, ARKode
has an interval (𝑡lo, 𝑡hi] in which roots of the 𝑔𝑖(𝑡) are to be sought, such that 𝑡hi is further ahead in the direction of
integration, and all 𝑔𝑖(𝑡lo) ̸= 0. The endpoint 𝑡hi is either 𝑡𝑛, the end of the time step last taken, or the next requested
output time 𝑡out if this comes sooner. The endpoint 𝑡lo is either 𝑡𝑛−1, or the last output time 𝑡out (if this occurred within
the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly toward
𝑡𝑛 if an exact zero was found. The algorithm checks 𝑔(𝑡hi) for zeros, and it checks for sign changes in (𝑡lo, 𝑡hi). If
no sign changes are found, then either a root is reported (if some 𝑔𝑖(𝑡hi) = 0) or we proceed to the next time interval
(starting at 𝑡hi). If one or more sign changes were found, then a loop is entered to locate the root to within a rather
tight tolerance, given by

𝜏 = 100𝑈 (|𝑡𝑛|+ |ℎ|) (where 𝑈 = unit roundoff).

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur
first is the one with the largest value of |𝑔𝑖(𝑡hi)| / |𝑔𝑖(𝑡hi)− 𝑔𝑖(𝑡lo)|, corresponding to the closest to 𝑡lo of the secant
method values. At each pass through the loop, a new value 𝑡mid is set, strictly within the search interval, and the
values of 𝑔𝑖(𝑡mid) are checked. Then either 𝑡lo or 𝑡hi is reset to 𝑡mid according to which subinterval is found to have the
sign change. If there is none in (𝑡lo, 𝑡mid) but some 𝑔𝑖(𝑡mid) = 0, then that root is reported. The loop continues until
|𝑡hi − 𝑡lo| < 𝜏 , and then the reported root location is 𝑡hi. In the loop to locate the root of 𝑔𝑖(𝑡), the formula for 𝑡mid is

𝑡mid = 𝑡hi −
𝑔𝑖(𝑡hi)(𝑡hi − 𝑡lo)

𝑔𝑖(𝑡hi)− 𝛼𝑔𝑖(𝑡lo)
,

where 𝛼 is a weight parameter. On the first two passes through the loop, 𝛼 is set to 1, making 𝑡mid the secant method
value. Thereafter, 𝛼 is reset according to the side of the subinterval (low vs high, i.e. toward 𝑡lo vs toward 𝑡hi) in which
the sign change was found in the previous two passes. If the two sides were opposite, 𝛼 is set to 1. If the two sides
were the same, 𝛼 is halved (if on the low side) or doubled (if on the high side). The value of 𝑡mid is closer to 𝑡lo when
𝛼 < 1 and closer to 𝑡hi when 𝛼 > 1. If the above value of 𝑡mid is within 𝜏/2 of 𝑡lo or 𝑡hi, it is adjusted inward, such
that its fractional distance from the endpoint (relative to the interval size) is between 0.1 and 0.5 (with 0.5 being the
midpoint), and the actual distance from the endpoint is at least 𝜏/2.

Finally, we note that when running in parallel, ARKode’s rootfinding module assumes that the entire set of root
defining functions 𝑔𝑖(𝑡, 𝑦) is replicated on every MPI task. Since in these cases the vector 𝑦 is distributed across tasks,
it is the user’s responsibility to perform any necessary inter-task communication to ensure that 𝑔𝑖(𝑡, 𝑦) is identical on
each task.

2.10. Rootfinding 31

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

32 Chapter 2. Mathematical Considerations

CHAPTER

THREE

CODE ORGANIZATION

The family of solvers referred to as SUNDIALS consists of the solvers CVODE and ARKode (for ODE systems),
KINSOL (for nonlinear algebraic systems), and IDA (for differential-algebraic systems). In addition, SUNDIALS also
includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or adjoint methods),
called CVODES and IDAS, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized as a family, with a
directory structure that exploits that sharing (see the following Figures SUNDIALS organization, SUNDIALS tree and
SUNDIALS examples). The following is a list of the solver packages presently available, and the basic functionality of
each:

• CVODE, a linear multistep solver for stiff and nonstiff ODE systems �̇� = 𝑓(𝑡, 𝑦) based on Adams and BDF
methods;

• CVODES, a linear multistep solver for stiff and nonstiff ODEs with sensitivity analysis capabilities;

• ARKode, a Runge-Kutta based solver for stiff, nonstiff, and mixed ODE systems;

• IDA, a linear multistep solver for differential-algebraic systems 𝐹 (𝑡, 𝑦, �̇�) = 0 based on BDF methods;

• IDAS, a linear multistep solver for differential-algebraic systems with sensitivity analysis capabilities;

• KINSOL, a solver for nonlinear algebraic systems 𝐹 (𝑢) = 0.

Fig. 3.1: SUNDIALS organization: High-level diagram of the SUNDIALS structure

33

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 3.2: SUNDIALS tree: Directory structure of the source tree.

Fig. 3.3: SUNDIALS examples: Directory structure of the examples.

34 Chapter 3. Code Organization

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

3.1 ARKode organization

The ARKode package is written in the ANSI C language. The following summarizes the basic structure of the package,
although knowledge of this structure is not necessary for its use.

The overall organization of the ARKode package is shown in Figure ARKode organization. The central inte-
gration modules, implemented in the files arkode.h, arkode_impl.h, arkode_butcher.h, arkode.c,
arkode_arkstep.c , arkode_erkstep.c and arkode_butcher.c, deal with the evaluation of integration
stages, the nonlinear solvers, estimation of the local truncation error, selection of step size, and interpolation to user
output points, among other issues. ARKode currently supports modified Newton, inexact Newton, and accelerated
fixed-point solvers for these nonlinearly implicit problems. However, when using the Newton-based iterations, or
when using a non-identity mass matrix 𝑀 ̸= 𝐼 , ARKode has flexibility in the choice of method used to solve the
linear sub-systems that arise. Therefore, for any user problem invoking the Newton solvers, or any user problem with
𝑀 ̸= 𝐼 , one (or more) of the linear system solver modules should be specified by the user, which is then invoked as
needed during the integration process.

Fig. 3.4: ARKode organization: Overall structure of the ARKode package. Modules specific to ARKode are
the timesteppers, linear solver interfaces and preconditioners: ARKSTEP, ERKSTEP, ARKBBDPRE, ARKBAND-
PRE; all other items correspond to generic solver and auxiliary modules. Note also that the LAPACK, KLU and
SuperLU_MT support is through interfaces to external packages. Users will need to download and compile those
packages independently.

For solving these linear systems, ARKode’s linear solver interface supports both direct and iterative linear solvers built
using the generic SUNLINSOL API (see Description of the SUNLinearSolver module). These solvers may utilize a
SUNMATRIX object for storing Jacobian information, or they may be matrix-free. Since ARKode can operate on
any valid SUNLINSOL implementation, the set of linear solver modules available to ARKode will expand as new
SUNLINSOL modules are developed.

3.1. ARKode organization 35

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

For users employing dense or banded Jacobians, ARKode includes algorithms for their approximation through differ-
ence quotients, although the user also has the option of supplying a routine to compute the Jacobian (or an approxima-
tion to it) directly. This user-supplied routine is required when using sparse or user-supplied Jacobian matrices.

For users employing iterative linear solvers, ARKode includes an algorithm for the approximation by difference quo-
tients of the product 𝐴𝑣. Again, the user has the option of providing routines for this operation, in two phases: setup
(preprocessing of Jacobian data) and multiplication.

When solve problems with non-identity mass matrices, corresponding user-supplied routines for computing either the
mass matrix 𝑀 or the product 𝑀𝑣 are required. Additionally, the type of linear solver module (iterative, dense-direct,
band-direct, sparse-direct) used for both the IVP system and mass matrix must match.

For preconditioned iterative methods for either the system or mass matrix solves, the preconditioning must be supplied
by the user, again in two phases: setup and solve. While there is no default choice of preconditioner analogous to the
difference-quotient approximation in the direct case, the references [BH1989] and [B1992], together with the example
and demonstration programs included with ARKode and CVODE, offer considerable assistance in building simple
preconditioners.

ARKode’s linear solver interface consists of four primary phases, devoted to

1. memory allocation and initialization,

2. setup of the matrix/preconditioner data involved,

3. solution of the system, and

4. freeing of memory.

The setup and solution phases are separate because the evaluation of Jacobians and preconditioners is done only
periodically during the integration process, and only as required to achieve convergence.

ARKode also provides two rudimentary preconditioner modules, for use with any of the Krylov iterative linear
solvers. The first, ARKBANDPRE is intended to be used with the serial or threaded vector data structures (NVEC-
TOR_SERIAL, NVECTOR_OPENMP and NVECTOR_PTHREADS), and provides a banded difference-quotient ap-
proximation to the Jacobian as the preconditioner, with corresponding setup and solve routines. The second precondi-
tioner module, ARKBBDPRE, is intended to work with the parallel vector data structure, NVECTOR_PARALLEL,
and generates a preconditioner that is a block-diagonal matrix with each block being a band matrix owned by a single
processor.

All state information used by ARKode to solve a given problem is saved in a single opaque memory structure, and
a pointer to that structure is returned to the user. For C and C++ applications there is no global data in the ARKode
package, and so in this respect it is reentrant. State information specific to the linear solver interface is saved in a
separate data structure, a pointer to which resides in the ARKode memory structure. State information specific to the
linear solver implementation (and matrix implementation, if applicable) are stored in their own data structures, that
are returned to the user upon construction, and subsequently provided to ARKode for use. We note that the ARKode
Fortran interface, however, currently uses global variables, so at most one of each of these objects may be created per
memory space (i.e. one per MPI task in distributed memory computations).

36 Chapter 3. Code Organization

CHAPTER

FOUR

USING ARKSTEP FOR C AND C++ APPLICATIONS

This chapter is concerned with the use of the ARKStep time-stepping module for the solution of initial value problems
(IVPs) in a C or C++ language setting. The following sections discuss the header files and the layout of the user’s
main program, and provide descriptions of the ARKStep user-callable functions and user-supplied functions.

The example programs described in the companion document [R2018] may be helpful. Those codes may be used as
templates for new codes and are included in the ARKode package examples subdirectory.

Users with applications written in Fortran should see the chapter FARKODE, an Interface Module for FORTRAN
Applications, which describes the Fortran/C interface module for ARKStep, and may look to the Fortran example
programs also described in the companion document [R2018]. These codes are also located in the ARKode package
examples directory.

The user should be aware that not all SUNLINSOL, SUNMATRIX, and preconditioning modules are compatible with
all NVECTOR implementations. Details on compatibility are given in the documentation for each SUNMATRIX
(see Matrix Data Structures) and each SUNLINSOL module (see Description of the SUNLinearSolver module). For
example, NVECTOR_PARALLEL is not compatible with the dense, banded, or sparse SUNMATRIX types, or with
the corresponding dense, banded, or sparse SUNLINSOL modules. Please check the sections Matrix Data Struc-
tures and Description of the SUNLinearSolver module to verify compatibility between these modules. In addition to
that documentation, we note that the ARKBANDPRE preconditioning module is only compatible with the NVEC-
TOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS vector implementations, and the preconditioner
module ARKBBDPRE can only be used with NVECTOR_PARALLEL.

ARKStep uses various input and output constants from the shared ARKode infrastructure. These are defined as needed
in this chapter, but for convenience the full list is provided separately in the section Appendix: ARKode Constants.

The relevant information on using ARKStep’s C and C++ interfaces is detailed in the following sub-sections.

4.1 Access to library and header files

At this point, it is assumed that the installation of ARKode, following the procedure described in the section ARKode
Installation Procedure, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by ARKode. The relevant library files
are

• libdir/libsundials_arkode.lib,

• libdir/libsundials_nvec*.lib,

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant header files
are located in the subdirectories

• incdir/include/arkode

37

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• incdir/include/sundials

• incdir/include/nvector

• incdir/include/sunmatrix

• incdir/include/sunlinsol

• incdir/include/sunnonlinsol

The directories libdir and incdir are the installation library and include directories, respectively. For a default in-
stallation, these are instdir/lib and instdir/include, respectively, where instdir is the directory where
SUNDIALS was installed (see the section ARKode Installation Procedure for further details).

4.2 Data Types

The sundials_types.h file contains the definition of the variable type realtype, which is used by the SUN-
DIALS solvers for all floating-point data, the definition of the integer type sunindextype, which is used for vector
and matrix indices, and booleantype, which is used for certain logic operations within SUNDIALS.

4.2.1 Floating point types

The type “realtype” can be set to float, double, or long double, depending on how SUNDIALS was in-
stalled (with the default being double). The user can change the precision of the SUNDIALS solvers’ floating-point
arithmetic at the configuration stage (see the section Configuration options (Unix/Linux)).

Additionally, based on the current precision, sundials_types.h defines the values BIG_REAL to be the largest
value representable as a realtype, SMALL_REAL to be the smallest positive value representable as a realtype,
and UNIT_ROUNDOFF to be the smallest realtype number, 𝜀, such that 1.0 + 𝜀 ̸= 1.0.

Within SUNDIALS, real constants may be set to have the appropriate precision by way of a macro called RCONST.
It is this macro that needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant
with no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a float,
whereas using the suffix “L” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if realtype is double, to
1.0F if realtype is float, or to 1.0L if realtype is long double. SUNDIALS uses the RCONST macro
internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONSTmacro to handle floating-point constants is precision-
independent, except for any calls to precision-specific standard math library functions. Users can, however, use the
types double, float, or long double in their code (assuming that this usage is consistent with the size of
realtype values that are passed to and from SUNDIALS). Thus, a previously existing piece of ANSI C code
can use SUNDIALS without modifying the code to use realtype, so long as the SUNDIALS libraries have been
compiled using the same precision (for details see the section ARKode Installation Procedure).

4.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable int64_t type,
and the user can change it to int32_t at the configuration stage. The configuration system will detect if the compiler

38 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

does not support portable types, and will replace int32_t and int64_t with int and long int, respectively, to
ensure use of the desired sizes on Linux, Mac OS X, and Windows platforms. SUNDIALS currently does not support
unsigned integer types for vector and matrix indices, although these could be added in the future if there is sufficient
demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both index stor-
age types except for any calls to index storage-specific external libraries. (Our C and C++ example programs use
sunindextype.) Users can, however, use any one of int, long int, int32_t, int64_t or long long
int in their code, assuming that this usage is consistent with the typedef for sunindextype on their architec-
ture. Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying the code to use
sunindextype, so long as the SUNDIALS libraries use the appropriate index storage type (for details see the
section ARKode Installation Procedure).

4.3 Header Files

When using ARKStep, the calling program must include several header files so that various macros and data types can
be used. The header file that is always required is:

• arkode/arkode_arkstep.h, the main header file for the ARKStep time-stepping module, which
defines the several types and various constants, includes function prototypes, and includes the shared
arkode/arkode.h and arkode/arkode_ls.h header files.

Note that arkode.h includes sundials_types.h directly, which defines the types realtype,
sunindextype and booleantype and the constants SUNFALSE and SUNTRUE, so a user program does not
need to include sundials_types.h directly.

Additionally, the calling program must also include a NVECTOR implementation header file, of the form
nvector/nvector_***.h, corresponding to the user’s preferred data layout and form of parallelism. See
the section Vector Data Structures for details for the appropriate name. This file in turn includes the header file
sundials_nvector.h which defines the abstract N_Vector data type.

If the user includes a non-trivial implicit component to their ODE system, then each time step will require a nonlinear
solver for the resulting systems of equations – the default for this is a modified Newton iteration. If using a non-
default nonlinear solver module, or when interacting with a SUNNONLINSOL module directly, the calling program
must also include a SUNNONLINSOL header file, of the form sunnonlinsol/sunnonlinsol_***.h where
*** is the name of the nonlinear solver module (see the section Nonlinear Solver Data Structures for more infor-
mation). This file in turn includes the header file sundials_nonlinearsolver.h which defines the abstract
SUNNonlinearSolver data type.

If using a nonlinear solver that requires the solution of a linear system of the form 𝒜𝑥 = 𝑏 (e.g., the default Newton
iteration), then a linear solver module header file will also be required. Similarly, if the ODE system involves a non-
identity mass matrix 𝑀 ̸= 𝐼 , then each time step will require a linear solver for systems of the form 𝑀𝑥 = 𝑏. The
header files corresponding to the SUNDIALS-provided linear solver modules available for use with ARKode are:

• Direct linear solvers:

– sunlinsol/sunlinsol_dense.h, which is used with the dense linear solver module, SUNLIN-
SOL_DENSE;

– sunlinsol/sunlinsol_band.h, which is used with the banded linear solver module, SUNLIN-
SOL_BAND;

– sunlinsol/sunlinsol_lapackdense.h, which is used with the LAPACK dense linear solver
module, SUNLINSOL_LAPACKDENSE;

– sunlinsol/sunlinsol_lapackband.h, which is used with the LAPACK banded linear solver
module, SUNLINSOL_LAPACKBAND;

4.3. Header Files 39

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

– sunlinsol/sunlinsol_klu.h, which is used with the KLU sparse linear solver module, SUNLIN-
SOL_KLU;

– sunlinsol/sunlinsol_superlumt.h, which is used with the SuperLU_MT sparse linear solver
module, SUNLINSOL_SUPERLUMT;

• Iterative linear solvers:

– sunlinsol/sunlinsol_spgmr.h, which is used with the scaled, preconditioned GMRES Krylov
linear solver module, SUNLINSOL_SPGMR;

– sunlinsol/sunlinsol_spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, SUNLINSOL_SPFGMR;

– sunlinsol/sunlinsol_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, SUNLINSOL_SPBCGS;

– sunlinsol/sunlinsol_sptfqmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, SUNLINSOL_SPTFQMR;

– sunlinsol/sunlinsol_pcg.h, which is used with the scaled, preconditioned CG Krylov linear
solver module, SUNLINSOL_PCG;

The header files for the SUNLINSOL_DENSE and SUNLINSOL_LAPACKDENSE linear solver modules include
the file sunmatrix/sunmatrix_dense.h, which defines the SUNMATRIX_DENSE matrix module, as well as
various functions and macros for acting on such matrices.

The header files for the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND linear solver modules include the
file sunmatrix/sunmatrix_band.h, which defines the SUNMATRIX_BAND matrix module, as well as vari-
ous functions and macros for acting on such matrices.

The header files for the SUNLINSOL_KLU and SUNLINSOL_SUPERLUMT linear solver modules include the file
sunmatrix/sunmatrix_sparse.h, which defines the SUNMATRIX_SPARSE matrix module, as well as vari-
ous functions and macros for acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials_iterative.h, which
enumerates the preconditioning type and (for the SPGMR and SPFGMR solvers) the choices for the Gram-Schmidt
orthogonalization process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, if preconditioning for an
iterative linear solver were performed using the ARKBBDPRE module, the header arkode/arkode_bbdpre.h
is needed to access the preconditioner initialization routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP
using the ARKStep module. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL and
SUNNONLINSOL implementations used. For the steps that are not, refer to the sections Vector Data Structures,
Matrix Data Structures, Description of the SUNLinearSolver module, and Nonlinear Solver Data Structures for the
specific name of the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use
within the threaded vector functions, if used.

2. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

40 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the form

y0 = N_VMake_***(..., ydata);

if the realtype array ydata containing the initial values of 𝑦 already exists. Otherwise, create a new vector
by making a call of the form

y0 = N_VNew_***(...);

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_***(y0);

See the sections The NVECTOR_SERIAL Module through The NVECTOR_PTHREADS Module for details.

For the HYPRE and PETSc vector wrappers, first create and initialize the underlying vector, and then create the
NVECTOR wrapper with a call of the form

y0 = N_VMake_***(yvec);

where yvec is a HYPRE or PETSc vector. Note that calls like N_VNew_***(...) and
N_VGetArrayPointer_***(...) are not available for these vector wrappers. See the sections The
NVECTOR_PARHYP Module and The NVECTOR_PETSC Module for details.

If using either the CUDA- or RAJA-based vector implementations use a call of the form

y0 = N_VMake_***(..., c);

where c is a pointer to a suncudavec or sunrajavec vector class if this class already exists. Otherwise,
create a new vector by making a call of the form

N_VGetDeviceArrayPointer_***

or

N_VGetHostArrayPointer_***

Note that the vector class will allocate memory on both the host and device when instantiated. See the sections
The NVECTOR_CUDA Module and The NVECTOR_RAJA Module for details.

4. Create ARKStep object

Call arkode_mem = ARKStepCreate(...) to create the ARKStep memory block.
ARKStepCreate() returns a void* pointer to this memory structure. See the section ARKStep ini-
tialization and deallocation functions for details.

5. Specify integration tolerances

Call ARKStepSStolerances() or ARKStepSVtolerances() to specify either a scalar relative toler-
ance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively.
Alternatively, call ARKStepWFtolerances() to specify a function which sets directly the weights used in
evaluating WRMS vector norms. See the section ARKStep tolerance specification functions for details.

If a problem with non-identity mass matrix is used, and the solution units differ considerably from
the equation units, absolute tolerances for the equation residuals (nonlinear and linear) may be spec-

4.4. A skeleton of the user’s main program 41

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

ified separately through calls to ARKStepResStolerance(), ARKStepResVtolerance(), or
ARKStepResFtolerance().

6. Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration) and the linear solver will be
a matrix-based linear solver, then a template Jacobian matrix must be created by using the appropriate functions
defined by the particular SUNMATRIX implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using a call of
the form

SUNMatrix A = SUNBandMatrix(...);

or

SUNMatrix A = SUNDenseMatrix(...);

or

SUNMatrix A = SUNSparseMatrix(...);

Similarly, if the problem involves a non-identity mass matrix, and the mass-matrix linear systems will be solved
using a direct linear solver, then a template mass matrix must be created by using the appropriate functions
defined by the particular SUNMATRIX implementation.

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded environment.

7. Create linear solver object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration), or if the problem involves
a non-identity mass matrix, then the desired linear solver object(s) must be created by using the appropriate
functions defined by the particular SUNLINSOL implementation.

For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be created
using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in the sections Linear solver
interface functions and Description of the SUNLinearSolver module.

8. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to that linear
solver. See the documentation for each SUNLINSOL module in the section Description of the SUNLinearSolver
module for details.

9. Attach linear solver module

If a linear solver was created above for implicit stage solves, initialize the ARKLS linear solver interface by
attaching the linear solver object (and Jacobian matrix object, if applicable) with the call (for details see the
section Linear solver interface functions):

ier = ARKStepSetLinearSolver(...);

Similarly, if the problem involves a non-identity mass matrix, initialize the ARKLS mass matrix linear solver
interface by attaching the mass linear solver object (and mass matrix object, if applicable) with the call (for
details see the section Linear solver interface functions):

ier = ARKStepSetMassLinearSolver(...);

42 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

10. Set optional inputs

Call ARKStepSet* functions to change any optional inputs that control the behavior of ARKStep from their
default values. See the section Optional input functions for details.

11. Create nonlinear solver object

If the problem involves an implicit component, and if a non-default nonlinear solver object will be used for im-
plicit stage solves (see the section Nonlinear solver interface functions), then the desired nonlinear solver object
must be created by using the appropriate functions defined by the particular SUNNONLINSOL implementation
(e.g., NLS = SUNNonlinSol_***(...); where *** is the name of the nonlinear solver (see the section
Nonlinear Solver Data Structures for details).

For the SUNDIALS-supplied SUNNONLINSOL implementations, the nonlinear solver object may be created
using a call of the form

SUNNonlinearSolver NLS = SUNNonlinSol_Newton(...);

or

SUNNonlinearSolver NLS = SUNNonlinSol_FixedPoint(...);

12. Attach nonlinear solver module

If a nonlinear solver object was created above, then it must be attached to ARKStep using the call (for details
see the section Nonlinear solver interface functions):

ier = ARKStepSetNonlinearSolver(...);

13. Set nonlinear solver optional inputs

Call the appropriate set functions for the selected nonlinear solver module to change optional inputs specific
to that nonlinear solver. These must be called after attaching the nonlinear solver to ARKStep, otherwise the
optional inputs will be overridden by ARKStep defaults. See the section Nonlinear Solver Data Structures for
more information on optional inputs.

14. Specify rootfinding problem

Optionally, call ARKStepRootInit() to initialize a rootfinding problem to be solved during the integration
of the ODE system. See the section Rootfinding initialization function for general details, and the section
Optional input functions for relevant optional input calls.

15. Advance solution in time

For each point at which output is desired, call

ier = ARKStepEvolve(arkode_mem, tout, yout, &tret, itask);

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y0 above) will
contain 𝑦(𝑡out). See the section ARKStep solver function for details.

16. Get optional outputs

Call ARKStepGet* functions to obtain optional output. See the section Optional output functions for details.

17. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the destructor
function:

N_VDestroy(y);

18. Free solver memory

4.4. A skeleton of the user’s main program 43

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Call ARKStepFree(&arkode_mem) to free the memory allocated for the ARKStep module (and any non-
linear solver module).

19. Free linear solver and matrix memory

Call SUNLinSolFree() and (possibly) SUNMatDestroy() to free any memory allocated for the linear
solver and matrix objects created above.

20. Finalize MPI, if used

Call MPI_Finalize to terminate MPI.

SUNDIALS provides some linear solvers only as a means for users to get problems running and not as highly efficient
solvers. For example, if solving a dense system, we suggest using the LAPACK solvers if the size of the linear
system is > 50, 000 (thanks to A. Nicolai for his testing and recommendation). The table below shows the linear
solver interfaces available as SUNLinearSolver modules and the vector implementations required for use. As
an example, one cannot use the dense direct solver interfaces with the MPI-based vector implementation. However,
as discussed in section Description of the SUNLinearSolver module the SUNDIALS packages operate on generic
SUNLinearSolver objects, allowing a user to develop their own solvers should they so desire.

4.4.1 SUNDIALS linear solver interfaces and vector implementations that can be
used for each

Linear Solver
Interface

Se-
rial

Parallel
(MPI)

OpenMP pThreadshypre
Vec.

PETSc
Vec.

CUDA RAJA User
Suppl.

Dense X X X X
Band X X X X
LapackDense X X X X
LapackBand X X X X
KLU X X X X
SuperLU_MT X X X X
SPGMR X X X X X X X X X
SPFGMR X X X X X X X X X
SPBCGS X X X X X X X X X
SPTFQMR X X X X X X X X X
PCG X X X X X X X X X
User supplied X X X X X X X X X

4.5 User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the ARKStep
time-stepping module. Some of these are required; however, starting with the section Optional input functions, the
functions listed involve optional inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of
ARKode’s ARKStep module. In any case, refer to the preceding section, A skeleton of the user’s main program, for
the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to stderr by default. However, the user can
set a file as error output or can provide her own error handler function (see the section Optional input functions for
details).

44 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

4.5.1 ARKStep initialization and deallocation functions

void* ARKStepCreate(ARKRhsFn fe, ARKRhsFn fi, realtype t0, N_Vector y0)
This function creates an internal memory block for a problem to be solved using the ARKStep time-stepping
module in ARKode.

Arguments:

• fe – the name of the C function (of type ARKRhsFn()) defining the explicit portion of the right-hand
side function in 𝑀 �̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓𝐼(𝑡, 𝑦).

• fi – the name of the C function (of type ARKRhsFn()) defining the implicit portion of the right-hand
side function in 𝑀 �̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓𝐼(𝑡, 𝑦).

• t0 – the initial value of 𝑡.

• y0 – the initial condition vector 𝑦(𝑡0).

Return value: If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing ARKStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.

void ARKStepFree(void** arkode_mem)
This function frees the problem memory arkode_mem created by ARKStepCreate().

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value: None

4.5.2 ARKStep tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to
ARKStepEvolve(); otherwise default values of reltol = 1e-4 and abstol = 1e-9 will be used, which
may be entirely incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of
ARKStepSStolerances(), this vector has components

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol);

whereas in the case of ARKStepSVtolerances() the vector components are given by

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol[i]);

This vector is used in all error and convergence tests, which use a weighted RMS norm on all error-like vectors 𝑣:

‖𝑣‖𝑊𝑅𝑀𝑆 =

(︃
1

𝑁

𝑁∑︁
𝑖=1

(𝑣𝑖 𝑒𝑤𝑡𝑖)
2

)︃1/2

,

where 𝑁 is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to
ARKStepWFtolerances().

int ARKStepSStolerances(void* arkode_mem, realtype reltol, realtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

4.5. User-callable functions 45

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• reltol – scalar relative tolerance.

• abstol – scalar absolute tolerance.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepSVtolerances(void* arkode_mem, realtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• reltol – scalar relative tolerance.

• abstol – vector containing the absolute tolerances for each solution component.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepWFtolerances(void* arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• efun – the name of the function (of type ARKEwtFn()) that implements the error weight vector
computation.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

Moreover, for problems involving a non-identity mass matrix 𝑀 ̸= 𝐼 , the units of the solution vector 𝑦 may differ from
the units of the IVP, posed for the vector 𝑀𝑦. When this occurs, iterative solvers for the Newton linear systems and
the mass matrix linear systems may require a different set of tolerances. Since the relative tolerance is dimensionless,
but the absolute tolerance encodes a measure of what is “small” in the units of the respective quantity, a user may
optionally define absolute tolerances in the equation units. In this case, ARKStep defines a vector of residual weights,
rwt for measuring convergence of these iterative solvers. In the case of ARKStepResStolerance(), this vector
has components

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol);

whereas in the case of ARKStepResVtolerance() the vector components are given by

46 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

rwt[i] = 1.0/(reltol*abs(My[i]) + rabstol[i]);

This residual weight vector is used in all iterative solver convergence tests, which similarly use a weighted RMS norm
on all residual-like vectors 𝑣:

‖𝑣‖𝑊𝑅𝑀𝑆 =

(︃
1

𝑁

𝑁∑︁
𝑖=1

(𝑣𝑖 𝑟𝑤𝑡𝑖)
2

)︃1/2

,

where 𝑁 is the problem dimension.

As with the error weight vector, the user may supply a custom function to supply the rwt vector, through a call to
ARKStepResFtolerance(). Further information on all three of these functions is provided below.

int ARKStepResStolerance(void* arkode_mem, realtype abstol)
This function specifies a scalar absolute residual tolerance.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rabstol – scalar absolute residual tolerance.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepResVtolerance(void* arkode_mem, N_Vector rabstol)
This function specifies a vector of absolute residual tolerances.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rabstol – vector containing the absolute residual tolerances for each solution component.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepResFtolerance(void* arkode_mem, ARKRwtFn rfun)
This function specifies a user-supplied function rfun to compute the residual weight vector rwt.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rfun – the name of the function (of type ARKRwtFn()) that implements the residual weight vector
computation.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

4.5. User-callable functions 47

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol, abstol, and rabstol are a concern. The
following pieces of advice are relevant.

1. The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10−4 means that errors
are controlled to .01%. We do not recommend using reltol larger than 10−3. On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
10−15 for double-precision).

2. The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector 𝑦 may be so small that pure relative error control is meaningless. For example,
if 𝑦𝑖 starts at some nonzero value, but in time decays to zero, then pure relative error control on 𝑦𝑖 makes no
sense (and is overly costly) after 𝑦𝑖 is below some noise level. Then abstol (if scalar) or abstol[i] (if a
vector) needs to be set to that noise level. If the different components have different noise levels, then abstol
should be a vector. For example, see the example problem ark_robertson.c, and the discussion of it in
the ARKode Examples Documentation [R2018]. In that problem, the three components vary between 0 and 1,
and have different noise levels; hence the atols vector therein. It is impossible to give any general advice on
abstol values, because the appropriate noise levels are completely problem-dependent. The user or modeler
hopefully has some idea as to what those noise levels are.

3. The residual absolute tolerances rabstol (whether scalar or vector) follow a similar explanation as for
abstol, except that these should be set to the noise level of the equation components, i.e. the noise level
of 𝑀𝑦. For problems in which 𝑀 = 𝐼 , it is recommended that rabstol be left unset, which will default to
the already-supplied abstol values.

4. Finally, it is important to pick all the tolerance values conservatively, because they control the error committed
on each individual step. The final (global) errors are an accumulation of those per-step errors, where that
accumulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of
10 from the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice
for reltol is 10−5. In any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

1. The best way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again
this requires some knowledge of the noise level of these components, which may or may not be different for
different components. Some experimentation may be needed.

2. If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in 𝑦 returned by ARKStep, with magnitude comparable to abstol or less, is equivalent to zero
as far as the computation is concerned.

3. The user’s right-hand side routines 𝑓𝐸 and 𝑓𝐼 should never change a negative value in the solution vector 𝑦 to a
non-negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the 𝑓𝐸 or 𝑓𝐼
routines cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the offending
value should be changed to zero or a tiny positive number in a temporary variable (not in the input 𝑦 vector) for
the purposes of computing 𝑓𝐸(𝑡, 𝑦) or 𝑓𝐼(𝑡, 𝑦).

48 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

4. Positivity and non-negativity constraints on components can be enforced by use of the recoverable error return
feature in the user-supplied right-hand side functions, 𝑓𝐸 and 𝑓𝐼 . When a recoverable error is encountered,
ARKStep will retry the step with a smaller step size, which typically alleviates the problem. However, because
this option involves some additional overhead cost, it should only be exercised if the use of absolute tolerances
to control the computed values is unsuccessful.

4.5.3 Linear solver interface functions

As previously explained, the Newton iterations used in solving implicit systems within ARKStep require the solution
of linear systems of the form

𝒜
(︁
𝑧
(𝑚)
𝑖

)︁
𝛿(𝑚+1) = −𝐺

(︁
𝑧
(𝑚)
𝑖

)︁
where

𝒜 ≈𝑀 − 𝛾𝐽, 𝐽 =
𝜕𝑓𝐼
𝜕𝑦

.

ARKode’s ARKLs linear solver interface supports all valid SUNLinearSolver modules for this task.

Matrix-based SUNLinearSolver modules utilize SUNMatrix objects to store the approximate Jacobian matrix
𝐽 , the Newton matrix 𝒜, the mass matrix 𝑀 , and factorizations used throughout the solution process.

Matrix-free SUNLinearSolver modules instead use iterative methods to solve the Newton systems of equations,
and only require the action of the matrix on a vector, 𝒜𝑣. With most of these methods, preconditioning can be done
on the left only, on the right only, on both the left and the right, or not at all. The exceptions to this rule are SPFGMR
that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of
a preconditioner, see the iterative linear solver portions of the sections Optional input functions and User-supplied
functions.

If preconditioning is done, user-supplied functions should be used to define left and right preconditioner matrices 𝑃1

and 𝑃2 (either of which could be the identity matrix), such that the product 𝑃1𝑃2 approximates the Newton matrix
𝒜 = 𝑀 − 𝛾𝐽 .

To specify a generic linear solver for ARKStep to use for the Newton systems, after the call to ARKStepCreate()
but before any calls to ARKStepEvolve(), the user’s program must create the appropriate SUNLinearSolver
object and call the function ARKStepSetLinearSolver(), as documented below. To create the
SUNLinearSolver object, the user may call one of the SUNDIALS-packaged SUNLinSol module constructor
routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of such constructor routines includes SUNLinSol_Dense(), SUNLinSol_Band(),
SUNLinSol_LapackDense(), SUNLinSol_LapackBand(), SUNLinSol_KLU(),
SUNLinSol_SuperLUMT(), SUNLinSol_SPGMR(), SUNLinSol_SPFGMR(), SUNLinSol_SPBCGS(),
SUNLinSol_SPTFQMR(), and SUNLinSol_PCG().

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use of each of the
generic linear solvers involves certain constants, functions and possibly some macros, that are likely to be needed
in the user code. These are available in the corresponding header file associated with the specific SUNMatrix or
SUNLinearSolver module in question, as described in the sections Matrix Data Structures and Description of the
SUNLinearSolver module.

Once this solver object has been constructed, the user should attach it to ARKStep via a call to
ARKStepSetLinearSolver(). The first argument passed to this function is the ARKStep memory pointer re-
turned by ARKStepCreate(); the second argument is the SUNLinearSolver object created above. The third
argument is an optional SUNMatrix object to accompany matrix-based SUNLinearSolver inputs (for matrix-free

4.5. User-callable functions 49

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

linear solvers, the third argument should be NULL). A call to this function initializes the ARKLs linear solver inter-
face, linking it to the ARKStep integrator, and allows the user to specify additional parameters and routines pertinent
to their choice of linear solver.

int ARKStepSetLinearSolver(void* arkode_mem, SUNLinearSolver LS, SUNMatrix J)
This function specifies the SUNLinearSolver object that ARKStep should use, as well as a template Jaco-
bian SUNMatrix object (if applicable).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• LS – the SUNLinearSolver object to use.

• J – the template Jacobian SUNMatrix object to use (or NULL if not applicable).

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_MEM_FAIL if there was a memory allocation failure

• ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or J input objects, or the current
N_Vector module.

Notes: If LS is a matrix-free linear solver, then the J argument should be NULL.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process, so if
additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size (see the documentation of the particular SUNMATRIX type
in the section Matrix Data Structures for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full
sparsity pattern of the Newton system matrices 𝒜 = 𝐼 − 𝛾𝐽 (or 𝒜 = 𝑀 − 𝛾𝐽 in the case of non-identity mass
matrix), even if J itself has zeros in nonzero locations of 𝐼 (or 𝑀). The reasoning for this is that𝒜 is constructed
in-place, on top of the user-specified values of J, so if the sparsity pattern in J is insufficient to store 𝒜 then it
will need to be resized internally by ARKStep.

4.5.4 Mass matrix solver specification functions

As discussed in section Mass matrix solver, if the ODE system involves a non-identity mass matrix 𝑀 ̸= 𝐼 , then
ARKStep must solve linear systems of the form

𝑀𝑥 = 𝑏.

ARKode’s ARKLs mass-matrix linear solver interface supports all valid SUNLinearSolver modules for this task.
For iterative linear solvers, user-supplied preconditioning can be applied. For the specification of a preconditioner, see
the iterative linear solver portions of the sections Optional input functions and User-supplied functions. If precondi-
tioning is to be performed, user-supplied functions should be used to define left and right preconditioner matrices 𝑃1

and 𝑃2 (either of which could be the identity matrix), such that the product 𝑃1𝑃2 approximates the mass matrix 𝑀 .

To specify a generic linear solver for ARKStep to use for mass matrix systems, after the call to ARKStepCreate()
but before any calls to ARKStepEvolve(), the user’s program must create the appropriate SUNLinearSolver
object and call the function ARKStepSetMassLinearSolver(), as documented below. The first argument
passed to this functions is the ARKStep memory pointer returned by ARKStepCreate(); the second argument
is the desired SUNLinearSolver object to use for solving mass matrix systems. The third object is a template
SUNMatrix to use with the provided SUNLinearSolver (if applicable). The fourth input is a flag to indicate
whether the mass matrix is time-dependent, i.e. 𝑀 = 𝑀(𝑡) or not. A call to this function initializes the ARKLs mass

50 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

matrix linear solver interface, linking this to the main ARKStep integrator, and allows the user to specify additional
parameters and routines pertinent to their choice of linear solver.

The use of each of the generic linear solvers involves certain constants and possibly some macros, that are likely to be
needed in the user code. These are available in the corresponding header file associated with the specific SUNMatrix
or SUNLinearSolver module in question, as described in the sections Matrix Data Structures and Description of
the SUNLinearSolver module.

Note: if the user program includes linear solvers for both the Newton and mass matrix systems, these must have the
same type:

• If both are matrix-based, then they must utilize the same SUNMatrix type, since these will be added when
forming the Newton system matrices 𝒜. In this case, both the Newton and mass matrix linear solver interfaces
can use the same SUNLinearSolver object, although different solver objects (e.g. with different solver
parameters) are also allowed.

• If both are matrix-free, then the Newton and mass matrix SUNLinearSolver objects must be different. These
may even use different solver algorithms (SPGMR, SPBCGS, etc.), if desired. For example, if the mass matrix
is symmetric but the Jacobian is not, then PCG may be used for the mass matrix systems and SPGMR for the
Newton systems.

As with the Newton system solvers, the mass matrix linear system solvers listed below are all built on top of generic
SUNDIALS solver modules.

int ARKStepSetMassLinearSolver(void* arkode_mem, SUNLinearSolver LS, SUNMatrix M, boolean-
type time_dep)

This function specifies the SUNLinearSolver object that ARKStep should use for mass matrix systems, as
well as a template SUNMatrix object.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• LS – the SUNLinearSolver object to use.

• M – the template mass SUNMatrix object to use.

• time_dep – flag denoting whether the mass matrix depends on the independent variable (𝑀 = 𝑀(𝑡))
or not (𝑀 ̸= 𝑀(𝑡)). SUNTRUE indicates time-dependence of the mass matrix. Currently, only values
of “SUNFALSE” are supported.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_MEM_FAIL if there was a memory allocation failure

• ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or M input objects, or the current
N_Vector module.

Notes: If LS is a matrix-free linear solver, then the M argument should be NULL.

If LS is a matrix-based linear solver, then the template mass matrix M will be used in the solve process, so if
additional storage is required within the SUNMatrix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size.

The time_dep flag is currently unused, serving as a placeholder for planned future functionality. As such, ARK-
Step only computes and factors the mass matrix once, with the results reused throughout the entire ARKStep
simulation.

4.5. User-callable functions 51

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Unlike the system Jacobian, the system mass matrix cannot be approximated using finite-differences of any
functions provided to ARKStep. Hence, use of the a matrix-based LS requires the user to provide a mass-matrix
constructor routine (see ARKLsMassFn and ARKStepSetMassFn()).

Similarly, the system mass matrix-vector-product cannot be approximated using finite-differences of any func-
tions provided to ARKStep. Hence, use of a matrix-free LS requires the user to provide a mass-matrix-times-
vector product routine (see ARKLsMassTimesVecFn and ARKStepSetMassTimes()).

4.5.5 Nonlinear solver interface functions

When changing the nonlinear solver in ARKStep, after the call to ARKStepCreate() but before any
calls to ARKStepEvolve(), the user’s program must create the appropriate SUNNonlinSol object and call
ARKStepSetNonlinearSolver(), as documented below. If any calls to ARKStepEvolve() have been made,
then ARKStep will need to be reinitialized by calling ARKStepReInit() to ensure that the nonlinear solver is ini-
tialized correctly before any subsequent calls to ARKStepEvolve().

The first argument passed to the routine ARKStepSetNonlinearSolver() is the ARKStep memory pointer
returned by ARKStepCreate(); the second argument passed to this function is the desired SUNNonlinSol object
to use for solving the nonlinear system for each implicit stage. A call to this function attaches the nonlinear solver to
the main ARKStep integrator.

int ARKStepSetNonlinearSolver(void* arkode_mem, SUNNonlinearSolver NLS)
This function specifies the SUNNonlinearSolver object that ARKStep should use for implicit stage solves.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• NLS – the SUNNonlinearSolver object to use.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_MEM_FAIL if there was a memory allocation failure

• ARK_ILL_INPUT if ARKStep is incompatible with the provided NLS input object.

Notes: ARKStep will use the Newton SUNNonlinSol module by default; a call to this routine replaces that
module with the supplied NLS object.

4.5.6 Rootfinding initialization function

As described in the section Rootfinding, while solving the IVP, ARKode’s time-stepping modules have the capa-
bility to find the roots of a set of user-defined functions. To activate the root-finding algorithm, call the following
function. This is normally called only once, prior to the first call to ARKStepEvolve(), but if the rootfinding prob-
lem is to be changed during the solution, ARKStepRootInit() can also be called prior to a continuation call to
ARKStepEvolve().

int ARKStepRootInit(void* arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ARKStepCreate(), and before ARKStepEvolve().

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nrtfn – number of functions 𝑔𝑖, an integer ≥ 0.

52 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• g – name of user-supplied function, of type ARKRootFn(), defining the functions 𝑔𝑖 whose roots
are sought.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_MEM_FAIL if there was a memory allocation failure

• ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes: To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ARKStep’s rootfinding module, call ARKStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ARKStepReInit(), where the new IVP has no rootfinding
problem but the prior one did, then call ARKStepRootInit with nrtfn = 0.

4.5.7 ARKStep solver function

This is the central step in the solution process – the call to perform the integration of the IVP. One of the input
arguments (itask) specifies one of two modes as to where ARKStep is to return a solution. These modes are modified
if the user has set a stop time (with a call to the optional input function ARKStepSetStopTime()) or has requested
rootfinding.

int ARKStepEvolve(void* arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in 𝑡.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tout – the next time at which a computed solution is desired.

• yout – the computed solution vector.

• tret – the time corresponding to yout (output).

• itask – a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, tout, in the direction of integration, i.e. 𝑡𝑛−1 < tout ≤ 𝑡𝑛 for forward inte-
gration, or 𝑡𝑛 ≤ tout < 𝑡𝑛−1 for backward integration. It will then compute an approximation to
the solution 𝑦(𝑡𝑜𝑢𝑡) by interpolation (using one of the dense output routines described in the section
Interpolation).

The ARK_ONE_STEP option tells the solver to only take a single internal step 𝑦𝑛−1 → 𝑦𝑛 and then
return control back to the calling program. If this step will overtake tout then the solver will again
return an interpolated result; otherwise it will return a copy of the internal solution 𝑦𝑛 in the vector
yout

Return value:

• ARK_SUCCESS if successful.

• ARK_ROOT_RETURN if ARKStepEvolve() succeeded, and found one or more roots. If the num-
ber of root functions, nrtfn, is greater than 1, call ARKStepGetRootInfo() to see which 𝑔𝑖 were
found to have a root at (*tret).

• ARK_TSTOP_RETURN if ARKStepEvolve() succeeded and returned at tstop.

• ARK_MEM_NULL if the arkode_mem argument was NULL.

4.5. User-callable functions 53

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if one of the inputs to ARKStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

1. A component of the error weight vector became zero during internal time-stepping.

2. The linear solver initialization function (called by the user after calling ARKStepCreate())
failed to set the linear solver-specific lsolve field in arkode_mem.

3. A root of one of the root functions was found both at a point 𝑡 and also very near 𝑡.

• ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

• ARK_TOO_MUCH_ACC if the solver could not satisfy the accuracy demanded by the user for some
internal step.

• ARK_ERR_FAILURE if error test failures occurred either too many times (ark_maxnef) during one
internal time step or occurred with |ℎ| = ℎ𝑚𝑖𝑛.

• ARK_CONV_FAILURE if either convergence test failures occurred too many times (ark_maxncf)
during one internal time step or occurred with |ℎ| = ℎ𝑚𝑖𝑛.

• ARK_LINIT_FAIL if the linear solver’s initialization function failed.

• ARK_LSETUP_FAIL if the linear solver’s setup routine failed in an unrecoverable manner.

• ARK_LSOLVE_FAIL if the linear solver’s solve routine failed in an unrecoverable manner.

• ARK_MASSINIT_FAIL if the mass matrix solver’s initialization function failed.

• ARK_MASSSETUP_FAIL if the mass matrix solver’s setup routine failed.

• ARK_MASSSOLVE_FAIL if the mass matrix solver’s solve routine failed.

• ARK_VECTOROP_ERR a vector operation error occured.

Notes: The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ARKStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale of
the independent variable. All failure return values are negative and so testing the return argument for negative
values will trap all ARKStepEvolve() failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the user
should issue a call to ARKStepSetStopTime() before the call to ARKStepEvolve() to specify a fixed
stop time to end the time step and return to the user. Upon return from ARKStepEvolve(), a copy of the
internal solution 𝑦𝑛 will be returned in the vector yout. Once the integrator returns at a tstop time, any future
testing for tstop is disabled (and can be re-enabled only though a new call to ARKStepSetStopTime()).

On any error return in which one or more internal steps were taken by ARKStepEvolve(), the returned values
of tret and yout correspond to the farthest point reached in the integration. On all other error returns, tret and
yout are left unchanged from those provided to the routine.

4.5.8 Optional input functions

There are numerous optional input parameters that control the behavior of the ARKStep solver, each of which may
be modified from its default value through calling an appropriate input function. The following tables list all optional
input functions, grouped by which aspect of ARKStep they control. Detailed information on the calling syntax and
arguments for each function are then provided following each table.

54 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

The optional inputs are grouped into the following categories:

• General ARKStep options (Optional inputs for ARKStep),

• IVP method solver options (Optional inputs for IVP method selection),

• Step adaptivity solver options (Optional inputs for time step adaptivity),

• Implicit stage solver options (Optional inputs for implicit stage solves),

• Linear solver interface options (Linear solver interface optional input functions),

For the most casual use of ARKStep, relying on the default set of solver parameters, the reader can skip to the following
section, User-supplied functions.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
We also note that all error return values are negative, so a test on the return arguments for negative values will catch
all errors.

Optional inputs for ARKStep

Optional input Function name Default
Return ARKStep solver parameters to their defaults ARKStepSetDefaults() internal
Set dense output order ARKStepSetDenseOrder() 3
Supply a pointer to a diagnostics output file ARKStepSetDiagnostics() NULL
Supply a pointer to an error output file ARKStepSetErrFile() stderr
Supply a custom error handler function ARKStepSetErrHandlerFn() internal fn
Disable time step adaptivity (fixed-step mode) ARKStepSetFixedStep() disabled
Supply an initial step size to attempt ARKStepSetInitStep() estimated
Maximum no. of warnings for 𝑡𝑛 + ℎ = 𝑡𝑛 ARKStepSetMaxHnilWarns() 10
Maximum no. of internal steps before tout ARKStepSetMaxNumSteps() 500
Maximum absolute step size ARKStepSetMaxStep() ∞
Minimum absolute step size ARKStepSetMinStep() 0.0
Set a value for 𝑡𝑠𝑡𝑜𝑝 ARKStepSetStopTime() ∞
Supply a pointer for user data ARKStepSetUserData() NULL
Maximum no. of ARKStep error test failures ARKStepSetMaxErrTestFails() 7
Set ‘optimal’ adaptivity parameters for a method ARKStepSetOptimalParams() internal

int ARKStepSetDefaults(void* arkode_mem)
Resets all optional input parameters to ARKStep’s original default values.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Does not change the user_data pointer or any parameters within the specified time-stepping module.

Also leaves alone any data structures or options related to root-finding (those can be reset using
ARKStepRootInit()).

int ARKStepSetDenseOrder(void* arkode_mem, int dord)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values and implicit method predictors).

4.5. User-callable functions 55

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• dord – requested polynomial order of accuracy.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Allowed values are between 0 and min(q,5), where q is the order of the overall integration method.

int ARKStepSetDiagnostics(void* arkode_mem, FILE* diagfp)
Specifies the file pointer for a diagnostics file where all ARKStep step adaptivity and solver information is
written.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• diagfp – pointer to the diagnostics output file.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to
a unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer, all
diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from all
processes would be identical.

int ARKStepSetErrFile(void* arkode_mem, FILE* errfp)
Specifies a pointer to the file where all ARKStep warning and error messages will be written if the default
internal error handling function is used.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• errfp – pointer to the output file.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the ARKStep memory
pointer is NULL). This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for subse-
quent error messages.

56 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int ARKStepSetErrHandlerFn(void* arkode_mem, ARKErrHandlerFn ehfun, void* eh_data)
Specifies the optional user-defined function to be used in handling error messages.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ehfun – name of user-supplied error handler function.

• eh_data – pointer to user data passed to ehfun every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Error messages indicating that the ARKStep solver memory is NULLwill always be directed to stderr.

int ARKStepSetFixedStep(void* arkode_mem, realtype hfixed)
Disabled time step adaptivity within ARKStep, and specifies the fixed time step size to use for all internal steps.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hfixed – value of the fixed step size to use.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass 0.0 to return ARKStep to the default (adaptive-step) mode.

Use of this function is not recommended, since we it gives no assurance of the validity of the computed solutions.
It is primarily provided for code-to-code verification testing purposes.

When using ARKStepSetFixedStep(), any values provided to the functions
ARKStepSetInitStep(), ARKStepSetAdaptivityFn(), ARKStepSetMaxErrTestFails(),
ARKStepSetAdaptivityMethod(), ARKStepSetCFLFraction(), ARKStepSetErrorBias(),
ARKStepSetFixedStepBounds(), ARKStepSetMaxCFailGrowth(),
ARKStepSetMaxEFailGrowth(), ARKStepSetMaxFirstGrowth(),
ARKStepSetMaxGrowth(), ARKStepSetSafetyFactor(), ARKStepSetSmallNumEFails()
and ARKStepSetStabilityFn() will be ignored, since temporal adaptivity is disabled.

If both ARKStepSetFixedStep() and ARKStepSetStopTime() are used, then the fixed step size will
be used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ARKStepSetFixedStep() must be made prior to calling
ARKStepEvolve() to resume integration.

It is not recommended that ARKStepSetFixedStep() be used in concert with ARKStepSetMaxStep()
or ARKStepSetMinStep(), since at best those latter two routines will provide no useful information to the
solver, and at worst they may interfere with the desired fixed step size.

int ARKStepSetInitStep(void* arkode_mem, realtype hin)
Specifies the initial time step size ARKStep should use after initialization or re-initialization.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

4.5. User-callable functions 57

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• hin – value of the initial step to be attempted (̸= 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass 0.0 to use the default value.

By default, ARKStep estimates the initial step size to be the solution ℎ of the equation
⃦⃦⃦
ℎ2𝑦
2

⃦⃦⃦
= 1, where 𝑦 is

an estimated value of the second derivative of the solution at t0.

int ARKStepSetMaxHnilWarns(void* arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that 𝑡 + ℎ = 𝑡 on the next internal
step, before ARKStep will instead return with an error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mxhnil – maximum allowed number of warning messages (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

int ARKStepSetMaxNumSteps(void* arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ARKStep will return with an error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mxsteps – maximum allowed number of internal steps.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Passing mxsteps = 0 results in ARKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

int ARKStepSetMaxStep(void* arkode_mem, realtype hmax)
Specifies the upper bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hmax – maximum absolute value of the time step size (≥ 0).

Return value:

58 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass hmax ≤ 0.0 to set the default value of∞.

int ARKStepSetMinStep(void* arkode_mem, realtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hmin – minimum absolute value of the time step size (≥ 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass hmin ≤ 0.0 to set the default value of 0.

int ARKStepSetStopTime(void* arkode_mem, realtype tstop)
Specifies the value of the independent variable 𝑡 past which the solution is not to proceed.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tstop – stopping time for the integrator.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default is that no stop time is imposed.

int ARKStepSetUserData(void* arkode_mem, void* user_data)
Specifies the user data block user_data and attaches it to the main ARKStep memory block.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• user_data – pointer to the user data.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

If user_data is needed in user linear solver or preconditioner functions, the call to this function must be made
before the call to specify the linear solver.

4.5. User-callable functions 59

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int ARKStepSetMaxErrTestFails(void* arkode_mem, int maxnef)
Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• maxnef – maximum allowed number of error test failures (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 7; set maxnef ≤ 0 to specify this default.

int ARKStepSetOptimalParams(void* arkode_mem)
Sets all adaptivity and solver parameters to our ‘best guess’ values, for a given integration method (ERK, DIRK,
ARK) and a given method order.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Should only be called after the method order and integration method have been set. These values
resulted from repeated testing of ARKStep’s solvers on a variety of training problems. However, all problems
are different, so these values may not be optimal for all users.

Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ARKStepSetOrder() 4
Specify implicit/explicit problem ARKStepSetImEx() SUNTRUE
Specify explicit problem ARKStepSetExplicit() SUNFALSE
Specify implicit problem ARKStepSetImplicit() SUNFALSE
Set additive RK tables ARKStepSetTables() internal
Specify additive RK table numbers ARKStepSetTableNum() internal

int ARKStepSetOrder(void* arkode_mem, int ord)
Specifies the order of accuracy for the ARK/DIRK/ERK integration method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ord – requested order of accuracy.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

60 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_ILL_INPUT if an argument has an illegal value

Notes: For explicit methods, the allowed values are 2 ≤ ord ≤ 8. For implicit methods, the allowed values are
2 ≤ ord ≤ 5, and for ImEx methods the allowed values are 3 ≤ ord ≤ 5. Any illegal input will result in the
default value of 4.

Since ord affects the memory requirements for the internal ARKStep memory block, it cannot be changed after
the first call to ARKStepEvolve(), unless ARKStepReInit() is called.

int ARKStepSetImEx(void* arkode_mem)
Specifies that both the implicit and explicit portions of problem are enabled, and to use an additive Runge Kutta
method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when neither of the function pointers fe or fi passed to
ARKStepCreate() are NULL, but may be set directly by the user if desired.

int ARKStepSetExplicit(void* arkode_mem)
Specifies that the implicit portion of problem is disabled, and to use an explicit RK method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when the function pointer fi passed to ARKStepCreate() is NULL, but
may be set directly by the user if desired.

If the problem is posed in explicit form, i.e. �̇� = 𝑓(𝑡, 𝑦), then we recommend that the ERKStep time-stepper
module be used instead.

int ARKStepSetImplicit(void* arkode_mem)
Specifies that the explicit portion of problem is disabled, and to use a diagonally implicit RK method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This is automatically deduced when the function pointer fe passed to ARKStepCreate() is NULL,
but may be set directly by the user if desired.

4.5. User-callable functions 61

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int ARKStepSetTables(void* arkode_mem, int q, int p, ARKodeButcherTable Bi, ARKode-
ButcherTable Be)

Specifies a customized Butcher table (or pair) for the ERK, DIRK, or ARK method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• q – global order of accuracy for the ARK method.

• p – global order of accuracy for the embedded ARK method.

• Bi – the Butcher table for the implicit RK method.

• Be – the Butcher table for the explicit RK method.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables see
Butcher Table Data Structure.

To set an explicit table, Bi must be NULL. This automatically calls ARKStepSetExplicit(). However,
if the problem is posed in explicit form, i.e. �̇� = 𝑓(𝑡, 𝑦), then we recommend that the ERKStep time-stepper
module be used instead of ARKStep.

To set an implicit table, Be must be NULL. This automatically calls ARKStepSetImplicit().

If both Bi and Be are provided, this routine automatically calls ARKStepSetImEx().

When only one table is provided (i.e., Bi or Be is NULL) then the input values of q and p are ignored and the
global order of the method and embedding (if applicable) are obtained from the Butcher table structures. If both
Bi and Be are non-NULL (e.g, an IMEX method is provided) then the input values of q and p are used as the
order of the ARK method may be less than the orders of the individual tables. No error checking is performed
to ensure that either p or q correctly describe the coefficients that were input.

Error checking is performed on Bi and Be (if non-NULL) to ensure that they specify DIRK and ERK methods,
respectively.

If the inputs Bi or Be do not contain an embedding (when the corresponding explicit or implicit table is non-
NULL), the user must call ARKStepSetFixedStep() to enable fixed-step mode and set the desired time
step size.

int ARKStepSetTableNum(void* arkode_mem, int itable, int etable)
Indicates to use specific built-in Butcher tables for the ERK, DIRK or ARK method.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• itable – index of the DIRK Butcher table.

• etable – index of the ERK Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

62 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Notes:

The allowable values for both the itable and etable arguments corresponding to built-in tables may be found
Appendix: Butcher tables.

To choose an explicit table, set itable to a negative value. This automatically calls ARKStepSetExplicit().
However, if the problem is posed in explicit form, i.e. �̇� = 𝑓(𝑡, 𝑦), then we recommend that the ERKStep time-
stepper module be used instead of ARKStep.

To select an implicit table, set etable to a negative value. This automatically calls ARKStepSetImplicit().

If both itable and etable are non-negative, then these should match an existing implicit/explicit pair, listed in the
section Additive Butcher tables. This automatically calls ARKStepSetImEx().

In all cases, error-checking is performed to ensure that the tables exist.

Optional inputs for time step adaptivity

The mathematical explanation of ARKode’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in the section Time step adaptivity.

Optional input Function name Default
Set a custom time step adaptivity function ARKStepSetAdaptivityFn() internal
Choose an existing time step adaptivity method ARKStepSetAdaptivityMethod() 0
Explicit stability safety factor ARKStepSetCFLFraction() 0.5
Time step error bias factor ARKStepSetErrorBias() 1.5
Bounds determining no change in step size ARKStepSetFixedStepBounds() 1.0 1.5
Maximum step growth factor on convergence fail ARKStepSetMaxCFailGrowth() 0.25
Maximum step growth factor on error test fail ARKStepSetMaxEFailGrowth() 0.3
Maximum first step growth factor ARKStepSetMaxFirstGrowth() 10000.0
Maximum general step growth factor ARKStepSetMaxGrowth() 20.0
Time step safety factor ARKStepSetSafetyFactor() 0.96
Error fails before MaxEFailGrowth takes effect ARKStepSetSmallNumEFails() 2
Explicit stability function ARKStepSetStabilityFn() none

int ARKStepSetAdaptivityFn(void* arkode_mem, ARKAdaptFn hfun, void* h_data)
Sets a user-supplied time-step adaptivity function.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hfun – name of user-supplied adaptivity function.

• h_data – pointer to user data passed to hfun every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should focus on accuracy-based time step estimation; for stability based time steps the
function ARKStepSetStabilityFn() should be used instead.

int ARKStepSetAdaptivityMethod(void* arkode_mem, int imethod, int idefault, int pq, real-
type* adapt_params)

Specifies the method (and associated parameters) used for time step adaptivity.

Arguments:

4.5. User-callable functions 63

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• arkode_mem – pointer to the ARKStep memory block.

• imethod – accuracy-based adaptivity method choice (0 ≤ imethod ≤ 5): 0 is PID, 1 is PI, 2 is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

• idefault – flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

• pq – flag denoting whether to use the embedding order of accuracy p (0) or the method order of
accuracy q (1) within the adaptivity algorithm. p is the default.

• adapt_params[0] – 𝑘1 parameter within accuracy-based adaptivity algorithms.

• adapt_params[1] – 𝑘2 parameter within accuracy-based adaptivity algorithms.

• adapt_params[2] – 𝑘3 parameter within accuracy-based adaptivity algorithms.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: If custom parameters are supplied, they will be checked for validity against published stability intervals.
If other parameter values are desired, it is recommended to instead provide a custom function through a call to
ARKStepSetAdaptivityFn().

int ARKStepSetCFLFraction(void* arkode_mem, realtype cfl_frac)
Specifies the fraction of the estimated explicitly stable step to use.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• cfl_frac – maximum allowed fraction of explicitly stable step (default is 0.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetErrorBias(void* arkode_mem, realtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• bias – bias applied to error in accuracy-based time step estimation (default is 1.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value below 1.0 will imply a reset to the default value.

int ARKStepSetFixedStepBounds(void* arkode_mem, realtype lb, realtype ub)
Specifies the step growth interval in which the step size will remain unchanged.

64 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lb – lower bound on window to leave step size fixed (default is 1.0).

• ub – upper bound on window to leave step size fixed (default is 1.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any interval not containing 1.0 will imply a reset to the default values.

int ARKStepSetMaxCFailGrowth(void* arkode_mem, realtype etacf)
Specifies the maximum step size growth factor upon an algebraic solver convergence failure on a stage solve
within a step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• etacf – time step reduction factor on a nonlinear solver convergence failure (default is 0.25).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value outside the interval (0, 1] will imply a reset to the default value.

int ARKStepSetMaxEFailGrowth(void* arkode_mem, realtype etamxf)
Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• etamxf – time step reduction factor on multiple error fails (default is 0.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value outside the interval (0, 1] will imply a reset to the default value.

int ARKStepSetMaxFirstGrowth(void* arkode_mem, realtype etamx1)
Specifies the maximum allowed step size change following the very first integration step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• etamx1 – maximum allowed growth factor after the first time step (default is 10000.0).

Return value:

• ARK_SUCCESS if successful

4.5. User-callable functions 65

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value ≤ 1.0 will imply a reset to the default value.

int ARKStepSetMaxGrowth(void* arkode_mem, realtype mx_growth)
Specifies the maximum growth of the step size between consecutive steps in the integration process.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• growth – maximum allowed growth factor between consecutive time steps (default is 20.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value ≤ 1.0 will imply a reset to the default value.

int ARKStepSetSafetyFactor(void* arkode_mem, realtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• safety – safety factor applied to accuracy-based time step (default is 0.96).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetSmallNumEFails(void* arkode_mem, int small_nef)
Specifies the threshold for “multiple” successive error failures before the etamxf parameter from
ARKStepSetMaxEFailGrowth() is applied.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• small_nef – bound to determine ‘multiple’ for etamxf (default is 2).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetStabilityFn(void* arkode_mem, ARKExpStabFn EStab, void* estab_data)
Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE
system.

Arguments:

66 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• arkode_mem – pointer to the ARKStep memory block.

• EStab – name of user-supplied stability function.

• estab_data – pointer to user data passed to EStab every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should return an estimate of the absolute value of the maximum stable time step for the
explicit portion of the ODE system. It is not required, since accuracy-based adaptivity may be sufficient for
retaining stability, but this can be quite useful for problems where the explicit right-hand side function 𝑓𝐸(𝑡, 𝑦)
may contain stiff terms.

Optional inputs for implicit stage solves

The mathematical explanation for the nonlinear solver strategies used by ARKStep, including how each of the param-
eters below is used within the code, is provided in the section Nonlinear solver methods.

Optional input Function name Default
Specify linearly implicit 𝑓𝐼 ARKStepSetLinear() SUNFALSE
Specify nonlinearly implicit 𝑓𝐼 ARKStepSetNonlinear() SUNTRUE
Implicit predictor method ARKStepSetPredictorMethod() 0
Maximum number of nonlinear iterations ARKStepSetMaxNonlinIters() 3
Coefficient in the nonlinear convergence test ARKStepSetNonlinConvCoef() 0.1
Nonlinear convergence rate constant ARKStepSetNonlinCRDown() 0.3
Nonlinear residual divergence ratio ARKStepSetNonlinRDiv() 2.3
Maximum number of convergence failures ARKStepSetMaxConvFails() 10

int ARKStepSetLinear(void* arkode_mem, int timedepend)
Specifies that the implicit portion of the problem is linear.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• timedepend – flag denoting whether the Jacobian of 𝑓𝐼(𝑡, 𝑦) is time-dependent (1) or not (0). Alter-
nately, when using an iterative linear solver this flag denotes time dependence of the preconditioner.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Tightens the linear solver tolerances and takes only a single Newton iteration. Calls
ARKStepSetDeltaGammaMax() to enforce Jacobian recomputation when the step size ratio changes by
more than 100 times the unit roundoff (since nonlinear convergence is not tested). Only applicable when used
in combination with the modified or inexact Newton iteration (not the fixed-point solver).

The only SUNNonlinearSolver module that is compatible with the ARKStepSetLinear() option is the
Newton solver.

int ARKStepSetNonlinear(void* arkode_mem)
Specifies that the implicit portion of the problem is nonlinear.

4.5. User-callable functions 67

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This is the default behavior of ARKStep, so the function is primarily useful to undo a previous call to
ARKStepSetLinear(). Calls ARKStepSetDeltaGammaMax() to reset the step size ratio threshold to
the default value.

int ARKStepSetPredictorMethod(void* arkode_mem, int method)
Specifies the method to use for predicting implicit solutions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• method – method choice (0 ≤ method ≤ 4):

– 0 is the trivial predictor,

– 1 is the maximum order (dense output) predictor,

– 2 is the variable order predictor, that decreases the polynomial degree for more distant RK stages,

– 3 is the cutoff order predictor, that uses the maximum order for early RK stages, and a first-order
predictor for distant RK stages,

– 4 is the bootstrap predictor, that uses a second-order predictor based on only information within
the current step.

– 5 is the minimum correction predictor, that uses all preceding stage information within the current
step for prediction.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 0. If method is set to an undefined value, this default predictor will be used.

int ARKStepSetMaxNonlinIters(void* arkode_mem, int maxcor)
Specifies the maximum number of nonlinear solver iterations permitted per RK stage within each time step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• maxcor – maximum allowed solver iterations per stage (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value or if the SUNNONLINSOL module is NULL

• ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

68 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Notes: The default value is 3; set maxcor ≤ 0 to specify this default.

int ARKStepSetNonlinConvCoef(void* arkode_mem, realtype nlscoef)
Specifies the safety factor used within the nonlinear solver convergence test.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nlscoef – coefficient in nonlinear solver convergence test (> 0.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 0.1; set nlscoef ≤ 0 to specify this default.

int ARKStepSetNonlinCRDown(void* arkode_mem, realtype crdown)
Specifies the constant used in estimating the nonlinear solver convergence rate.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• crdown – nonlinear convergence rate estimation constant (default is 0.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetNonlinRDiv(void* arkode_mem, realtype rdiv)
Specifies the nonlinear correction threshold beyond which the iteration will be declared divergent.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rdiv – tolerance on nonlinear correction size ratio to declare divergence (default is 2.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetMaxConvFails(void* arkode_mem, int maxncf)
Specifies the maximum number of nonlinear solver convergence failures permitted during one step, before
ARKStep will return with an error.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• maxncf – maximum allowed nonlinear solver convergence failures per step (> 0).

Return value:

4.5. User-callable functions 69

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 10; set maxncf ≤ 0 to specify this default.

Upon each convergence failure, ARKStep will first call the Jacobian setup routine and try again (if a Newton
method is used). If a convergence failure still occurs, the time step size is reduced by the factor etacf (set within
ARKStepSetMaxCFailGrowth()).

Linear solver interface optional input functions

The mathematical explanation of the linear solver methods available to ARKStep is provided in the section Linear
solver methods. We group the user-callable routines into four categories: general routines concerning the update
frequency for matrices and/or preconditioners, optional inputs for matrix-based linear solvers, optional inputs for
matrix-free linear solvers, and optional inputs for iterative linear solvers. We note that the matrix-based and matrix-
free groups are mutually exclusive, whereas the “iterative” tag can apply to either case.

Optional inputs for the ARKLs linear solver interface

As discussed in the section Updating the linear solver, ARKode strives to reuse matrix and preconditioner data for
as many solves as possible to amortize the high costs of matrix construction and factorization. To that end, ARKStep
provides three user-callable routines to modify this behavior. To this end, we recall that the Newton system matrices
that arise within an implicit stage solve are 𝒜(𝑡, 𝑧) ≈ 𝑀 − 𝛾𝐽(𝑡, 𝑧), where the implicit right-hand side function has
Jacobian matrix 𝐽(𝑡, 𝑧) = 𝜕𝑓𝐼(𝑡,𝑧)

𝜕𝑧 .

The matrix or preconditioner for 𝒜 can only be updated within a call to the linear solver ‘setup’ routine. In gen-
eral, the frequency with which the linear solver setup routine is called may be controlled with the msbp argument
to ARKStepSetMaxStepsBetweenLSet(). When this occurs, the validity of 𝒜 for successive time steps inti-
mately depends on whether the corresponding 𝛾 and 𝐽 inputs remain valid.

If the current value of 𝛾 is ever too far from the value used when constructing 𝒜, then it is considered invalid and the
linear solver setup routine is called. For linear solvers with user-supplied preconditioning, the input jok is then set to
SUNFALSE in calling the user-supplied ARKLsPrecSetupFn(), to recommend a preconditioner update.

It is more difficult to automatically and efficiently determine the validity of 𝐽 (unless the nonlinear solver fails to
converge). To this end, we automatically update 𝐽 at a user-defined frequency, controlled with the msbj argument to
ARKStepSetMaxStepsBetweenJac(). We note that this is only checked within calls to the linear solver setup
routine, so values msbj < msbp do not make sense.

For linear solvers with user-supplied preconditioning: at each call to the linear solver setup routine, msbj is used
to determine whether to recommend a preconditioner update (i.e., whether to set jok to SUNFALSE in calling the
user-supplied ARKLsPrecSetupFn()).

For matrix-based linear solvers: at each call to the linear solver setup routine, msbj is used to determine whether
the matrix 𝐽(𝑡, 𝑦) = 𝜕𝑓𝐼(𝑡,𝑦)

𝜕𝑦 should be updated; if not then the previous value is reused and the system matrix
𝒜(𝑡, 𝑦) ≈𝑀 − 𝛾𝐽(𝑡, 𝑦) is recomputed using the current 𝛾 value.

Optional input Function name Default
Max change in step signaling new 𝐽 ARKStepSetDeltaGammaMax() 0.2
Max steps between calls to “lsetup” routine ARKStepSetMaxStepsBetweenLSet() 20
Max steps between calls to new 𝐽 ARKStepSetMaxStepsBetweenJac() 50

int ARKStepSetDeltaGammaMax(void* arkode_mem, realtype dgmax)
Specifies a scaled step size ratio tolerance, beyond which the linear solver setup routine will be signaled.

70 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• dgmax – tolerance on step size ratio change before calling linear solver setup routine (default is 0.2).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ARKStepSetMaxStepsBetweenLSet(void* arkode_mem, int msbp)
Specifies the frequency of calls to the linear solver setup routine. Positive values specify the number of time
steps between setup calls; negative values force recomputation at each stage solve; zero values reset to the
default.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• msbp – maximum number of time steps between linear solver setup calls, or flag to force recomputa-
tion at each stage solve (default is 20).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

int ARKStepSetMaxStepsBetweenJac(void* arkode_mem, long int msbj)
Specifies the maximum number of time steps to wait before recomputation of the Jacobian or recommendation
to update the preconditioner.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• msbj – maximum number of time steps between Jacobian or preconditioner updates (default is 50).

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

Notes: Passing a value msbj ≤ 0 indicates to use the default value of 50.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Optional inputs for matrix-based SUNLinearSolver modules

Optional input Function name Default
Jacobian function ARKStepSetJacFn() DQ
Mass matrix function ARKStepSetMassFn() none

4.5. User-callable functions 71

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

When using matrix-based linear solver modules, the ARKLS solver interface needs a function to compute an approxi-
mation to the Jacobian matrix 𝐽(𝑡, 𝑦). This function must be of type ARKLsJacFn(). The user can supply a custom
Jacobian function, or if using a dense or banded 𝐽 can use the default internal difference quotient approximation
that comes with the ARKLS interface. At present, we do not supply a corresponding routine to approximate Jaco-
bian entries in sparse matrices 𝐽 . To specify a user-supplied Jacobian function jac, ARKStep provides the function
ARKStepSetJacFn(). The ARKLS interface passes the user data pointer to the Jacobian function. This allows
the user to create an arbitrary structure with relevant problem data and access it during the execution of the user-
supplied Jacobian function, without using global data in the program. The user data pointer may be specified through
ARKStepSetUserData().

Similarly, if the ODE system involves a non-identity mass matrix, 𝑀 ̸= 𝐼 , matrix-based linear solver modules require
a function to compute an approximation to the mass matrix 𝑀 . There is no default difference quotient approximation
(for any matrix type), so this routine must be supplied by the user. This function must be of type ARKLsMassFn(),
and should be set using the function ARKStepSetMassFn(). We note that the ARKLS solver passes the user data
pointer to the mass matrix function. This allows the user to create an arbitrary structure with relevant problem data
and access it during the execution of the user-supplied mass matrix function, without using global data in the program.
The pointer user data may be specified through ARKStepSetUserData().

int ARKStepSetJacFn(void* arkode_mem, ARKLsJacFn jac)
Specifies the Jacobian approximation routine to be used for the matrix-based solver with the ARKLS interface.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• jac – name of user-supplied Jacobian approximation function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This routine must be called after the ARKLS linear solver interface has been initialized through a call to
ARKStepSetLinearSolver().

By default, ARKLS uses an internal difference quotient function for dense and band matrices. If NULL is passed
in for jac, this default is used. An error will occur if no jac is supplied when using other matrix types.

The function type ARKLsJacFn() is described in the section User-supplied functions.

int ARKStepSetMassFn(void* arkode_mem, ARKLsMassFn mass)
Specifies the mass matrix approximation routine to be used for the matrix-based solver with the ARKLS inter-
face.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mass – name of user-supplied mass matrix approximation function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL

• ARKLS_ILL_INPUT if an argument has an illegal value

72 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Notes: This routine must be called after the ARKLS mass matrix solver interface has been initialized through a
call to ARKStepSetMassLinearSolver().

Since there is no default difference quotient function for mass matrices, mass must be non-NULL.

The function type ARKLsMassFn() is described in the section User-supplied functions.

Optional inputs for matrix-free SUNLinearSolver modules

Optional input Function name Default
𝐽𝑣 functions (jtimes and jtsetup) ARKStepSetJacTimes() DQ, none
𝑀𝑣 functions (mtimes and mtsetup) ARKStepSetMassTimes() none, none

As described in the section Linear solver methods, when solving the Newton linear systems with matrix-free methods,
the ARKLS interface requires a jtimes function to compute an approximation to the product between the Jacobian ma-
trix 𝐽(𝑡, 𝑦) and a vector 𝑣. The user can supply a custom Jacobian-times-vector approximation function, or use the de-
fault internal difference quotient function that comes with the ARKLS interface. A user-defined Jacobian-vector func-
tion must be of type ARKLsJacTimesVecFn and can be specified through a call to ARKStepSetJacTimes()
(see the section User-supplied functions for specification details). As with the user-supplied preconditioner functions,
the evaluation and processing of any Jacobian-related data needed by the user’s Jacobian-times-vector function is done
in the optional user-supplied function of type ARKLsJacTimesSetupFn (see the section User-supplied functions
for specification details). As with the preconditioner functions, a pointer to the user-defined data structure, user_data,
specified through ARKStepSetUserData() (or a NULL pointer otherwise) is passed to the Jacobian-times-vector
setup and product functions each time they are called.

Similarly, if a problem involves a non-identity mass matrix, 𝑀 ̸= 𝐼 , then matrix-free solvers require a mtimes function
to compute an approximation to the product between the mass matrix 𝑀 and a vector 𝑣. This function must be user-
supplied, since there is no default value. mtimes must be of type ARKLsMassTimesVecFn(), and can be specified
through a call to the ARKStepSetMassTimes() routine. As with the user-supplied preconditioner functions, the
evaluation and processing of any mass matrix-related data needed by the user’s mass-matrix-times-vector function
is done in the optional user-supplied function of type ARKLsMassTimesSetupFn (see the section User-supplied
functions for specification details).

int ARKStepSetJacTimes(void* arkode_mem, ARKLsJacTimesSetupFn jtsetup, ARKLsJac-
TimesVecFn jtimes)

Specifies the Jacobian-times-vector setup and product functions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• jtsetup – user-defined Jacobian-vector setup function. Pass NULL if no setup is necessary.

• jtimes – user-defined Jacobian-vector product function.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up the Jacobian-vector product in the
SUNLinearSolver object used by the ARKLS interface.

Notes: The default is to use an internal finite difference quotient for jtimes and to leave out jtsetup. If NULL is
passed to jtimes, these defaults are used. A user may specify non-NULL jtimes and NULL jtsetup inputs.

4.5. User-callable functions 73

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

The function types ARKLsJacTimesSetupFn and ARKLsJacTimesVecFn are described in the section
User-supplied functions.

int ARKStepSetMassTimes(void* arkode_mem, ARKLsMassTimesSetupFn mtsetup, ARKLs-
MassTimesVecFn mtimes, void* mtimes_data)

Specifies the mass matrix-times-vector setup and product functions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mtsetup – user-defined mass matrix-vector setup function. Pass NULL if no setup is necessary.

• mtimes – user-defined mass matrix-vector product function.

• mtimes_data – a pointer to user data, that will be supplied to both the mtsetup and mtimes functions.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up the mass-matrix-vector product in the
SUNLinearSolver object used by the ARKLS interface.

Notes: There is no default finite difference quotient for mtimes, so if using the ARKLS mass matrix solver
interface with NULL-valued 𝑀 , and this routine is called with NULL-valued mtimes, an error will occur. A
user may specify NULL for mtsetup.

This function must be called after the ARKLS mass matrix solver interface has been initialized through a call
to ARKStepSetMassLinearSolver().

The function types ARKLsMassTimesSetupFn and ARKLsMassTimesVecFn are described in the section
User-supplied functions.

Optional inputs for iterative SUNLinearSolver modules

Optional input Function name Default
Newton preconditioning functions ARKStepSetPreconditioner() NULL, NULL
Mass matrix preconditioning functions ARKStepSetMassPreconditioner() NULL, NULL
Newton linear and nonlinear tolerance ratio ARKStepSetEpsLin() 0.05
Mass matrix linear and nonlinear tolerance ratio ARKStepSetMassEpsLin() 0.05

As described in the section Linear solver methods, when using an iterative linear solver the user may supply a pre-
conditioning operator to aid in solution of the system. This operator consists of two user-supplied functions, psetup
and psolve, that are supplied to ARKStep using either the function ARKStepSetPreconditioner() (for pre-
conditioning the Newton system), or the function ARKStepSetMassPreconditioner() (for preconditioning
the mass matrix system). The psetup function supplied to these routines should handle evaluation and preprocessing
of any Jacobian or mass-matrix data needed by the user’s preconditioner solve function, psolve. The user data pointer
received through ARKStepSetUserData() (or a pointer to NULL if user data was not specified) is passed to the
psetup and psolve functions. This allows the user to create an arbitrary structure with relevant problem data and access
it during the execution of the user-supplied preconditioner functions without using global data in the program. If pre-
conditioning is supplied for both the Newton and mass matrix linear systems, it is expected that the user will supply
different psetup and psolve function for each.

74 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Also, as described in the section Linear iteration error control, the ARKLS interface requires that iterative linear
solvers stop when the norm of the preconditioned residual satisfies

‖𝑟‖ ≤ 𝜖𝐿𝜖

10

where the default 𝜖𝐿 = 0.05, which may be modified by the user through the ARKStepSetEpsLin() function.

int ARKStepSetPreconditioner(void* arkode_mem, ARKLsPrecSetupFn psetup, ARKLsPrec-
SolveFn psolve)

Specifies the user-supplied preconditioner setup and solve functions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• psetup – user defined preconditioner setup function. Pass NULL if no setup is needed.

• psolve – user-defined preconditioner solve function.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up preconditioning in the
SUNLinearSolver object used by the ARKLS interface.

Notes: The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

Both of the function types ARKLsPrecSetupFn() and ARKLsPrecSolveFn() are described in the sec-
tion User-supplied functions.

int ARKStepSetMassPreconditioner(void* arkode_mem, ARKLsMassPrecSetupFn psetup, ARKLs-
MassPrecSolveFn psolve)

Specifies the mass matrix preconditioner setup and solve functions.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• psetup – user defined preconditioner setup function. Pass NULL if no setup is to be done.

• psolve – user-defined preconditioner solve function.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

• ARKLS_SUNLS_FAIL if an error occurred when setting up preconditioning in the
SUNLinearSolver object used by the ARKLS interface.

4.5. User-callable functions 75

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Notes: This function must be called after the ARKLS mass matrix solver interface has been initialized through
a call to ARKStepSetMassLinearSolver().

The default is NULL for both arguments (i.e. no preconditioning).

Both of the function types ARKLsMassPrecSetupFn() and ARKLsMassPrecSolveFn() are described
in the section User-supplied functions.

int ARKStepSetEpsLin(void* arkode_mem, realtype eplifac)
Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the linear
iteration.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• eplifac – linear convergence safety factor.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_LMEM_NULL if the linear solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

Notes: Passing a value eplifac ≤ 0 indicates to use the default value of 0.05.

This function must be called after the ARKLS system solver interface has been initialized through a call to
ARKStepSetLinearSolver().

int ARKStepSetMassEpsLin(void* arkode_mem, realtype eplifac)
Specifies the factor by which the tolerance on the nonlinear iteration is multiplied to get a tolerance on the mass
matrix linear iteration.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• eplifac – linear convergence safety factor.

Return value:

• ARKLS_SUCCESS if successful.

• ARKLS_MEM_NULL if the ARKStep memory was NULL.

• ARKLS_MASSMEM_NULL if the mass matrix solver memory was NULL.

• ARKLS_ILL_INPUT if an input has an illegal value.

Notes: This function must be called after the ARKLS mass matrix solver interface has been initialized through
a call to ARKStepSetMassLinearSolver().

Passing a value eplifac ≤ 0 indicates to use the default value of 0.05.

Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in the section Rootfinding.

Optional input Function name Default
Direction of zero-crossings to monitor ARKStepSetRootDirection() both
Disable inactive root warnings ARKStepSetNoInactiveRootWarn() enabled

76 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int ARKStepSetRootDirection(void* arkode_mem, int* rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rootdir – state array of length nrtfn, the number of root functions 𝑔𝑖 (the value of nrtfn was supplied
in the call to ARKStepRootInit()). If rootdir[i] == 0 then crossing in either direction for
𝑔𝑖 should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where 𝑔𝑖 is increasing or decreasing, respectively.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default behavior is to monitor for both zero-crossing directions.

int ARKStepSetNoInactiveRootWarn(void* arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory is NULL

Notes: ARKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more
components 𝑔𝑖 are zero at the initial time). However, if it appears that some 𝑔𝑖 is identically zero at the initial
time (i.e., 𝑔𝑖 is zero at the initial time and after the first step), ARKStep will issue a warning which can be
disabled with this optional input function.

4.5.9 Interpolated output function

An optional function ARKStepGetDky() is available to obtain additional values of solution-related quantities. This
function should only be called after a successful return from ARKStepEvolve(), as it provides interpolated values
either of 𝑦 or of its derivatives (up to the 5th derivative) interpolated to any value of 𝑡 in the last internal step taken
by ARKStepEvolve(). Internally, this dense output algorithm is identical to the algorithm used for the maximum
order implicit predictors, described in the section Maximum order predictor, except that derivatives of the polynomial
model may be evaluated upon request.

int ARKStepGetDky(void* arkode_mem, realtype t, int k, N_Vector dky)
Computes the k-th derivative of the function 𝑦 at the time t, i.e. 𝑑(𝑘)

𝑑𝑡(𝑘) 𝑦(𝑡), for values of the independent variable
satisfying 𝑡𝑛 − ℎ𝑛 ≤ 𝑡 ≤ 𝑡𝑛, with 𝑡𝑛 as current internal time reached, and ℎ𝑛 is the last internal step size suc-
cessfully used by the solver. This routine uses an interpolating polynomial of degree max(dord, k), where dord is
the argument provided to ARKStepSetDenseOrder(). The user may request k in the range {0,...,*dord*}.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• t – the value of the independent variable at which the derivative is to be evaluated.

• k – the derivative order requested.

4.5. User-callable functions 77

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• dky – output vector (must be allocated by the user).

Return value:

• ARK_SUCCESS if successful

• ARK_BAD_K if k is not in the range {0,...,*dord*}.

• ARK_BAD_T if t is not in the interval [𝑡𝑛 − ℎ𝑛, 𝑡𝑛]

• ARK_BAD_DKY if the dky vector was NULL

• ARK_MEM_NULL if the ARKStep memory is NULL

Notes: It is only legal to call this function after a successful return from ARKStepEvolve().

A user may access the values 𝑡𝑛 and ℎ𝑛 via the functions ARKStepGetCurrentTime() and
ARKStepGetLastStep(), respectively.

4.5.10 Optional output functions

ARKStep provides an extensive set of functions that can be used to obtain solver performance information. We
organize these into groups:

1. SUNDIALS version information accessor routines are in the subsection SUNDIALS version information,

2. General ARKStep output routines are in the subsection Main solver optional output functions,

3. ARKStep implicit solver output routines are in the subsection Implicit solver optional output functions,

4. Output routines regarding root-finding results are in the subsection Rootfinding optional output functions,

5. Linear solver output routines are in the subsection Linear solver interface optional output functions and

6. General usability routines (e.g. to print the current ARKStep parameters, or output the current Butcher table(s))
are in the subsection General usability functions.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of
various methods inside ARKStep. For example:

• The counters nsteps, nfe_evals, nfi_evals and nf_evals provide a rough measure of the overall cost of a given
run, and can be compared between runs with different solver options to suggest which set of options is the most
efficient.

• The ratio nniters/nsteps measures the performance of the nonlinear iteration in solving the nonlinear systems at
each stage, providing a measure of the degree of nonlinearity in the problem. Typical values of this for a Newton
solver on a general problem range from 1.1 to 1.8.

• When using a Newton nonlinear solver, the ratio njevals/nniters (in the case of a direct linear solver), and the
ratio npevals/nniters (in the case of an iterative linear solver) can measure the overall degree of nonlinearity in
the problem, since these are updated infrequently, unless the Newton method convergence slows.

• When using a Newton nonlinear solver, the ratio njevals/nniters (when using a direct linear solver), and the
ratio nliters/nniters (when using an iterative linear solver) can indicate the quality of the approximate Jacobian
or preconditioner being used. For example, if this ratio is larger for a user-supplied Jacobian or Jacobian-
vector product routine than for the difference-quotient routine, it can indicate that the user-supplied Jacobian is
inaccurate.

• The ratio expsteps/accsteps can measure the quality of the ImEx splitting used, since a higher-quality splitting
will be dominated by accuracy-limited steps.

78 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• The ratio nsteps/step_attempts can measure the quality of the time step adaptivity algorithm, since a poor algo-
rithm will result in more failed steps, and hence a lower ratio.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:

• version – character array to hold the SUNDIALS version information.

• len – allocated length of the version character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS version

Notes: An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber(int *major, int *minor, int *patch, char *label, int len)
This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:

• major – SUNDIALS release major version number.

• minor – SUNDIALS release minor version number.

• patch – SUNDIALS release patch version number.

• label – string to hold the SUNDIALS release label.

• len – allocated length of the label character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS label

Notes: An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

4.5. User-callable functions 79

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Main solver optional output functions

Optional output Function name
Size of ARKStep real and integer workspaces ARKStepGetWorkSpace()
Cumulative number of internal steps ARKStepGetNumSteps()
Actual initial time step size used ARKStepGetActualInitStep()
Step size used for the last successful step ARKStepGetLastStep()
Step size to be attempted on the next step ARKStepGetCurrentStep()
Current internal time reached by the solver ARKStepGetCurrentTime()
Suggested factor for tolerance scaling ARKStepGetTolScaleFactor()
Error weight vector for state variables ARKStepGetErrWeights()
Residual weight vector ARKStepGetResWeights()
Single accessor to many statistics at once ARKStepGetStepStats()
Name of constant associated with a return flag ARKStepGetReturnFlagName()
No. of explicit stability-limited steps ARKStepGetNumExpSteps()
No. of accuracy-limited steps ARKStepGetNumAccSteps()
No. of attempted steps ARKStepGetNumStepAttempts()
No. of calls to fe and fi functions ARKStepGetNumRhsEvals()
No. of local error test failures that have occurred ARKStepGetNumErrTestFails()
Current ERK and DIRK Butcher tables ARKStepGetCurrentButcherTables()
Estimated local truncation error vector ARKStepGetEstLocalErrors()
Single accessor to many statistics at once ARKStepGetTimestepperStats()

int ARKStepGetWorkSpace(void* arkode_mem, long int* lenrw, long int* leniw)
Returns the ARKStep real and integer workspace sizes.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lenrw – the number of realtype values in the ARKStep workspace.

• leniw – the number of integer values in the ARKStep workspace.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumSteps(void* arkode_mem, long int* nsteps)
Returns the cumulative number of internal steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nsteps – number of steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetActualInitStep(void* arkode_mem, realtype* hinused)
Returns the value of the integration step size used on the first step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hinused – actual value of initial step size.

80 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: Even if the value of the initial integration step was specified by the user through a call to
ARKStepSetInitStep(), this value may have been changed by ARKStep to ensure that the step size fell
within the prescribed bounds (ℎ𝑚𝑖𝑛 ≤ ℎ0 ≤ ℎ𝑚𝑎𝑥), or to satisfy the local error test condition, or to ensure
convergence of the nonlinear solver.

int ARKStepGetLastStep(void* arkode_mem, realtype* hlast)
Returns the integration step size taken on the last successful internal step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hlast – step size taken on the last internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentStep(void* arkode_mem, realtype* hcur)
Returns the integration step size to be attempted on the next internal step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• hcur – step size to be attempted on the next internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentTime(void* arkode_mem, realtype* tcur)
Returns the current internal time reached by the solver.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetTolScaleFactor(void* arkode_mem, realtype* tolsfac)
Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• tolsfac – suggested scaling factor for user-supplied tolerances.

Return value:

• ARK_SUCCESS if successful

4.5. User-callable functions 81

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetErrWeights(void* arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• eweight – solution error weights at the current time.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The user must allocate space for eweight, that will be filled in by this function.

int ARKStepGetResWeights(void* arkode_mem, N_Vector rweight)
Returns the current residual weight vector.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rweight – residual error weights at the current time.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The user must allocate space for rweight, that will be filled in by this function.

int ARKStepGetStepStats(void* arkode_mem, long int* nsteps, realtype* hinused, realtype* hlast, real-
type* hcur, realtype* tcur)

Returns many of the most useful optional outputs in a single call.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nsteps – number of steps taken in the solver.

• hinused – actual value of initial step size.

• hlast – step size taken on the last internal step.

• hcur – step size to be attempted on the next internal step.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

char *ARKStepGetReturnFlagName(long int flag)
Returns the name of the ARKStep constant corresponding to flag.

Arguments:

• flag – a return flag from an ARKStep function.

Return value: The return value is a string containing the name of the corresponding constant.

82 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int ARKStepGetNumExpSteps(void* arkode_mem, long int* expsteps)
Returns the cumulative number of stability-limited steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• expsteps – number of stability-limited steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumAccSteps(void* arkode_mem, long int* accsteps)
Returns the cumulative number of accuracy-limited steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• accsteps – number of accuracy-limited steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumStepAttempts(void* arkode_mem, long int* step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• step_attempts – number of steps attempted by solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetNumRhsEvals(void* arkode_mem, long int* nfe_evals, long int* nfi_evals)
Returns the number of calls to the user’s right-hand side functions, 𝑓𝐸 and 𝑓𝐼 (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nfe_evals – number of calls to the user’s 𝑓𝐸(𝑡, 𝑦) function.

• nfi_evals – number of calls to the user’s 𝑓𝐼(𝑡, 𝑦) function.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The nfi_evals value does not account for calls made to 𝑓𝐼 by a linear solver or preconditioner module.

int ARKStepGetNumErrTestFails(void* arkode_mem, long int* netfails)
Returns the number of local error test failures that have occurred (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

4.5. User-callable functions 83

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• netfails – number of error test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

int ARKStepGetCurrentButcherTables(void* arkode_mem, ARKodeButcherTable *Bi, ARKodep-
ButcherTable *Be)

Returns the explicit and implicit Butcher tables currently in use by the solver.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• Bi – pointer to implicit Butcher table structure.

• Be – pointer to explicit Butcher table structure.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The ARKodeButcherTable data structure is defined as a pointer to the following C structure:

typedef struct ARKStepButcherTableMem {

int q; /* method order of accuracy */
int p; /* embedding order of accuracy */
int stages; /* number of stages */
realtype **A; /* Butcher table coefficients */
realtype *c; /* canopy node coefficients */
realtype *b; /* root node coefficients */
realtype *d; /* embedding coefficients */

} *ARKStepButcherTable;

For more details see Butcher Table Data Structure.

int ARKStepGetEstLocalErrors(void* arkode_mem, N_Vector ele)
Returns the vector of estimated local truncation errors for the current step.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ele – vector of estimated local truncation errors.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only after a successful call to ARKStepEvolve() (i.e. it returned a
non-negative value).

The ele vector, together with the eweight vector from ARKStepGetErrWeights(), can be used to determine
how the various components of the system contributed to the estimated local error test. Specifically, that error
test uses the WRMS norm of a vector whose components are the products of the components of these two
vectors. Thus, for example, if there were recent error test failures, the components causing the failures are those
with largest values for the products, denoted loosely as eweight[i]*ele[i].

84 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int ARKStepGetTimestepperStats(void* arkode_mem, long int* expsteps, long int* accsteps, long
int* step_attempts, long int* nfe_evals, long int* nfi_evals, long
int* nlinsetups, long int* netfails)

Returns many of the most useful time-stepper statistics in a single call.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• expsteps – number of stability-limited steps taken in the solver.

• accsteps – number of accuracy-limited steps taken in the solver.

• step_attempts – number of steps attempted by the solver.

• nfe_evals – number of calls to the user’s 𝑓𝐸(𝑡, 𝑦) function.

• nfi_evals – number of calls to the user’s 𝑓𝐼(𝑡, 𝑦) function.

• nlinsetups – number of linear solver setup calls made.

• netfails – number of error test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Implicit solver optional output functions

Optional output Function name
No. of calls to linear solver setup function ARKStepGetNumLinSolvSetups()
No. of nonlinear solver iterations ARKStepGetNumNonlinSolvIters()
No. of nonlinear solver convergence failures ARKStepGetNumNonlinSolvConvFails()
Single accessor to all nonlinear solver statistics ARKStepGetNonlinSolvStats()

int ARKStepGetNumLinSolvSetups(void* arkode_mem, long int* nlinsetups)
Returns the number of calls made to the linear solver’s setup routine (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nlinsetups – number of linear solver setup calls made.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: This is only accumulated for the ‘life’ of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumNonlinSolvIters(void* arkode_mem, long int* nniters)
Returns the number of nonlinear solver iterations performed (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nniters – number of nonlinear iterations performed.

Return value:

4.5. User-callable functions 85

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes: This is only accumulated for the ‘life’ of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumNonlinSolvConvFails(void* arkode_mem, long int* nncfails)
Returns the number of nonlinear solver convergence failures that have occurred (so far).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nncfails – number of nonlinear convergence failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: This is only accumulated for the ‘life’ of the nonlinear solver object; the counter is reset whenever a new
nonlinear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNonlinSolvStats(void* arkode_mem, long int* nniters, long int* nncfails)
Returns all of the nonlinear solver statistics in a single call.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nniters – number of nonlinear iterations performed.

• nncfails – number of nonlinear convergence failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NLS_OP_ERR if the SUNNONLINSOL object returned a failure flag

Notes: These are only accumulated for the ‘life’ of the nonlinear solver object; the counters are reset whenever
a new nonlinear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

Rootfinding optional output functions

Optional output Function name
Array showing roots found ARKStepGetRootInfo()
No. of calls to user root function ARKStepGetNumGEvals()

int ARKStepGetRootInfo(void* arkode_mem, int* rootsfound)
Returns an array showing which functions were found to have a root.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• rootsfound – array of length nrtfn with the indices of the user functions 𝑔𝑖 found to have a root
(the value of nrtfn was supplied in the call to ARKStepRootInit()). For 𝑖 = 0 . . . nrtfn-1,
rootsfound[i] is nonzero if 𝑔𝑖 has a root, and 0 if not.

86 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The user must allocate space for rootsfound prior to calling this function.

For the components of 𝑔𝑖 for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that 𝑔𝑖 is increasing, while a value of -1 indicates a decreasing 𝑔𝑖.

int ARKStepGetNumGEvals(void* arkode_mem, long int* ngevals)
Returns the cumulative number of calls made to the user’s root function 𝑔.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ngevals – number of calls made to 𝑔 so far.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Linear solver interface optional output functions

The following optional outputs are available from the ARKLS modules: workspace requirements, number of calls to
the Jacobian routine, number of calls to the mass matrix routine, number of calls to the implicit right-hand side routine
for finite-difference Jacobian approximation or Jacobian-vector product approximation, number of linear iterations,
number of linear convergence failures, number of calls to the preconditioner setup and solve routines, number of
calls to the Jacobian-vector setup and product routines, number of calls to the mass-matrix-vector setup and product
routines, and last return value from an ARKLS function. Note that, where the name of an output would otherwise
conflict with the name of an optional output from the main solver, a suffix LS (for Linear Solver) or MLS (for Mass
Linear Solver) has been added here (e.g. lenrwLS).

Optional output Function name
Size of real and integer workspaces ARKStepGetLinWorkSpace()
No. of Jacobian evaluations ARKStepGetNumJacEvals()
No. of preconditioner evaluations ARKStepGetNumPrecEvals()
No. of preconditioner solves ARKStepGetNumPrecSolves()
No. of linear iterations ARKStepGetNumLinIters()
No. of linear convergence failures ARKStepGetNumLinConvFails()
No. of Jacobian-vector setup evaluations ARKStepGetNumJTSetupEvals()
No. of Jacobian-vector product evaluations ARKStepGetNumJtimesEvals()
No. of fi calls for finite diff. 𝐽 or 𝐽𝑣 evals. ARKStepGetNumLinRhsEvals()
Last return from a linear solver function ARKStepGetLastLinFlag()
Name of constant associated with a return flag ARKStepGetLinReturnFlagName()
Size of real and integer mass matrix solver workspaces ARKStepGetMassWorkSpace()
No. of mass matrix solver setups (incl. 𝑀 evals.) ARKStepGetNumMassSetups()
No. of mass matrix multiplies ARKStepGetNumMassMult()
No. of mass matrix solves ARKStepGetNumMassSolves()
No. of mass matrix preconditioner evaluations ARKStepGetNumMassPrecEvals()
No. of mass matrix preconditioner solves ARKStepGetNumMassPrecSolves()
No. of mass matrix linear iterations ARKStepGetNumMassIters()
No. of mass matrix solver convergence failures ARKStepGetNumMassConvFails()
No. of mass-matrix-vector setup evaluations ARKStepGetNumMTSetups()
Last return from a mass matrix solver function ARKStepGetLastMassFlag()

4.5. User-callable functions 87

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int ARKStepGetLinWorkSpace(void* arkode_mem, long int* lenrwLS, long int* leniwLS)
Returns the real and integer workspace used by the ARKLS linear solver interface.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lenrwLS – the number of realtype values in the ARKLS workspace.

• leniwLS – the number of integer values in the ARKLS workspace.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template Jacobian
matrix allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

int ARKStepGetNumJacEvals(void* arkode_mem, long int* njevals)
Returns the number of calls made to the Jacobian approximation routine.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• njevals – number of calls to the Jacobian function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumPrecEvals(void* arkode_mem, long int* npevals)
Returns the total number of preconditioner evaluations, i.e. the number of calls made to psetup with jok =
SUNFALSE.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• npevals – the current number of calls to psetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumPrecSolves(void* arkode_mem, long int* npsolves)
Returns the number of calls made to the preconditioner solve function, psolve.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• npsolves – the number of calls to psolve.

88 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumLinIters(void* arkode_mem, long int* nliters)
Returns the cumulative number of linear iterations.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nliters – the current number of linear iterations.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: This is only accumulated for the ‘life’ of the linear solver object; the counter is reset whenever a new
linear solver module is ‘attached’ to ARKStep, or when ARKStep is resized.

int ARKStepGetNumLinConvFails(void* arkode_mem, long int* nlcfails)
Returns the cumulative number of linear convergence failures.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nlcfails – the current number of linear convergence failures.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumJTSetupEvals(void* arkode_mem, long int* njtsetup)
Returns the cumulative number of calls made to the user-supplied Jacobian-vector setup function, jtsetup.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• njtsetup – the current number of calls to jtsetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumJtimesEvals(void* arkode_mem, long int* njvevals)
Returns the cumulative number of calls made to the Jacobian-vector product function, jtimes.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• njvevals – the current number of calls to jtimes.

4.5. User-callable functions 89

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumLinRhsEvals(void* arkode_mem, long int* nfevalsLS)
Returns the number of calls to the user-supplied implicit right-hand side function 𝑓𝐼 for finite difference Jacobian
or Jacobian-vector product approximation.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nfevalsLS – the number of calls to the user implicit right-hand side function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The value nfevalsLS is incremented only if the default internal difference quotient function is used.

int ARKStepGetLastLinFlag(void* arkode_mem, long int* lsflag)
Returns the last return value from an ARKLS routine.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lsflag – the value of the last return flag from an ARKLS function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: If the ARKLs setup function failed when using the SUNLINSOL_DENSE or SUNLINSOL_BAND mod-
ules, then the value of lsflag is equal to the column index (numbered from one) at which a zero diagonal element
was encountered during the LU factorization of the (dense or banded) Jacobian matrix. For all other failures,
lsflag is negative.

Otherwise, if the ARKLs setup function failed (ARKStepEvolve() returned ARK_LSETUP_FAIL),
then lsflag will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC or
SUNLS_PACKAGE_FAIL_UNREC.

If the ARKLS solve function failed (ARKStepEvolve() returned ARK_LSOLVE_FAIL), then lsflag contains
the error return flag from the SUNLinearSolver object, which will be one of: SUNLS_MEM_NULL, indi-
cating that the SUNLinearSolver memory is NULL; SUNLS_ATIMES_FAIL_UNREC, indicating an unre-
coverable failure in the 𝐽𝑣 function; SUNLS_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve
function failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt procedure (SPGMR
and SPFGMR only); SUNLS_QRSOL_FAIL, indicating that the matrix 𝑅 was found to be singular during the QR
solve phase (SPGMR and SPFGMR only); or SUNLS_PACKAGE_FAIL_UNREC, indicating an unrecoverable
failure in an external iterative linear solver package.

char *ARKStepGetLinReturnFlagName(long int lsflag)
Returns the name of the ARKLS constant corresponding to lsflag.

90 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• lsflag – a return flag from an ARKLS function.

Return value: The return value is a string containing the name of the corresponding constant. If using the
SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then if 1 ≤ lsflag ≤ 𝑛 (LU factorization failed), this
routine returns “NONE”.

int ARKStepGetMassWorkSpace(void* arkode_mem, long int* lenrwMLS, long int* leniwMLS)
Returns the real and integer workspace used by the ARKLS mass matrix linear solver interface.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lenrwMLS – the number of realtype values in the ARKLS mass solver workspace.

• leniwMLS – the number of integer values in the ARKLS mass solver workspace.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within this
interface and to memory allocated by the SUNLinearSolver object attached to it. The template mass matrix
allocated by the user outside of ARKLS is not included in this report.

In a parallel setting, the above values are global (i.e. summed over all processors).

int ARKStepGetNumMassSetups(void* arkode_mem, long int* nmsetups)
Returns the number of calls made to the ARKLS mass matrix solver ‘setup’ routine; these include all calls to
the user-supplied mass-matrix constructor function.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmsetups – number of calls to the mass matrix solver setup routine.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumMassMult(void* arkode_mem, long int* nmmults)
Returns the number of calls made to the ARKLS mass matrix ‘matvec’ routine (matrix-based solvers) or the
user-supplied mtimes routine (matris-free solvers).

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmmults – number of calls to the mass matrix solver matrix-times-vector routine.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

4.5. User-callable functions 91

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int ARKStepGetNumMassSolves(void* arkode_mem, long int* nmsolves)
Returns the number of calls made to the ARKLS mass matrix solver ‘solve’ routine.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmsolves – number of calls to the mass matrix solver solve routine.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumMassPrecEvals(void* arkode_mem, long int* nmpevals)
Returns the total number of mass matrix preconditioner evaluations, i.e. the number of calls made to psetup.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmpevals – the current number of calls to psetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumMassPrecSolves(void* arkode_mem, long int* nmpsolves)
Returns the number of calls made to the mass matrix preconditioner solve function, psolve.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmpsolves – the number of calls to psolve.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumMassIters(void* arkode_mem, long int* nmiters)
Returns the cumulative number of mass matrix solver iterations.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmiters – the current number of mass matrix solver linear iterations.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumMassConvFails(void* arkode_mem, long int* nmcfails)
Returns the cumulative number of mass matrix solver convergence failures.

92 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmcfails – the current number of mass matrix solver convergence failures.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetNumMTSetups(void* arkode_mem, long int* nmtsetup)
Returns the cumulative number of calls made to the user-supplied mass-matrix-vector product setup function,
mtsetup.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nmtsetup – the current number of calls to mtsetup.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

int ARKStepGetLastMassFlag(void* arkode_mem, long int* mlsflag)
Returns the last return value from an ARKLS mass matrix interface routine.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mlsflag – the value of the last return flag from an ARKLS mass matrix solver interface function.

Return value:

• ARKLS_SUCCESS if successful

• ARKLS_MEM_NULL if the ARKStep memory was NULL

• ARKLS_LMEM_NULL if the linear solver memory was NULL

Notes: The values of msflag for each of the various solvers will match those described above for the function
ARKStepGetLastLSFlag().

General usability functions

The following optional routines may be called by a user to inquire about existing solver parameters, to retrieve stored
Butcher tables, write the current Butcher table(s), or even to test a provided Butcher table to determine its analytical
order of accuracy. While none of these would typically be called during the course of solving an initial value problem,
these may be useful for users wishing to better understand ARKStep and/or specific Runge-Kutta methods.

Optional routine Function name
Output all ARKStep solver parameters ARKStepWriteParameters()
Output the current Butcher table(s) ARKStepWriteButcher()

int ARKStepWriteParameters(void* arkode_mem, FILE *fp)
Outputs all ARKStep solver parameters to the provided file pointer.

4.5. User-callable functions 93

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• fp – pointer to use for printing the solver parameters.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for all
processes would be identical.

int ARKStepWriteButcher(void* arkode_mem, FILE *fp)
Outputs the current Butcher table(s) to the provided file pointer.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• fp – pointer to use for printing the Butcher table(s).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

If ARKStep is currently configured to run in purely explicit or purely implicit mode, this will output a single
Butcher table; if configured to run an ImEx method then both tables will be output.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all pro-
cesses would be identical.

4.5.11 ARKStep re-initialization functions

To reinitialize the ARKStep module for the solution of a new problem, where a prior call to ARKStepCreate() has
been made, the user must call the function ARKStepReInit(). The new problem must have the same size as the
previous one. This routine performs the same input checking and initializations that are done in ARKStepCreate(),
but it performs no memory allocation as it assumes that the existing internal memory is sufficient for the new prob-
lem. A call to this re-initialization routine deletes the solution history that was stored internally during the previous
integration. Following a successful call to ARKStepReInit(), call ARKStepEvolve() again for the solution of
the new problem.

The use of ARKStepReInit() requires that the number of Runge Kutta stages, denoted by s, be no larger for the
new problem than for the previous problem. This condition is automatically fulfilled if the method order q and the
problem type (explicit, implicit, ImEx) are left unchanged.

When using the ARKStep time-stepping module, if there are changes to the linear solver specifications, the user
should make the appropriate calls to either the linear solver objects themselves, or to the ARKLS interface routines, as
described in the section Linear solver interface functions. Otherwise, all solver inputs set previously remain in effect.

One important use of the ARKStepReInit() function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to ARKStepReInit(). To stop when the location of the
discontinuity is known, simply make that location a value of tout. To stop when the location of the discontinuity
is determined by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not

94 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

incorporate the discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and
subsequent rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated
through user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted
problem uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent
variable vector.

int ARKStepReInit(void* arkode_mem, ARKRhsFn fe, ARKRhsFn fi, realtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the ARKStep time-stepper module.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• fe – the name of the C function (of type ARKRhsFn()) defining the explicit portion of the right-hand
side function in 𝑀 �̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓𝐼(𝑡, 𝑦).

• fi – the name of the C function (of type ARKRhsFn()) defining the implicit portion of the right-hand
side function in 𝑀 �̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓𝐼(𝑡, 𝑦).

• t0 – the initial value of 𝑡.

• y0 – the initial condition vector 𝑦(𝑡0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, ARKStepReInit() also sends an error message to the error handler function.

4.5.12 ARKStep system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the ARKStep integrator may be “resized”
between integration steps, through calls to the ARKStepResize() function. This function modifies ARKStep’s
internal memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics.
It is assumed that the dynamical time scales before and after the vector resize will be comparable, so that all time-
stepping heuristics prior to calling ARKStepResize() remain valid after the call. If instead the dynamics should
be recomputed from scratch, the ARKStep memory structure should be deleted with a call to ARKStepFree(), and
recreated with a calls to ARKStepCreate().

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type
ARKVecResizeFn()) is not supplied (i.e. is set to NULL), then all existing vectors internal to ARKStep will be
destroyed and re-cloned from the new input vector.

In the case that the dynamical time scale should be modified slightly from the previous time scale, an input hscale is
allowed, that will rescale the upcoming time step by the specified factor. If a value hscale ≤ 0 is specified, the default
of 1.0 will be used.

int ARKStepResize(void* arkode_mem, N_Vector ynew, realtype hscale, realtype t0, ARKVecResizeFn re-
size, void* resize_data)

Re-initializes ARKStep with a different state vector but with comparable dynamical time scale.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

4.5. User-callable functions 95

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ynew – the newly-sized solution vector, holding the current dependent variable values 𝑦(𝑡0).

• hscale – the desired scaling factor for the dynamical time scale (i.e. the next step will be of size
h*hscale).

• t0 – the current value of the independent variable 𝑡0 (this must be consistent with ynew).

• resize – the user-supplied vector resize function (of type ARKVecResizeFn().

• resize_data – the user-supplied data structure to be passed to resize when modifying internal ARKStep
vectors.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ARKStep memory was NULL

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, ARKStepResize() also sends an error message to the error handler function.

Resizing the linear solver

When using any of the SUNDIALS-provided linear solver modules, the linear solver memory structures must also
be resized. At present, none of these include a solver-specific ‘resize’ function, so the linear solver memory must
be destroyed and re-allocated following each call to ARKStepResize(). Moreover, the existing ARKLS interface
should then be deleted and recreated by attaching the updated SUNLinearSolver (and possibly SUNMatrix)
object(s) through calls to ARKStepSetLinearSolver(), and ARKStepSetMassLinearSolver().

If any user-supplied routines are provided to aid the linear solver (e.g. Jacobian construction, Jacobian-vector product,
mass-matrix-vector product, preconditioning), then the corresponding “set” routines must be called again following
the solver re-specification.

Resizing the absolute tolerance array

If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the
call to ARKStepResize(), so the new absolute tolerance vector should be re-set following each
call to ARKStepResize() through a new call to ARKStepSVtolerances() (and similarly to
ARKStepResVtolerance() if that was used for the original problem).

If scalar-valued tolerances or a tolerance function was specified through either ARKStepSStolerances() or
ARKStepWFtolerances(), then these will remain valid and no further action is necessary.

Note: For an example of ARKStepResize() usage, see the supplied serial C example problem,
ark_heat1D_adapt.c.

4.6 User-supplied functions

The user-supplied functions for ARKStep consist of:

• at least one function defining the ODE (required),

• a function that handles error and warning messages (optional),

• a function that provides the error weight vector (optional),

96 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• a function that provides the residual weight vector (optional),

• a function that handles adaptive time step error control (optional),

• a function that handles explicit time step stability (optional),

• a function that defines the root-finding problem(s) to solve (optional),

• one or two functions that provide Jacobian-related information for the linear solver, if a Newton-based nonlinear
iteration is chosen (optional),

• one or two functions that define the preconditioner for use in any of the Krylov iterative algorithms, if a Newton-
based nonlinear iteration and iterative linear solver are chosen (optional), and

• if the problem involves a non-identity mass matrix 𝑀 ̸= 𝐼:

– one or two functions that provide mass-matrix-related information for the linear and mass matrix solvers
(required),

– one or two functions that define the mass matrix preconditioner for use in an iterative mass matrix solver
is chosen (optional), and

• a function that handles vector resizing operations, if the underlying vector structure supports resizing (as opposed
to deletion/recreation), and if the user plans to call ARKStepResize() (optional).

4.6.1 ODE right-hand side

The user must supply at least one function of type ARKRhsFn to specify the explicit and/or implicit portions of the
ODE system:

typedef int (*ARKRhsFn)(realtype t, N_Vector y, N_Vector ydot, void* user_data)
These functions compute the ODE right-hand side for a given value of the independent variable 𝑡 and state
vector 𝑦.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• ydot – the output vector that forms a portion of the ODE RHS 𝑓𝐸(𝑡, 𝑦) + 𝑓𝐼(𝑡, 𝑦).

• user_data – the user_data pointer that was passed to ARKStepSetUserData().

Return value: An ARKRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case ARKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARK_RHSFUNC_FAIL is returned).

Notes: Allocation of memory for ydot is handled within the ARKStep module. A recoverable failure error
return from the ARKRhsFn is typically used to flag a value of the dependent variable 𝑦 that is “illegal” in
some way (e.g., negative where only a non-negative value is physically meaningful). If such a return is made,
ARKStep will attempt to recover (possibly repeating the nonlinear iteration, or reducing the step size) in order
to avoid this recoverable error return. There are some situations in which recovery is not possible even if the
right-hand side function returns a recoverable error flag. One is when this occurs at the very first call to the
ARKRhsFn (in which case ARKStep returns ARK_FIRST_RHSFUNC_ERR). Another is when a recoverable
error is reported by ARKRhsFn after the integrator completes a successful stage, in which case ARKStep returns
ARK_UNREC_RHSFUNC_ERR).

4.6. User-supplied functions 97

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
ARKStepSetErrFile()), the user may provide a function of type ARKErrHandlerFn to process any such
messages.

typedef void (*ARKErrHandlerFn)(int error_code, const char* module, const char* function, char* msg,
void* user_data)

This function processes error and warning messages from ARKStep and its sub-modules.

Arguments:

• error_code – the error code.

• module – the name of the ARKStep module reporting the error.

• function – the name of the function in which the error occurred.

• msg – the error message.

• user_data – a pointer to user data, the same as the eh_data parameter that was passed to
ARKStepSetErrHandlerFn().

Return value: An ARKErrHandlerFn function has no return value.

Notes: error_code is negative for errors and positive (ARK_WARNING) for warnings. If a function that returns
a pointer to memory encounters an error, it sets error_code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of type ARKEwtFn

to compute a vector ewt containing the weights in the WRMS norm ‖𝑣‖𝑊𝑅𝑀𝑆 =
(︁

1
𝑛

∑︀𝑛
𝑖=1 (𝑒𝑤𝑡𝑖 𝑣𝑖)

2
)︁1/2

. These
weights will be used in place of those defined in the section Error norms.

typedef int (*ARKEwtFn)(N_Vector y, N_Vector ewt, void* user_data)
This function computes the WRMS error weights for the vector 𝑦.

Arguments:

• y – the dependent variable vector at which the weight vector is to be computed.

• ewt – the output vector containing the error weights.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: An ARKEwtFn function must return 0 if it successfully set the error weights, and -1 otherwise.

Notes: Allocation of memory for ewt is handled within ARKStep.

The error weight vector must have all components positive. It is the user’s responsibility to perform this test and
return -1 if it is not satisfied.

4.6.4 Residual weight function

As an alternative to providing the scalar or vector absolute residual tolerances (when the IVP units differ from the
solution units), the user may provide a function of type ARKRwtFn to compute a vector rwt containing the weights in

the WRMS norm ‖𝑣‖𝑊𝑅𝑀𝑆 =
(︁

1
𝑛

∑︀𝑛
𝑖=1 (𝑟𝑤𝑡𝑖 𝑣𝑖)

2
)︁1/2

. These weights will be used in place of those defined in the
section Error norms.

98 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

typedef int (*ARKRwtFn)(N_Vector y, N_Vector rwt, void* user_data)
This function computes the WRMS residual weights for the vector 𝑦.

Arguments:

• y – the dependent variable vector at which the weight vector is to be computed.

• rwt – the output vector containing the residual weights.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: An ARKRwtFn function must return 0 if it successfully set the residual weights, and -1 otherwise.

Notes: Allocation of memory for rwt is handled within ARKStep.

The residual weight vector must have all components positive. It is the user’s responsibility to perform this test
and return -1 if it is not satisfied.

4.6.5 Time step adaptivity function

As an alternative to using one of the built-in time step adaptivity methods for controlling solution error, the user may
provide a function of type ARKAdaptFn to compute a target step size ℎ for the next integration step. These steps
should be chosen as the maximum value such that the error estimates remain below 1.

typedef int (*ARKAdaptFn)(N_Vector y, realtype t, realtype h1, realtype h2, realtype h3, realtype e1, real-
type e2, realtype e3, int q, int p, realtype* hnew, void* user_data)

This function implements a time step adaptivity algorithm that chooses ℎ satisfying the error tolerances.

Arguments:

• y – the current value of the dependent variable vector.

• t – the current value of the independent variable.

• h1 – the current step size, 𝑡𝑛 − 𝑡𝑛−1.

• h2 – the previous step size, 𝑡𝑛−1 − 𝑡𝑛−2.

• h3 – the step size 𝑡𝑛−2 − 𝑡𝑛−3.

• e1 – the error estimate from the current step, 𝑛.

• e2 – the error estimate from the previous step, 𝑛− 1.

• e3 – the error estimate from the step 𝑛− 2.

• q – the global order of accuracy for the method.

• p – the global order of accuracy for the embedded method.

• hnew – the output value of the next step size.

• user_data – a pointer to user data, the same as the h_data parameter that was passed to
ARKStepSetAdaptivityFn().

Return value: An ARKAdaptFn function should return 0 if it successfully set the next step size, and a non-zero
value otherwise.

4.6.6 Explicit stability function

A user may supply a function to predict the maximum stable step size for the explicit portion of the ImEx system,
𝑓𝐸(𝑡, 𝑦). While the accuracy-based time step adaptivity algorithms may be sufficient for retaining a stable solution

4.6. User-supplied functions 99

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

to the ODE system, these may be inefficient if 𝑓𝐸(𝑡, 𝑦) contains moderately stiff terms. In this scenario, a user may
provide a function of type ARKExpStabFn to provide this stability information to ARKStep. This function must
set the scalar step size satisfying the stability restriction for the upcoming time step. This value will subsequently be
bounded by the user-supplied values for the minimum and maximum allowed time step, and the accuracy-based time
step.

typedef int (*ARKExpStabFn)(N_Vector y, realtype t, realtype* hstab, void* user_data)
This function predicts the maximum stable step size for the explicit portions of the ImEx ODE system.

Arguments:

• y – the current value of the dependent variable vector.

• t – the current value of the independent variable.

• hstab – the output value with the absolute value of the maximum stable step size.

• user_data – a pointer to user data, the same as the estab_data parameter that was passed to
ARKStepSetStabilityFn().

Return value: An ARKExpStabFn function should return 0 if it successfully set the upcoming stable step size,
and a non-zero value otherwise.

Notes: If this function is not supplied, or if it returns hstab ≤ 0.0, then ARKStep will assume that there is no
explicit stability restriction on the time step size.

4.6.7 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must supply a function of
type ARKRootFn.

typedef int (*ARKRootFn)(realtype t, N_Vector y, realtype* gout, void* user_data)
This function implements a vector-valued function 𝑔(𝑡, 𝑦) such that the roots of the nrtfn components 𝑔𝑖(𝑡, 𝑦)
are sought.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• gout – the output array, of length nrtfn, with components 𝑔𝑖(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: An ARKRootFn function should return 0 if successful or a non-zero value if an error occurred
(in which case the integration is halted and ARKStep returns ARK_RTFUNC_FAIL).

Notes: Allocation of memory for gout is handled within ARKStep.

4.6.8 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e., a non-NULL SUNMatrix object was supplied to
ARKStepSetLinearSolver() in section A skeleton of the user’s main program), the user may provide a function
of type ARKLsJacFn to provide the Jacobian approximation.

typedef int (*ARKLsJacFn)(realtype t, N_Vector y, N_Vector fy, SUNMatrix Jac, void* user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)

This function computes the Jacobian matrix 𝐽 = 𝜕𝑓𝐼
𝜕𝑦 (or an approximation to it).

100 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector, namely the predicted value of 𝑦(𝑡).

• fy – the current value of the vector 𝑓𝐼(𝑡, 𝑦).

• Jac – the output Jacobian matrix.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
by an ARKLsJacFn as temporary storage or work space.

Return value: An ARKLsJacFn function should return 0 if successful, a positive value if a recov-
erable error occurred (in which case ARKStep will attempt to correct, while ARKLS sets last_flag
to ARKLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the in-
tegration is halted, ARKStepEvolve() returns ARK_LSETUP_FAIL and ARKLS sets last_flag to
ARKLS_JACFUNC_UNRECVR).

Notes: Information regarding the structure of the specific SUNMatrix structure (e.g.~number of rows, up-
per/lower bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix
interface functions (see the section Matrix Data Structures for details).

Prior to calling the user-supplied Jacobian function, the Jacobian matrix 𝐽(𝑡, 𝑦) is zeroed out, so only nonzero
elements need to be loaded into Jac.

If the user’s ARKLsJacFn function uses difference quotient approximations, then it may need to access quan-
tities not in the argument list. These include the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to the ark_mem structure to their user_data, and then use the ARKStepGet*
functions listed in Optional output functions. The unit roundoff can be accessed as UNIT_ROUNDOFF, which
is defined in the header file sundials_types.h.

dense:

A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an approximation to the
Jacobian matrix 𝐽(𝑡, 𝑦) at the point (𝑡, 𝑦). The accessor macros SM_ELEMENT_D and SM_COLUMN_D allow
the user to read and write dense matrix elements without making explicit references to the underlying repre-
sentation of the SUNMATRIX_DENSE type. SM_ELEMENT_D(J, i, j) references the (i,j)-th element
of the dense matrix J (for i, j between 0 and N-1). This macro is meant for small problems for which ef-
ficiency of access is not a major concern. Thus, in terms of the indices 𝑚 and 𝑛 ranging from 1 to N, the
Jacobian element 𝐽𝑚,𝑛 can be set using the statement SM_ELEMENT_D(J, m-1, n-1) = 𝐽𝑚,𝑛. Alterna-
tively, SM_COLUMN_D(J, j) returns a pointer to the first element of the j-th column of J (for j ranging
from 0 to N-1), and the elements of the j-th column can then be accessed using ordinary array indexing. Con-
sequently, 𝐽𝑚,𝑛 can be loaded using the statements col_n = SM_COLUMN_D(J, n-1); col_n[m-1]
= 𝐽𝑚,𝑛. For large problems, it is more efficient to use SM_COLUMN_D than to use SM_ELEMENT_D. Note that
both of these macros number rows and columns starting from 0. The SUNMATRIX_DENSE type and accessor
macros are documented in section The SUNMATRIX_DENSE Module.

band:

A user-supplied banded Jacobian function must load the band matrix Jac with the elements of the
Jacobian 𝐽(𝑡, 𝑦) at the point (𝑡, 𝑦). The accessor macros SM_ELEMENT_B, SM_COLUMN_B, and
SM_COLUMN_ELEMENT_B allow the user to read and write band matrix elements without making specific
references to the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT_B(J, i, j)
references the (i,j)-th element of the band matrix J, counting from 0. This macro is meant for use in small
problems for which efficiency of access is not a major concern. Thus, in terms of the indices 𝑚 and 𝑛 rang-
ing from 1 to N with (𝑚,𝑛) within the band defined by mupper and mlower, the Jacobian element 𝐽𝑚,𝑛 can
be loaded using the statement SM_ELEMENT_B(J, m-1, n-1) = 𝐽𝑚,𝑛. The elements within the band

4.6. User-supplied functions 101

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

are those with -mupper ≤ 𝑚 − 𝑛 ≤ mlower. Alternatively, SM_COLUMN_B(J, j) returns a pointer to the
diagonal element of the j-th column of J, and if we assign this address to realtype *col_j, then the
i-th element of the j-th column is given by SM_COLUMN_ELEMENT_B(col_j, i, j), counting from
0. Thus, for (𝑚,𝑛) within the band, 𝐽𝑚,𝑛 can be loaded by setting col_n = SM_COLUMN_B(J, n-1);
SM_COLUMN_ELEMENT_B(col_n, m-1, n-1) = 𝐽𝑚,𝑛 . The elements of the j-th column can also be
accessed via ordinary array indexing, but this approach requires knowledge of the underlying storage for a
band matrix of type SUNMATRIX_BAND. The array col_n can be indexed from -mupper to mlower. For
large problems, it is more efficient to use SM_COLUMN_B and SM_COLUMN_ELEMENT_B than to use the
SM_ELEMENT_B macro. As in the dense case, these macros all number rows and columns starting from 0. The
SUNMATRIX_BAND type and accessor macros are documented in section The SUNMATRIX_BAND Module.

sparse:

A user-supplied sparse Jacobian function must load the compressed-sparse-column (CSC) or compressed-
sparse-row (CSR) matrix Jac with an approximation to the Jacobian matrix 𝐽(𝑡, 𝑦) at the point (𝑡, 𝑦). Storage
for Jac already exists on entry to this function, although the user should ensure that sufficient space is allocated
in Jac to hold the nonzero values to be set; if the existing space is insufficient the user may reallocate the data
and index arrays as needed. The amount of allocated space in a SUNMATRIX_SPARSE object may be accessed
using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ(). The SUNMATRIX_SPARSE type
is further documented in the section The SUNMATRIX_SPARSE Module.

4.6.9 Jacobian-vector product (matrix-free linear solvers)

When using a matrix-free linear solver modules for the implicit stage solves (i.e., a NULL-valued SUNMATRIX
argument was supplied to ARKStepSetLinearSolver() in the section A skeleton of the user’s main program),
the user may provide a function of type ARKLsJacTimesVecFn in the following form, to compute matrix-vector
products 𝐽𝑣. If such a function is not supplied, the default is a difference quotient approximation to these products.

typedef int (*ARKLsJacTimesVecFn)(N_Vector v, N_Vector Jv, realtype t, N_Vector y, N_Vector fy,
void* user_data, N_Vector tmp)

This function computes the product 𝐽𝑣 =
(︁

𝜕𝑓𝐼
𝜕𝑦

)︁
𝑣 (or an approximation to it).

Arguments:

• v – the vector to multiply.

• Jv – the output vector computed.

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector 𝑓𝐼(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

• tmp – pointer to memory allocated to a variable of type N_Vector which can be used as temporary
storage or work space.

Return value: The value to be returned by the Jacobian-vector product function should be 0 if successful. Any
other return value will result in an unrecoverable error of the generic Krylov solver, in which case the integration
is halted.

Notes: If the user’s ARKLsJacTimesVecFn function uses difference quotient approximations, it may need
to access quantities not in the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to the ark_mem structure to their user_data, and then
use the ARKStepGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

102 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

4.6.10 Jacobian-vector product setup (matrix-free linear solvers)

If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type ARKLsJacTimesSetupFn, defined as follows:

typedef int (*ARKLsJacTimesSetupFn)(realtype t, N_Vector y, N_Vector fy, void* user_data)
This function preprocesses and/or evaluates any Jacobian-related data needed by the Jacobian-times-vector rou-
tine.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector 𝑓𝐼(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: The value to be returned by the Jacobian-vector setup function should be 0 if successful, positive
for a recoverable error (in which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

Notes: Each call to the Jacobian-vector setup function is preceded by a call to the implicit ARKRhsFn user
function with the same (𝑡, 𝑦) arguments. Thus, the setup function can use any auxiliary data that is computed
and saved during the evaluation of the implicit ODE right-hand side.

If the user’s ARKLsJacTimesSetupFn function uses difference quotient approximations, it may need to
access quantities not in the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to the ark_mem structure to their user_data, and then
use the ARKStepGet* functions listed in Optional output functions. The unit roundoff can be accessed as
UNIT_ROUNDOFF, which is defined in the header file sundials_types.h.

4.6.11 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLinSol solver module, then the user must provide a function
of type ARKLsPrecSolveFn to solve the linear system 𝑃𝑧 = 𝑟, where 𝑃 corresponds to either a left or right
preconditioning matrix. Here 𝑃 should approximate (at least crudely) the Newton matrix 𝐴 = 𝑀 − 𝛾𝐽 , where 𝑀 is
the mass matrix (typically 𝑀 = 𝐼 unless working in a finite-element setting) and 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 If preconditioning is done
on both sides, the product of the two preconditioner matrices should approximate 𝐴.

typedef int (*ARKLsPrecSolveFn)(realtype t, N_Vector y, N_Vector fy, N_Vector r, N_Vector z, real-
type gamma, realtype delta, int lr, void* user_data)

This function solves the preconditioner system 𝑃𝑧 = 𝑟.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector 𝑓𝐼(𝑡, 𝑦).

• r – the right-hand side vector of the linear system.

• z – the computed output solution vector.

• gamma – the scalar 𝛾 appearing in the Newton matrix given by 𝐴 = 𝑀 − 𝛾𝐽 .

• delta – an input tolerance to be used if an iterative method is employed in the solution. In that case,
the residual vector 𝑅𝑒𝑠 = 𝑟 − 𝑃𝑧 of the system should be made to be less than delta in the weighted

4.6. User-supplied functions 103

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

𝑙2 norm, i.e.
(︁∑︀𝑛

𝑖=1 (𝑅𝑒𝑠𝑖 * 𝑒𝑤𝑡𝑖)2
)︁1/2

< 𝛿, where 𝛿 = delta. To obtain the N_Vector ewt, call
ARKStepGetErrWeights().

• lr – an input flag indicating whether the preconditioner solve is to use the left preconditioner (lr = 1)
or the right preconditioner (lr = 2).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

4.6.12 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner routine requires that any data be preprocessed or evaluated, then these actions need to
occur within a user-supplied function of type ARKLsPrecSetupFn.

typedef int (*ARKLsPrecSetupFn)(realtype t, N_Vector y, N_Vector fy, booleantype jok, boolean-
type* jcurPtr, realtype gamma, void* user_data)

This function preprocesses and/or evaluates Jacobian-related data needed by the preconditioner.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• fy – the current value of the vector 𝑓𝐼(𝑡, 𝑦).

• jok – is an input flag indicating whether the Jacobian-related data needs to be updated. The jok
argument provides for the reuse of Jacobian data in the preconditioner solve function. When jok =
SUNFALSE, the Jacobian-related data should be recomputed from scratch. When jok = SUNTRUE the
Jacobian data, if saved from the previous call to this function, can be reused (with the current value of
gamma). A call with jok = SUNTRUE can only occur after a call with jok = SUNFALSE.

• jcurPtr – is a pointer to a flag which should be set to SUNTRUE if Jacobian data was recomputed, or
set to SUNFALSE if Jacobian data was not recomputed, but saved data was still reused.

• gamma – the scalar 𝛾 appearing in the Newton matrix given by 𝐴 = 𝑀 − 𝛾𝐽 .

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: The value to be returned by the preconditioner setup function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

Notes: The operations performed by this function might include forming a crude approximate Jacobian, and
performing an LU factorization of the resulting approximation to 𝐴 = 𝑀 − 𝛾𝐽 .

Each call to the preconditioner setup function is preceded by a call to the implicit ARKRhsFn user function with
the same (𝑡, 𝑦) arguments. Thus, the preconditioner setup function can use any auxiliary data that is computed
and saved during the evaluation of the ODE right-hand side.

This function is not called in advance of every call to the preconditioner solve function, but rather is called only
as often as needed to achieve convergence in the Newton iteration.

If the user’s ARKLsPrecSetupFn function uses difference quotient approximations, it may need to access
quantities not in the call list. These include the current step size, the error weights, etc. To obtain these, the
user will need to add a pointer to the ark_mem structure to their user_data, and then use the ARKStepGet*

104 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

functions listed in Optional output functions. The unit roundoff can be accessed as UNIT_ROUNDOFF, which
is defined in the header file sundials_types.h.

4.6.13 Mass matrix construction (matrix-based linear solvers)

If a matrix-based mass-matrix linear solver is used (i.e., a non-NULL SUNMATRIX was supplied to
ARKStepSetMassLinearSolver() in the section A skeleton of the user’s main program), the user must provide
a function of type ARKLsMassFn to provide the mass matrix approximation.

typedef int (*ARKLsMassFn)(realtype t, SUNMatrix M, void* user_data, N_Vector tmp1, N_Vector tmp2,
N_Vector tmp3)

This function computes the mass matrix 𝑀 (or an approximation to it).

Arguments:

• t – the current value of the independent variable.

• M – the output mass matrix.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

• tmp1, tmp2, tmp3 – pointers to memory allocated to variables of type N_Vector which can be used
by an ARKLsMassFn as temporary storage or work space.

Return value: An ARKLsMassFn function should return 0 if successful, or a negative value if it failed unre-
coverably (in which case the integration is halted, ARKStepEvolve() returns ARK_MASSSETUP_FAIL and
ARKLS sets last_flag to ARKLS_MASSFUNC_UNRECVR).

Notes: Information regarding the structure of the specific SUNMatrix structure (e.g.~number of rows, up-
per/lower bandwidth, sparsity type) may be obtained through using the implementation-specific SUNMatrix
interface functions (see the section Matrix Data Structures for details).

Prior to calling the user-supplied mass matrix function, the mass matrix 𝑀 is zeroed out, so only nonzero
elements need to be loaded into M.

dense:

A user-supplied dense mass matrix function must load the N by N dense matrix M with an approximation to the
mass matrix 𝑀 . As discussed above in section Jacobian construction (matrix-based linear solvers), the accessor
macros SM_ELEMENT_D and SM_COLUMN_D allow the user to read and write dense matrix elements without
making explicit references to the underlying representation of the SUNMATRIX_DENSE type. Similarly, the
SUNMATRIX_DENSE type and accessor macros SM_ELEMENT_D and SM_COLUMN_D are documented in
the section The SUNMATRIX_DENSE Module.

band:

A user-supplied banded mass matrix function must load the band matrix M with the elements of the mass matrix
𝑀 . As discussed above in section Jacobian construction (matrix-based linear solvers), the accessor macros
SM_ELEMENT_B, SM_COLUMN_B, and SM_COLUMN_ELEMENT_B allow the user to read and write band ma-
trix elements without making specific references to the underlying representation of the SUNMATRIX_BAND
type. Similarly, the SUNMATRIX_BAND type and the accessor macros SM_ELEMENT_B, SM_COLUMN_B,
and SM_COLUMN_ELEMENT_B are documented in the section The SUNMATRIX_BAND Module.

sparse:

A user-supplied sparse mass matrix function must load the compressed-sparse-column (CSR) or compressed-
sparse-row (CSR) matrix M with an approximation to the mass matrix 𝑀 . Storage for M already exists on entry
to this function, although the user should ensure that sufficient space is allocated in M to hold the nonzero values
to be set; if the existing space is insufficient the user may reallocate the data and row index arrays as needed. The
type of M is SUNMATRIX_SPARSE, and the amount of allocated space in a SUNMATRIX_SPARSE object

4.6. User-supplied functions 105

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

may be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix_NNZ(). The SUNMA-
TRIX_SPARSE type is further documented in the section The SUNMATRIX_SPARSE Module.

4.6.14 Mass matrix-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used for mass-matrix linear systems (i.e., a NULL-valued SUNMATRIX argument
was supplied to ARKStepSetMassLinearSolver() in the section A skeleton of the user’s main program), the
user must provide a function of type ARKLsMassTimesVecFn in the following form, to compute matrix-vector
products 𝑀𝑣.

typedef int (*ARKLsMassTimesVecFn)(N_Vector v, N_Vector Mv, realtype t, void* mtimes_data)
This function computes the product 𝑀 * 𝑣 (or an approximation to it).

Arguments:

• v – the vector to multiply.

• Mv – the output vector computed.

• t – the current value of the independent variable.

• mtimes_data – a pointer to user data, the same as the mtimes_data parameter that was passed to
ARKStepSetMassTimes().

Return value: The value to be returned by the mass-matrix-vector product function should be 0 if successful.
Any other return value will result in an unrecoverable error of the generic Krylov solver, in which case the
integration is halted.

4.6.15 Mass matrix-vector product setup (matrix-free linear solvers)

If the user’s mass-matrix-times-vector routine requires that any mass matrix-related data be preprocessed or evaluated,
then this needs to be done in a user-supplied function of type ARKLsMassTimesSetupFn, defined as follows:

typedef int (*ARKLsMassTimesSetupFn)(realtype t, void* mtimes_data)
This function preprocesses and/or evaluates any mass-matrix-related data needed by the mass-matrix-times-
vector routine.

Arguments:

• t – the current value of the independent variable.

• mtimes_data – a pointer to user data, the same as the mtimes_data parameter that was passed to
ARKStepSetMassTimes().

Return value: The value to be returned by the mass-matrix-vector setup function should be 0 if successful. Any
other return value will result in an unrecoverable error of the ARKLS mass matrix solver interface, in which
case the integration is halted.

4.6.16 Mass matrix preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLINEAR solver module for mass matrix linear systems,
then the user must provide a function of type ARKLsMassPrecSolveFn to solve the linear system 𝑃𝑧 = 𝑟, where
𝑃 may be either a left or right preconditioning matrix. Here 𝑃 should approximate (at least crudely) the mass matrix
𝑀 . If preconditioning is done on both sides, the product of the two preconditioner matrices should approximate 𝑀 .

typedef int (*ARKLsMassPrecSolveFn)(realtype t, N_Vector r, N_Vector z, realtype delta, int lr,
void* user_data)

This function solves the preconditioner system 𝑃𝑧 = 𝑟.

106 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• t – the current value of the independent variable.

• r – the right-hand side vector of the linear system.

• z – the computed output solution vector.

• delta – an input tolerance to be used if an iterative method is employed in the solution. In that case,
the residual vector 𝑅𝑒𝑠 = 𝑟 − 𝑃𝑧 of the system should be made to be less than delta in the weighted

𝑙2 norm, i.e.
(︁∑︀𝑛

𝑖=1 (𝑅𝑒𝑠𝑖 * 𝑒𝑤𝑡𝑖)2
)︁1/2

< 𝛿, where 𝛿 = delta. To obtain the N_Vector ewt, call
ARKStepGetErrWeights().

• lr – an input flag indicating whether the preconditioner solve is to use the left preconditioner (lr = 1)
or the right preconditioner (lr = 2).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: The value to be returned by the preconditioner solve function is a flag indicating whether it was
successful. This value should be 0 if successful, positive for a recoverable error (in which case the step will be
retried), or negative for an unrecoverable error (in which case the integration is halted).

4.6.17 Mass matrix preconditioner setup (iterative linear solvers)

If the user’s mass matrix preconditioner above requires that any problem data be preprocessed or evaluated, then these
actions need to occur within a user-supplied function of type ARKLsMassPrecSetupFn.

typedef int (*ARKLsMassPrecSetupFn)(realtype t, void* user_data)
This function preprocesses and/or evaluates mass-matrix-related data needed by the preconditioner.

Arguments:

• t – the current value of the independent variable.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ARKStepSetUserData().

Return value: The value to be returned by the mass matrix preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recoverable error (in which case
the step will be retried), or negative for an unrecoverable error (in which case the integration is halted).

Notes: The operations performed by this function might include forming a mass matrix and performing an
incomplete factorization of the result. Although such operations would typically be performed only once at the
beginning of a simulation, these may be required if the mass matrix can change as a function of time.

If both this function and a ARKLsMassTimesSetupFn are supplied, all calls to this function will be preceded
by a call to the ARKLsMassTimesSetupFn, so any setup performed there may be reused.

4.6.18 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the ARKStep integrator may be “resized” between integration steps, through
calls to the ARKStepResize() function. Typically, when performing adaptive simulations the solution is stored in
a customized user-supplied data structure, to enable adaptivity without repeated allocation/deallocation of memory. In
these scenarios, it is recommended that the user supply a customized vector kernel to interface between SUNDIALS
and their problem-specific data structure. If this vector kernel includes a function of type ARKVecResizeFn to
resize a given vector implementation, then this function may be supplied to ARKStepResize() so that all internal

4.6. User-supplied functions 107

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

ARKStep vectors may be resized, instead of deleting and re-creating them at each call. This resize function should
have the following form:

typedef int (*ARKVecResizeFn)(N_Vector y, N_Vector ytemplate, void* user_data)
This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.

Arguments:

• y – the vector to resize.

• ytemplate – a vector of the desired size.

• user_data – a pointer to user data, the same as the resize_data parameter that was passed to
ARKStepResize().

Return value: An ARKVecResizeFn function should return 0 if it successfully resizes the vector y, and a non-
zero value otherwise.

Notes: If this function is not supplied, then ARKStep will instead destroy the vector y and clone a new vector y
off of ytemplate.

4.7 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced through precon-
ditioning. For problems in which the user cannot define a more effective, problem-specific preconditioner, ARKode
provides two internal preconditioner modules that may be used by ARKStep: a banded preconditioner for serial and
threaded problems (ARKBANDPRE) and a band-block-diagonal preconditioner for parallel problems (ARKBBD-
PRE).

4.7.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with iterative SUNLINSOL modules through the
ARKLS linear solver interface, in a serial or threaded setting. It requires that the problem be set up using either the
NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS module, due to data access patterns. It
also currently requires that the problem involve an identity mass matrix, i.e. 𝑀 = 𝐼 .

This module uses difference quotients of the ODE right-hand side function 𝑓𝐼 to generate a band matrix of bandwidth
ml + mu + 1, where the number of super-diagonals (mu, the upper half-bandwidth) and sub-diagonals (ml, the
lower half-bandwidth) are specified by the user. This band matrix is used to to form a preconditioner the Krylov linear
solver. Although this matrix is intended to approximate the Jacobian 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 , it may be a very crude approximation,
since the true Jacobian may not be banded, or its true bandwidth may be larger than ml + mu + 1. However, as
long as the banded approximation generated for the preconditioner is sufficiently accurate, it may speed convergence
of the Krylov iteration.

ARKBANDPRE usage

In order to use the ARKBANDPRE module, the user need not define any additional functions. In addition to the
header files required for the integration of the ODE problem (see the section Access to library and header files), to use
the ARKBANDPRE module, the user’s program must include the header file arkode_bandpre.h which declares
the needed function prototypes. The following is a summary of the usage of this module. Steps that are unchanged
from the skeleton program presented in A skeleton of the user’s main program are italicized.

1. Initialize multi-threaded environment (if appropriate)

2. Set problem dimensions

108 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

3. Set vector of initial values

4. Create ARKStep object

5. Specify integration tolerances

6. Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC_LEFT or
PREC_RIGHT) to use.

7. Set linear solver optional inputs

8. Attach linear solver module

9. Initialize the ARKBANDPRE preconditioner module

Specify the upper and lower half-bandwidths (mu and ml, respectively) and call

ier = ARKBandPrecInit(arkode_mem, N, mu, ml);

to allocate memory and initialize the internal preconditioner data.

10. Set optional inputs

Note that the user should not call ARKStepSetPreconditioner() as it will overwrite the preconditioner
setup and solve functions.

11. Create nonlinear solver object

12. Attach nonlinear solver module

13. Set nonlinear solver optional inputs

14. Specify rootfinding problem

15. Advance solution in time

16. Get optional outputs

Additional optional outputs associated with ARKBANDPRE are available by way of the two routines described
below, ARKBandPrecGetWorkSpace() and ARKBandPrecGetNumRhsEvals().

17. Deallocate memory for solution vector

18. Free solver memory

19. Free linear solver memory

ARKBANDPRE user-callable functions

The ARKBANDPRE preconditioner module is initialized and attached by calling the following function:

int ARKBandPrecInit(void* arkode_mem, sunindextype N, sunindextype mu, sunindextype ml)
Initializes the ARKBANDPRE preconditioner and allocates required (internal) memory for it.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• N – problem dimension (size of ODE system).

• mu – upper half-bandwidth of the Jacobian approximation.

• ml – lower half-bandwidth of the Jacobian approximation.

Return value:

4.7. Preconditioner modules 109

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_ILL_INPUT if an input has an illegal value

• ARKLS_MEM_FAIL if a memory allocation request failed

Notes: The banded approximate Jacobian will have nonzero elements only in locations (𝑖, 𝑗) with ml ≤ 𝑗− 𝑖 ≤
mu.

The following two optional output functions are available for use with the ARKBANDPRE module:

int ARKBandPrecGetWorkSpace(void* arkode_mem, long int* lenrwLS, long int* leniwLS)
Returns the sizes of the ARKBANDPRE real and integer workspaces.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lenrwLS – the number of realtype values in the ARKBANDPRE workspace.

• leniwLS – the number of integer values in the ARKBANDPRE workspace.

Return value:

• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within the
ARKBANDPRE module (the banded matrix approximation, banded SUNLinearSolver object, and tempo-
rary vectors).

The workspaces referred to here exist in addition to those given by the corresponding function
ARKStepGetLSWorkspace().

int ARKBandPrecGetNumRhsEvals(void* arkode_mem, long int* nfevalsBP)
Returns the number of calls made to the user-supplied right-hand side function 𝑓𝐼 for constructing the finite-
difference banded Jacobian approximation used within the preconditioner setup function.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• nfevalsBP – number of calls to 𝑓𝐼 .

Return value:

• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes: The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corresponding function
ARKStepGetNumLSRhsEvals() and also from nfi_evals returned by ARKStepGetNumRhsEvals().
The total number of right-hand side function evaluations is the sum of all three of these counters, plus the
nfe_evals counter for 𝑓𝐸 calls returned by ARKStepGetNumRhsEvals().

110 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

4.7.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver (such as ARKode) lies in the solution of partial differential equations
(PDEs). Moreover, Krylov iterative methods are used on many such problems due to the nature of the underlying linear
system of equations that needs to solved at each time step. For many PDEs, the linear algebraic system is large, sparse
and structured. However, if a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner
is required. Otherwise, the rate of convergence of the Krylov iterative method is usually slow, and degrades as the
PDE mesh is refined. Typically, an effective preconditioner must be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-based problems. It has
been successfully used with CVODE for several realistic, large-scale problems [HT1998]. It is included in a software
module within the ARKode package, and is accessible within the ARKStep time stepping module. This precondi-
tioning module works with the parallel vector module NVECTOR_PARALLEL and is usable with any of the Krylov
iterative linear solvers through the ARKLS interface. It generates a preconditioner that is a block-diagonal matrix with
each block being a band matrix. The blocks need not have the same number of super- and sub-diagonals and these
numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module is called ARKBBDPRE.

One way to envision these preconditioners is to think of the computational PDE domain as being subdivided into
𝑄 non-overlapping subdomains, where each subdomain is assigned to one of the 𝑄 MPI tasks used to solve the
ODE system. The basic idea is to isolate the preconditioning so that it is local to each process, and also to use a
(possibly cheaper) approximate right-hand side function for construction of this preconditioning matrix. This requires
the definition of a new function 𝑔(𝑡, 𝑦) ≈ 𝑓𝐼(𝑡, 𝑦) that will be used to construct the BBD preconditioner matrix. At
present, we assume that the ODE be written in explicit form as

�̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓𝐼(𝑡, 𝑦),

where 𝑓𝐼 corresponds to the ODE components to be treated implicitly, i.e. this preconditioning module does not
support problems with non-identity mass matrices. The user may set 𝑔 = 𝑓𝐼 , if no less expensive approximation is
desired.

Corresponding to the domain decomposition, there is a decomposition of the solution vector 𝑦 into 𝑄 disjoint blocks
𝑦𝑞 , and a decomposition of 𝑔 into blocks 𝑔𝑞 . The block 𝑔𝑞 depends both on 𝑦𝑝 and on components of blocks 𝑦𝑞′

associated with neighboring subdomains (so-called ghost-cell data). If we let 𝑦𝑞 denote 𝑦𝑞 augmented with those other
components on which 𝑔𝑞 depends, then we have

𝑔(𝑡, 𝑦) = [𝑔1(𝑡, 𝑦1), 𝑔2(𝑡, 𝑦2), . . . , 𝑔𝑄(𝑡, 𝑦𝑄)]
𝑇
,

and each of the blocks 𝑔𝑞(𝑡, 𝑦𝑞) is decoupled from one another.

The preconditioner associated with this decomposition has the form

𝑃 = diag[𝑃1, 𝑃2, . . . , 𝑃𝑄]

where

𝑃𝑞 ≈ 𝐼 − 𝛾𝐽𝑞

and where 𝐽𝑞 is a difference quotient approximation to 𝜕𝑔𝑞
𝜕𝑦𝑞

. This matrix is taken to be banded, with upper and lower
half-bandwidths mudq and mldq defined as the number of non-zero diagonals above and below the main diagonal,
respectively. The difference quotient approximation is computed using mudq + mldq + 2 evaluations of 𝑔𝑚, but only
a matrix of bandwidth mukeep + mlkeep + 1 is retained. Neither pair of parameters need be the true half-bandwidths
of the Jacobian of the local block of 𝑔, if smaller values provide a more efficient preconditioner. The solution of the
complete linear system

𝑃𝑥 = 𝑏

reduces to solving each of the distinct equations

𝑃𝑞𝑥𝑞 = 𝑏𝑞, 𝑞 = 1, . . . , 𝑄,

4.7. Preconditioner modules 111

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

and this is done by banded LU factorization of 𝑃𝑞 followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatments of the blocks 𝑃𝑞 . For example,
incomplete LU factorization or an iterative method could be used instead of banded LU factorization.

ARKBBDPRE user-supplied functions

The ARKBBDPRE module calls two user-provided functions to construct 𝑃 : a required function gloc (of type
ARKLocalFn()) which approximates the right-hand side function 𝑔(𝑡, 𝑦) ≈ 𝑓𝐼(𝑡, 𝑦) and which is computed locally,
and an optional function cfn (of type ARKCommFn()) which performs all inter-process communication necessary
to evaluate the approximate right-hand side 𝑔. These are in addition to the user-supplied right-hand side function 𝑓𝐼 .
Both functions take as input the same pointer user_data that is passed by the user to ARKStepSetUserData() and
that was passed to the user’s function 𝑓𝐼 . The user is responsible for providing space (presumably within user_data)
for components of 𝑦 that are communicated between processes by cfn, and that are then used by gloc, which should
not do any communication.

typedef int (*ARKLocalFn)(sunindextype Nlocal, realtype t, N_Vector y, N_Vector glocal,
void* user_data)

This gloc function computes 𝑔(𝑡, 𝑦). It fills the vector glocal as a function of t and y.

Arguments:

• Nlocal – the local vector length.

• t – the value of the independent variable.

• y – the value of the dependent variable vector on this process.

• glocal – the output vector of 𝑔(𝑡, 𝑦) on this process.

• user_data – a pointer to user data, the same as the user_data parameter passed to
ARKStepSetUserData().

Return value: An ARKLocalFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case ARKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case
the integration is halted and ARKStepEvolve() will return ARK_LSETUP_FAIL).

Notes: This function should assume that all inter-process communication of data needed to calculate glocal has
already been done, and that this data is accessible within user data.

The case where 𝑔 is mathematically identical to 𝑓𝐼 is allowed.

typedef int (*ARKCommFn)(sunindextype Nlocal, realtype t, N_Vector y, void* user_data)
This cfn function performs all inter-process communication necessary for the execution of the gloc function
above, using the input vector y.

Arguments:

• Nlocal – the local vector length.

• t – the value of the independent variable.

• y – the value of the dependent variable vector on this process.

• user_data – a pointer to user data, the same as the user_data parameter passed to
ARKStepSetUserData().

Return value: An ARKCommFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case ARKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case
the integration is halted and ARKStepEvolve() will return ARK_LSETUP_FAIL).

Notes: The cfn function is expected to save communicated data in space defined within the data structure
user_data.

112 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Each call to the cfn function is preceded by a call to the right-hand side function 𝑓𝐼 with the same (𝑡, 𝑦) argu-
ments. Thus, cfn can omit any communication done by 𝑓𝐼 if relevant to the evaluation of glocal. If all necessary
communication was done in 𝑓𝐼 , then cfn = NULL can be passed in the call to ARKBBDPrecInit() (see
below).

ARKBBDPRE usage

In addition to the header files required for the integration of the ODE problem (see the section Access to library and
header files), to use the ARKBBDPRE module, the user’s program must include the header file arkode_bbdpre.h
which declares the needed function prototypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from the skeleton program
presented in A skeleton of the user’s main program are italicized.

1. Initialize MPI

2. Set problem dimensions

3. Set vector of initial values

4. Create ARKStep object

5. Specify integration tolerances

6. Create iterative linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC_LEFT or
PREC_RIGHT) to use.

7. Set linear solver optional inputs

8. Attach linear solver module

9. Initialize the ARKBBDPRE preconditioner module

Specify the upper and lower half-bandwidths for computation mudq and mldq, the upper and lower half-
bandwidths for storage mukeep and mlkeep, and call

ier = ARKBBDPrecInit(arkode_mem, Nlocal, mudq, mldq, mukeep, mlkeep,
dqrely, gloc, cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
ARKBBDPrecInit() are the two user-supplied functions of type ARKLocalFn() and ARKCommFn() de-
scribed above, respectively.

10. Set optional inputs

Note that the user should not call ARKStepSetPreconditioner() as it will overwrite the preconditioner
setup and solve functions.

11. Create nonlinear solver object

12. Attach nonlinear solver module

13. Set nonlinear solver optional inputs

14. Specify rootfinding problem

15. Advance solution in time

16. Get optional outputs

Additional optional outputs associated with ARKBBDPRE are available through the routines
ARKBBDPrecGetWorkSpace() and ARKBBDPrecGetNumGfnEvals().

4.7. Preconditioner modules 113

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

17. Deallocate memory for solution vector

18. Free solver memory

19. Free linear solver memory

20. Finalize MPI

ARKBBDPRE user-callable functions

The ARKBBDPRE preconditioner module is initialized (or re-initialized) and attached to the integrator by calling the
following functions:

int ARKBBDPrecInit(void* arkode_mem, sunindextype Nlocal, sunindextype mudq, sunindextype mldq,
sunindextype mukeep, sunindextype mlkeep, realtype dqrely, ARKLocalFn gloc, ARK-
CommFn cfn)

Initializes and allocates (internal) memory for the ARKBBDPRE preconditioner.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• Nlocal – local vector length.

• mudq – upper half-bandwidth to be used in the difference quotient Jacobian approximation.

• mldq – lower half-bandwidth to be used in the difference quotient Jacobian approximation.

• mukeep – upper half-bandwidth of the retained banded approximate Jacobian block.

• mlkeep – lower half-bandwidth of the retained banded approximate Jacobian block.

• dqrely – the relative increment in components of y used in the difference quotient approximations.
The default is dqrely =

√
unit roundoff, which can be specified by passing dqrely = 0.0.

• gloc – the name of the C function (of type ARKLocalFn()) which computes the approximation
𝑔(𝑡, 𝑦) ≈ 𝑓𝐼(𝑡, 𝑦).

• cfn – the name of the C function (of type ARKCommFn()) which performs all inter-process commu-
nication required for the computation of 𝑔(𝑡, 𝑦).

Return value:

• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_ILL_INPUT if an input has an illegal value

• ARKLS_MEM_FAIL if a memory allocation request failed

Notes: If one of the half-bandwidths mudq or mldq to be used in the difference quotient calculation of the
approximate Jacobian is negative or exceeds the value Nlocal-1, it is replaced by 0 or Nlocal-1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jacobian of the local block of
𝑔 when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate Jacobian block may be even
smaller than mudq and mldq, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.

114 Chapter 4. Using ARKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

The ARKBBDPRE module also provides a re-initialization function to allow solving a sequence of problems of the
same size, with the same linear solver choice, provided there is no change in Nlocal, mukeep, or mlkeep. After solving
one problem, and after calling ARKStepReInit() to re-initialize ARKStep for a subsequent problem, a call to
ARKBBDPrecReInit() can be made to change any of the following: the half-bandwidths mudq and mldq used in
the difference-quotient Jacobian approximations, the relative increment dqrely, or one of the user-supplied functions
gloc and cfn. If there is a change in any of the linear solver inputs, an additional call to the “Set” routines provided by
the SUNLINSOL module, and/or one or more of the corresponding ARKStepSet*** functions, must also be made
(in the proper order).

int ARKBBDPrecReInit(void* arkode_mem, sunindextype mudq, sunindextype mldq, realtype dqrely)
Re-initializes the ARKBBDPRE preconditioner module.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• mudq – upper half-bandwidth to be used in the difference quotient Jacobian approximation.

• mldq – lower half-bandwidth to be used in the difference quotient Jacobian approximation.

• dqrely – the relative increment in components of y used in the difference quotient approximations.
The default is dqrely =

√
unit roundoff, which can be specified by passing dqrely = 0.0.

Return value:

• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes: If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal-1, it is replaced by 0
or Nlocal-1 accordingly.

The following two optional output functions are available for use with the ARKBBDPRE module:

int ARKBBDPrecGetWorkSpace(void* arkode_mem, long int* lenrwBBDP, long int* leniwBBDP)
Returns the processor-local ARKBBDPRE real and integer workspace sizes.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• lenrwBBDP – the number of realtype values in the ARKBBDPRE workspace.

• leniwBBDP – the number of integer values in the ARKBBDPRE workspace.

Return value:

• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_PMEM_NULL if the preconditioner memory is NULL

Notes: The workspace requirements reported by this routine correspond only to memory allocated within the
ARKBBDPRE module (the banded matrix approximation, banded SUNLinearSolver object, temporary
vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding function
ARKStepGetLSWorkSpace().

4.7. Preconditioner modules 115

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int ARKBBDPrecGetNumGfnEvals(void* arkode_mem, long int* ngevalsBBDP)
Returns the number of calls made to the user-supplied gloc function (of type ARKLocalFn()) due to the finite
difference approximation of the Jacobian blocks used within the preconditioner setup function.

Arguments:

• arkode_mem – pointer to the ARKStep memory block.

• ngevalsBBDP – the number of calls made to the user-supplied gloc function.

Return value:

• ARKLS_SUCCESS if no errors occurred

• ARKLS_MEM_NULL if the ARKStep memory is NULL

• ARKLS_LMEM_NULL if the linear solver memory is NULL

• ARKLS_PMEM_NULL if the preconditioner memory is NULL

In addition to the ngevalsBBDP gloc evaluations, the costs associated with ARKBBDPRE also include nlinsetups
LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and nfevalsLS right-hand side function
evaluations, where nlinsetups is an optional ARKStep output and npsolves and nfevalsLS are linear solver optional
outputs (see the table Linear solver interface optional output functions).

116 Chapter 4. Using ARKStep for C and C++ Applications

CHAPTER

FIVE

FARKODE, AN INTERFACE MODULE FOR FORTRAN APPLICATIONS

The FARKODE interface module is a package of C functions which support the use of the ARKStep time-stepping
module for the solution of ODE systems

𝑀 �̇� = 𝑓𝐸(𝑡, 𝑦) + 𝑓𝐼(𝑡, 𝑦),

in a mixed Fortran/C setting. While ARKode is written in C, it is assumed here that the user’s calling program and
user-supplied problem-defining routines are written in Fortran. We assume only minimal Fortran capabilities; specif-
ically that the Fortran compiler support full Fortran77 functionality (although more modern standards are similarly
supported). This package provides the necessary interfaces to ARKODE for the majority of supplied serial and paral-
lel NVECTOR implementations.

5.1 Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user routines called by them, appear
as dummy names which are mapped to actual values by a series of definitions in the header files. By default, those
mapping definitions depend in turn on the C macro F77_FUNC defined in the header file sundials_config.h.
The mapping defined by F77_FUNC in turn transforms the C interface names to match the name-mangling approach
used by the supplied Fortran compiler.

By “name-mangling”, we mean that due to the case-independent nature of the Fortran language, Fortran compilers
convert all subroutine and object names to use either all lower-case or all upper-case characters, and append either
zero, one or two underscores as a prefix or suffix the the name. For example, the Fortran subroutine MyFunction()
will be changed to one of myfunction, MYFUNCTION, myfunction__, MYFUNCTION_, and so on, depending
on the Fortran compiler used.

SUNDIALS determines this name-mangling scheme at configuration time (see ARKode Installation Procedure).

5.2 Fortran Data Types

Throughout this documentation, we will refer to data types according to their usage in C. The equivalent types to these
may vary, depending on your computer architecture and on how SUNDIALS was compiled (see ARKode Installation
Procedure). A Fortran user should first determine the equivalent types for their architecture and compiler, and then
take care that all arguments passed through this Fortran/C interface are declared of the appropriate type.

Integers: SUNDIALS uses int, long int and sunindextype types. As discussed in ARKode Installation
Procedure, at compilation SUNDIALS allows the configuration of the ‘index’ type, that accepts values of 32-bit
signed and 64-bit signed. This choice dictates the size of a SUNDIALS sunindextype variable.

• int – equivalent to an INTEGER or INTEGER*4 in Fortran

• long int – this will depend on the computer architecture:

117

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

– 32-bit architecture – equivalent to an INTEGER or INTEGER*4 in Fortran

– 64-bit architecture – equivalent to an INTEGER*8 in Fortran

• sunindextype – this will depend on the SUNDIALS configuration:

– 32-bit – equivalent to an INTEGER or INTEGER*4 in Fortran

– 64-bit – equivalent to an INTEGER*8 in Fortran

Real numbers: As discussed in ARKode Installation Procedure, at compilation SUNDIALS allows the configuration
option --with-precision, that accepts values of single, double or extended (the default is double).
This choice dictates the size of a realtype variable. The corresponding Fortran types for these realtype sizes
are:

• single – equivalent to a REAL or REAL*4 in Fortran

• double – equivalent to a DOUBLE PRECISION or REAL*8 in Fortran

• extended – equivalent to a REAL*16 in Fortran

We note that when SUNDIALS is compiled with Fortran interfaces enabled, a file
sundials/sundials_fconfig.h is placed in the installation’s include directory, containing informa-
tion about the Fortran types that correspond to the C types of the configured SUNDIALS installation. This file may
be “included” by Fortran routines, as long as the compiler supports the Fortran90 standard (or higher), as shown in
the ARKode example programs ark_bruss.f90, ark_bruss1D_FEM_klu.f90 and fark_heat2D.f90.

Details on the Fortran interface to ARKode are provided in the following sub-sections:

5.2.1 FARKODE routines

In this section, we list the full set of user-callable functions comprising the FARKODE solver interface. For each
function, we list the corresponding ARKStep functions, to provide a mapping between the two solver interfaces.
Further documentation on each FARKODE function is provided in the following sections, Usage of the FARKODE
interface module, FARKODE optional output, Usage of the FARKROOT interface to rootfinding and Usage of the
FARKODE interface to built-in preconditioners. Additionally, all Fortran and C functions below are hyperlinked to
their definitions in the documentation, for simplified access.

Interface to the NVECTOR modules

• FNVINITS() (defined by NVECTOR_SERIAL) interfaces to N_VNewEmpty_Serial().

• FNVINITP() (defined by NVECTOR_PARALLEL) interfaces to N_VNewEmpty_Parallel().

• FNVINITOMP() (defined by NVECTOR_OPENMP) interfaces to N_VNewEmpty_OpenMP().

• FNVINITPTS() (defined by NVECTOR_PTHREADS) interfaces to N_VNewEmpty_Pthreads().

• FNVINITPH() (defined by NVECTOR_PARHYP) interfaces to N_VNewEmpty_ParHyp().

Interface to the SUNMATRIX modules

• FSUNBANDMATINIT() (defined by SUNMATRIX_BAND) interfaces to SUNBandMatrix().

• FSUNDENSEMATINIT() (defined by SUNMATRIX_DENSE) interfaces to SUNDenseMatrix().

• FSUNSPARSEMATINIT() (defined by SUNMATRIX_SPARSE) interfaces to SUNSparseMatrix().

118 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Interface to the SUNLINSOL modules

• FSUNBANDLINSOLINIT() (defined by SUNLINSOL_BAND) interfaces to SUNLinSol_Band().

• FSUNDENSELINSOLINIT() (defined by SUNLINSOL_DENSE) interfaces to SUNLinSol_Dense().

• FSUNKLUINIT() (defined by SUNLINSOL_KLU) interfaces to SUNLinSol_KLU().

• FSUNKLUREINIT() (defined by SUNLINSOL_KLU) interfaces to SUNLinSol_KLUReinit().

• FSUNLAPACKBANDINIT() (defined by SUNLINSOL_LAPACKBAND) interfaces to
SUNLinSol_LapackBand().

• FSUNLAPACKDENSEINIT() (defined by SUNLINSOL_LAPACKDENSE) interfaces to
SUNLinSol_LapackDense().

• FSUNPCGINIT() (defined by SUNLINSOL_PCG) interfaces to SUNLinSol_PCG().

• FSUNSPBCGSINIT() (defined by SUNLINSOL_SPBCGS) interfaces to SUNLinSol_SPBCGS().

• FSUNSPFGMRINIT() (defined by SUNLINSOL_SPFGMR) interfaces to SUNLinSol_SPFGMR().

• FSUNSPGMRINIT() (defined by SUNLINSOL_SPGMR) interfaces to SUNLinSol_SPGMR().

• FSUNSPTFQMRINIT() (defined by SUNLINSOL_SPTFQMR) interfaces to SUNLinSol_SPTFQMR().

• FSUNSUPERLUMTINIT() (defined by SUNLINSOL_SUPERLUMT) interfaces to
SUNLinSol_SuperLUMT().

Interface to the SUNNONLINSOL modules

• FSUNNEWTONINIT() (defined by SUNNONLINSOL_NEWTON) interfaces to
SUNNonlinSol_Newton().

• FSUNNEWTONSETMAXITERS() (defined by SUNNONLINSOL_NEWTON) interfaces to
SUNNonlinSolSetMaxIters() for a SUNNONLINSOL_NEWTON object.

• FSUNFIXEDPOINTINIT() (defined by SUNNONLINSOL_FIXEDPOINT) interfaces to
SUNNonlinSol_Newton().

• FSUNFIXEDPOINTSETMAXITERS() (defined by SUNNONLINSOL_FIXEDPOINT) interfaces to
SUNNonlinSolSetMaxIters() for a SUNNONLINSOL_FIXEDPOINT object.

Interface to the main ARKODE module

• FARKMALLOC() interfaces to ARKStepCreate() and ARKStepSetUserData(), as well as one of
ARKStepSStolerances() or ARKStepSVtolerances().

• FARKREINIT() interfaces to ARKStepReInit().

• FARKRESIZE() interfaces to ARKStepResize().

• FARKSETIIN() and FARKSETRIN() interface to the ARKStepSet* and ARKStepSet* functions (see Op-
tional input functions).

• FARKEWTSET() interfaces to ARKStepWFtolerances().

• FARKADAPTSET() interfaces to ARKStepSetAdaptivityFn().

• FARKEXPSTABSET() interfaces to ARKStepSetStabilityFn().

• FARKSETERKTABLE() interfaces to ARKStepSetTables().

5.2. Fortran Data Types 119

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• FARKSETIRKTABLE() interfaces to ARKStepSetTables().

• FARKSETARKTABLES() interfaces to ARKStepSetTables().

• FARKSETRESTOLERANCE() interfaces to either ARKStepResStolerance() and
ARKStepResVtolerance()

• FARKODE() interfaces to ARKStepEvolve(), the ARKStepGet* functions (see Optional output functions),
and to the optional output functions for the selected linear solver module (see Optional output functions).

• FARKDKY() interfaces to the interpolated output function ARKStepGetDky().

• FARKGETERRWEIGHTS() interfaces to ARKStepGetErrWeights().

• FARKGETESTLOCALERR() interfaces to ARKStepGetEstLocalErrors().

• FARKFREE() interfaces to ARKStepFree().

Interface to the system nonlinear solver interface

• FARKNLSINIT() interfaces to ARKStepSetNonlinearSolver().

Interface to the system linear solver interfaces

• FARKLSINIT() interfaces to ARKStepSetLinearSolver().

• FARKDENSESETJAC() interfaces to ARKStepSetJacFn().

• FARKBANDSETJAC() interfaces to ARKStepSetJacFn().

• FARKSPARSESETJAC() interfaces to ARKStepSetJacFn().

• FARKLSSETEPSLIN() interfaces to ARKStepSetEpsLin().

• FARKLSSETJAC() interfaces to ARKStepSetJacTimes().

• FARKLSSETPREC() interfaces to ARKStepSetPreconditioner().

Interface to the mass matrix linear solver interfaces

• FARKLSMASSINIT() interfaces to ARKStepSetMassLinearSolver().

• FARKDENSESETMASS() interfaces to ARKStepSetMassFn().

• FARKBANDSETMASS() interfaces to ARKStepSetMassFn().

• FARKSPARSESETMASS() interfaces to ARKStepSetMassFn().

• FARKLSSETMASSEPSLIN() interfaces to ARKStepSetMassEpsLin().

• FARKLSSETMASS() interfaces to ARKStepSetMassTimes().

• FARKLSSETMASSPREC() interfaces to ARKStepSetMassPreconditioner().

User-supplied routines

As with the native C interface, the FARKODE solver interface requires user-supplied functions to specify the ODE
problem to be solved. In contrast to the case of direct use of ARKStep, and of most Fortran ODE solvers, the names
of all user-supplied routines here are fixed, in order to maximize portability for the resulting mixed-language program.
As a result, whether using a purely implicit, purely explicit, or mixed implicit-explicit solver, routines for both 𝑓𝐸(𝑡, 𝑦)
and 𝑓𝐼(𝑡, 𝑦) must be provided by the user (though either of which may do nothing):

120 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

FARKODE routine (FORTRAN, user-supplied) ARKStep interface function type
FARKIFUN() ARKRhsFn()
FARKEFUN() ARKRhsFn()

In addition, as with the native C interface a user may provide additional routines to assist in the solution process. Each
of the following user-supplied routines is activated by calling the specified “activation” routine, with the exception of
FARKSPJAC() which is required whenever a sparse matrix solver is used:

FARKODE routine (FORTRAN,
user-supplied)

ARKStep interface function
type

FARKODE “activation”
routine

FARKDJAC() ARKLsJacFn() FARKDENSESETJAC()
FARKBJAC() ARKLsJacFn() FARKBANDSETJAC()
FARKSPJAC() ARKLsJacFn() FARKSPARSESETJAC()
FARKDMASS() ARKLsMassFn() FARKDENSESETMASS()
FARKBMASS() ARKLsMassFn() FARKBANDSETMASS()
FARKSPMASS() ARKLsMassFn() FARKSPARSESETMASS()
FARKPSET() ARKLsPrecSetupFn() FARKLSSETPREC()
FARKPSOL() ARKLsPrecSolveFn() FARKLSSETPREC()
FARKJTSETUP() ARKLsJacTimesSetupFn() FARKLSSETJAC()
FARKJTIMES() ARKLsJacTimesVecFn() FARKLSSETJAC()
FARKMASSPSET() ARKLsMassPrecSetupFn() FARKLSSETMASSPREC()
FARKMASSPSOL() ARKLsMassPrecSolveFn() FARKLSSETMASSPREC()
FARKMTSETUP() ARKLsMassTimesSetupFn() FARKLSSETMASS()
FARKMTIMES() ARKLsMassTimesVecFn() FARKLSSETMASS()
FARKEWT() ARKEwtFn() FARKEWTSET()
FARKADAPT() ARKAdaptFn() FARKADAPTSET()
FARKEXPSTAB() ARKExpStabFn() FARKEXPSTABSET()

5.2.2 Usage of the FARKODE interface module

The usage of FARKODE requires calls to a variety of interface functions, depending on the method options selected,
and two or more user-supplied routines which define the problem to be solved. These function calls and user rou-
tines are summarized separately below. Some details are omitted, and the user is referred to the description of the
corresponding C interface ARKStep functions for complete information on the arguments of any given user-callable
interface routine, or of a given user-supplied function called by an interface function. The usage of FARKODE for
rootfinding and with preconditioner modules is described in later subsections.

Right-hand side specification

The user must in all cases supply the following Fortran routines:

subroutine FARKIFUN(T, Y, YDOT, IPAR, RPAR, IER)
Sets the YDOT array to 𝑓𝐼(𝑡, 𝑦), the implicit portion of the right-hand side of the ODE system, as function of
the independent variable T = 𝑡 and the array of dependent state variables Y = 𝑦.

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing state variables.

• YDOT (realtype, output) – array containing state derivatives.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

5.2. Fortran Data Types 121

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• IER (int, output) – return flag (0 success, >0 recoverable error, <0 unrecoverable error).

subroutine FARKEFUN(T, Y, YDOT, IPAR, RPAR, IER)
Sets the YDOT array to 𝑓𝐸(𝑡, 𝑦), the explicit portion of the right-hand side of the ODE system, as function of
the independent variable T = 𝑡 and the array of dependent state variables Y = 𝑦.

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing state variables.

• YDOT (realtype, output) – array containing state derivatives.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, >0 recoverable error, <0 unrecoverable error).

For purely explicit problems, although the routine FARKIFUN() must exist, it will never be called, and may remain
empty. Similarly, for purely implicit problems, FARKEFUN() will never be called and must exist and may remain
empty.

NVECTOR module initialization

If using one of the NVECTOR modules supplied with SUNDIALS, the user must make a call of the form

CALL FNVINITS(4, NEQ, IER)
CALL FNVINITP(COMM, 4, NLOCAL, NGLOBAL, IER)
CALL FNVINITOMP(4, NEQ, NUM_THREADS, IER)
CALL FNVINITPTS(4, NEQ, NUM_THREADS, IER)
CALL FNVINITPH(COMM, 4, NLOCAL, NGLOBAL, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Vector Data Structures.

SUNMATRIX module initialization

In the case of using either an implicit or ImEx method, the solution of each Runge-Kutta stage may involve the solution
of linear systems related to the Jacobian 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 of the implicit portion of the ODE system. If using a Newton iteration
with direct SUNLINSOL linear solver module and one of the SUNMATRIX modules supplied with SUNDIALS, the
user must make a call of the form

CALL FSUNBANDMATINIT(4, N, MU, ML, SMU, IER)
CALL FSUNDENSEMATINIT(4, M, N, IER)
CALL FSUNSPARSEMATINIT(4, M, N, NNZ, SPARSETYPE, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Matrix Data Structures.
Note that these matrix options are usable only in a serial or multi-threaded environment.

As described in the section Mass matrix solver, in the case of using a problem with a non-identity mass matrix (no
matter whether the integrator is implicit, explicit or ImEx), linear systems of the form 𝑀𝑥 = 𝑏 must be solved, where
𝑀 is the system mass matrix. If these are to be solved with a direct SUNLINSOL linear solver module and one of the
SUNMATRIX modules supplied with SUNDIALS, the user must make a call of the form

CALL FSUNBANDMASSMATINIT(N, MU, ML, SMU, IER)
CALL FSUNDENSEMASSMATINIT(M, N, IER)
CALL FSUNSPARSEMASSMATINIT(M, N, NNZ, SPARSETYPE, IER)

122 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

in which the specific arguments are as described in the appropriate section of the Chapter Matrix Data Structures,
again noting that these are only usable in a serial or multi-threaded environment.

SUNLINSOL module initialization

If using a Newton iteration with one of the SUNLINSOL linear solver modules supplied with SUNDIALS, the user
must make a call of the form

CALL FSUNBANDLINSOLINIT(4, IER)
CALL FSUNDENSELINSOLINIT(4, IER)
CALL FSUNKLUINIT(4, IER)
CALL FSUNLAPACKBANDINIT(4, IER)
CALL FSUNLAPACKDENSEINIT(4, IER)
CALL FSUNPCGINIT(4, PRETYPE, MAXL, IER)
CALL FSUNSPBCGSINIT(4, PRETYPE, MAXL, IER)
CALL FSUNSPFGMRINIT(4, PRETYPE, MAXL, IER)
CALL FSUNSPGMRINIT(4, PRETYPE, MAXL, IER)
CALL FSUNSPTFQMRINIT(4, PRETYPE, MAXL, IER)
CALL FSUNSUPERLUMTINIT(4, NUM_THREADS, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Description of the SUN-
LinearSolver module. Note that the dense, band and sparse solvers are usable only in a serial or multi-threaded
environment.

Once one of these has been initialized, its solver parameters may be modified using a call to the functions

CALL FSUNKLUSETORDERING(4, ORD_CHOICE, IER)
CALL FSUNSUPERLUMTSETORDERING(4, ORD_CHOICE, IER)
CALL FSUNPCGSETPRECTYPE(4, PRETYPE, IER)
CALL FSUNPCGSETMAXL(4, MAXL, IER)
CALL FSUNSPBCGSSETPRECTYPE(4, PRETYPE, IER)
CALL FSUNSPBCGSSETMAXL(4, MAXL, IER)
CALL FSUNSPFGMRSETGSTYPE(4, GSTYPE, IER)
CALL FSUNSPFGMRSETPRECTYPE(4, PRETYPE, IER)
CALL FSUNSPGMRSETGSTYPE(4, GSTYPE, IER)
CALL FSUNSPGMRSETPRECTYPE(4, PRETYPE, IER)
CALL FSUNSPTFQMRSETPRECTYPE(4, PRETYPE, IER)
CALL FSUNSPTFQMRSETMAXL(4, MAXL, IER)

where again the call sequences are described in the appropriate sections of the Chapter Description of the SUNLinear-
Solver module.

Similarly, in the case of using one of the SUNLINSOL linear solver modules supplied with SUNDIALS to solve a
problem with a non-identity mass matrix, the user must make a call of the form

CALL FSUNMASSBANDLINSOLINIT(IER)
CALL FSUNMASSDENSELINSOLINIT(IER)
CALL FSUNMASSKLUINIT(IER)
CALL FSUNMASSLAPACKBANDINIT(IER)
CALL FSUNMASSLAPACKDENSEINIT(IER)
CALL FSUNMASSPCGINIT(PRETYPE, MAXL, IER)
CALL FSUNMASSSPBCGSINIT(PRETYPE, MAXL, IER)
CALL FSUNMASSSPFGMRINIT(PRETYPE, MAXL, IER)
CALL FSUNMASSSPGMRINIT(PRETYPE, MAXL, IER)
CALL FSUNMASSSPTFQMRINIT(PRETYPE, MAXL, IER)
CALL FSUNMASSSUPERLUMTINIT(NUM_THREADS, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Description of the SUNLin-
earSolver module.

5.2. Fortran Data Types 123

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Once one of these has been initialized, its solver parameters may be modified using a call to the functions

CALL FSUNMASSKLUSETORDERING(ORD_CHOICE, IER)
CALL FSUNMASSSUPERLUMTSETORDERING(ORD_CHOICE, IER)
CALL FSUNMASSPCGSETPRECTYPE(PRETYPE, IER)
CALL FSUNMASSPCGSETMAXL(MAXL, IER)
CALL FSUNMASSSPBCGSSETPRECTYPE(PRETYPE, IER)
CALL FSUNMASSSPBCGSSETMAXL(MAXL, IER)
CALL FSUNMASSSPFGMRSETGSTYPE(GSTYPE, IER)
CALL FSUNMASSSPFGMRSETPRECTYPE(PRETYPE, IER)
CALL FSUNMASSSPGMRSETGSTYPE(GSTYPE, IER)
CALL FSUNMASSSPGMRSETPRECTYPE(PRETYPE, IER)
CALL FSUNMASSSPTFQMRSETPRECTYPE(PRETYPE, IER)
CALL FSUNMASSSPTFQMRSETMAXL(MAXL, IER)

where again the call sequences are described in the appropriate sections of the Chapter Description of the SUNLinear-
Solver module.

SUNNONLINSOL module initialization

If using a non-default nonlinear solver method, the user must make a call of the form

CALL FSUNNEWTONINIT(4, IER)
CALL FSUNFIXEDPOINTINIT(4, M, IER)

in which the specific arguments are as described in the appropriate section of the Chapter Nonlinear Solver Data
Structures.

Once one of these has been initialized, its solver parameters may be modified using a call to the functions

CALL FSUNNEWTONSETMAXITERS(4, MAXITERS, IER)
CALL FSUNFIXEDPOINTSETMAXITERS(4, MAXITERS, IER)

where again the call sequences are described in the appropriate sections of the Chapter Nonlinear Solver Data Struc-
tures.

Problem specification

To set various problem and solution parameters and allocate internal memory, the user must call FARKMALLOC().

subroutine FARKMALLOC(T0, Y0, IMEX, IATOL, RTOL, ATOL, IOUT, ROUT, IPAR, RPAR, IER)
Initializes the Fortran interface to the ARKStep solver, providing interfaces to the C routines
ARKStepCreate() and ARKStepSetUserData(), as well as one of ARKStepSStolerances() or
ARKStepSVtolerances().

Arguments:

• T0 (realtype, input) – initial value of 𝑡.

• Y0 (realtype, input) – array of initial conditions.

• IMEX (int, input) – flag denoting basic integration method: 0 = implicit, 1 = explicit, 2 = ImEx.

• IATOL (int, input) – type for absolute tolerance input ATOL: 1 = scalar, 2 = array, 3 = user-supplied
function; the user must subsequently call FARKEWTSET() and supply a routine FARKEWT() to
compute the error weight vector.

• RTOL (realtype, input) – scalar relative tolerance.

• ATOL (realtype, input) – scalar or array absolute tolerance.

124 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• IOUT (long int, input/output) – array of length 29 for integer optional outputs.

• ROUT (realtype, input/output) – array of length 6 for real optional outputs.

• IPAR (long int, input/output) – array of user integer data, which will be passed unmodified to all
user-provided routines.

• RPAR (realtype, input/output) – array with user real data, which will be passed unmodified to all
user-provided routines.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Notes: Modifications to the user data arrays IPAR and RPAR inside a user-provided routine will be propagated
to all subsequent calls to such routines. The optional outputs associated with the main ARKStep integrator are
listed in Table: Optional FARKODE integer outputs and Table: Optional FARKODE real outputs, in the section
FARKODE optional output.

As an alternative to providing tolerances in the call to FARKMALLOC(), the user may provide a routine to compute
the error weights used in the WRMS norm evaluations. If supplied, it must have the following form:

subroutine FARKEWT(Y, EWT, IPAR, RPAR, IER)
It must set the positive components of the error weight vector EWT for the calculation of the WRMS norm of Y.

Arguments:

• Y (realtype, input) – array containing state variables.

• EWT (realtype, output) – array containing the error weight vector.

• IPAR (long int, input) – array containing the integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input) – array containing the real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, ̸= 0 failure).

If the FARKEWT() routine is provided, then, following the call to FARKMALLOC(), the user must call the function
FARKEWTSET().

subroutine FARKEWTSET(FLAG, IER)
Informs FARKODE to use the user-supplied FARKEWT() function.

Arguments:

• FLAG (int, input) – flag, use “1” to denoting to use FARKEWT().

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Setting optional inputs

Unlike ARKStep’s C interface, that provides separate functions for setting each optional input, FARKODE uses only
two functions, that accept keywords to specify which optional input should be set to the provided value. These routines
are FARKSETIIN() and FARKSETRIN(), and are further described below.

subroutine FARKSETIIN(KEY, IVAL, IER)
Specification routine to pass optional integer inputs to the FARKODE() solver.

Arguments:

• KEY (quoted string, input) – which optional input is set (see Table: Keys for setting FARKODE integer
optional inputs).

• IVAL (long int, input) – the integer input value to be used.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

5.2. Fortran Data Types 125

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Table: Keys for setting FARKODE integer optional inputs

Key ARKStep routine
ORDER ARKStepSetOrder()
DENSE_ORDER ARKStepSetDenseOrder()
LINEAR ARKStepSetLinear()
NONLINEAR ARKStepSetNonlinear()
EXPLICIT ARKStepSetExplicit()
IMPLICIT ARKStepSetImplicit()
IMEX ARKStepSetImEx()
IRK_TABLE_NUM ARKStepSetTableNum()
ERK_TABLE_NUM ARKStepSetTableNum()
ARK_TABLE_NUM (a) ARKStepSetTableNum()
MAX_NSTEPS ARKStepSetMaxNumSteps()
HNIL_WARNS ARKStepSetMaxHnilWarns()
PREDICT_METHOD ARKStepSetPredictorMethod()
MAX_ERRFAIL ARKStepSetMaxErrTestFails()
MAX_CONVFAIL ARKStepSetMaxConvFails()
MAX_NITERS ARKStepSetMaxNonlinIters()
ADAPT_SMALL_NEF ARKStepSetSmallNumEFails()
LSETUP_MSBP ARKStepSetMaxStepsBetweenLSet()

(a) When setting ARK_TABLE_NUM, pass in IVAL as an array of length 2, specifying the IRK table number first, then
the ERK table number. The integer specifiers for each table may be found in the section Appendix: ARKode Constants,
or in the ARKode header files arkode_butcher_dirk.h and arkode_butcher_erk.h.

subroutine FARKSETRIN(KEY, RVAL, IER)
Specification routine to pass optional real inputs to the FARKODE() solver.

Arguments:

• KEY (quoted string, input) – which optional input is set (see Table: Keys for setting FARKODE real
optional inputs).

• RVAL (realtype, input) – the real input value to be used.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

126 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Table: Keys for setting FARKODE real optional inputs

Key ARKStep routine
INIT_STEP ARKStepSetInitStep()
MAX_STEP ARKStepSetMaxStep()
MIN_STEP ARKStepSetMinStep()
STOP_TIME ARKStepSetStopTime()
NLCONV_COEF ARKStepSetNonlinConvCoef()
ADAPT_CFL ARKStepSetCFLFraction()
ADAPT_SAFETY ARKStepSetSafetyFactor()
ADAPT_BIAS ARKStepSetErrorBias()
ADAPT_GROWTH ARKStepSetMaxGrowth()
ADAPT_ETAMX1 ARKStepSetMaxFirstGrowth()
ADAPT_BOUNDS ARKStepSetFixedStepBounds()
ADAPT_ETAMXF ARKStepSetMaxEFailGrowth()
ADAPT_ETACF ARKStepSetMaxCFailGrowth()
NONLIN_CRDOWN ARKStepSetNonlinCRDown()
NONLIN_RDIV ARKStepSetNonlinRDiv()
LSETUP_DGMAX ARKStepSetDeltaGammaMax()
FIXED_STEP ARKStepSetFixedStep()

If a user wishes to reset all of the options to their default values, they may call the routine FARKSETDEFAULTS().

subroutine FARKSETDEFAULTS(IER)
Specification routine to reset all FARKODE optional inputs to their default values.

Arguments:

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Optional advanced FARKODE inputs

FARKODE supplies additional routines to specify optional advanced inputs to the ARKStepEvolve() solver. These
are summarized below, and the user is referred to their C routine counterparts for more complete information.

subroutine FARKSETERKTABLE(S, Q, P, C, A, B, BEMBED, IER)
Interface to the routine ARKStepSetTables().

Arguments:

• S (int, input) – number of stages in the table.

• Q (int, input) – global order of accuracy of the method.

• P (int, input) – global order of accuracy of the embedding.

• C (realtype, input) – array of length S containing the stage times.

• A (realtype, input) – array of length S*S containing the ERK coefficients (stored in row-major,
“C”, order).

• B (realtype, input) – array of length S containing the solution coefficients.

• BEMBED (realtype, input) – array of length S containing the embedding coefficients.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

subroutine FARKSETIRKTABLE(S, Q, P, C, A, B, BEMBED, IER)
Interface to the routine ARKStepSetTables().

5.2. Fortran Data Types 127

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• S (int, input) – number of stages in the table.

• Q (int, input) – global order of accuracy of the method.

• P (int, input) – global order of accuracy of the embedding.

• C (realtype, input) – array of length S containing the stage times.

• A (realtype, input) – array of length S*S containing the IRK coefficients (stored in row-major,
“C”, order).

• B (realtype, input) – array of length S containing the solution coefficients.

• BEMBED (realtype, input) – array of length S containing the embedding coefficients.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

subroutine FARKSETARKTABLES(S, Q, P, CI, CE, AI, AE, BI, BE, B2I, B2E, IER)
Interface to the routine ARKStepSetTables().

Arguments:

• S (int, input) – number of stages in the table.

• Q (int, input) – global order of accuracy of the method.

• P (int, input) – global order of accuracy of the embedding.

• CI (realtype, input) – array of length S containing the implicit stage times.

• CE (realtype, input) – array of length S containing the explicit stage times.

• AI (realtype, input) – array of length S*S containing the IRK coefficients (stored in row-major,
“C”, order).

• AE (realtype, input) – array of length S*S containing the ERK coefficients (stored in row-major,
“C”, order).

• BI (realtype, input) – array of length S containing the implicit solution coefficients.

• BE (realtype, input) – array of length S containing the explicit solution coefficients.

• B2I (realtype, input) – array of length S containing the implicit embedding coefficients.

• B2E (realtype, input) – array of length S containing the explicit embedding coefficients.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

subroutine FARKSETRESTOLERANCE(IATOL, ATOL, IER)
Interface to the routines ARKStepResStolerance() and ARKStepResVtolerance().

Arguments:

• IATOL (int, input) – type for absolute residual tolerance input ATOL: 1 = scalar, 2 = array.

• ATOL (realtype, input) – scalar or array absolute residual tolerance.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Additionally, a user may set the accuracy-based step size adaptivity strategy (and it’s associated parameters) through
a call to FARKSETADAPTIVITYMETHOD(), as described below.

subroutine FARKSETADAPTIVITYMETHOD(IMETHOD, IDEFAULT, IPQ, PARAMS, IER)
Specification routine to set the step size adaptivity strategy and parameters within the FARKODE() solver.
Interfaces with the C routine ARKStepSetAdaptivityMethod().

Arguments:

128 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• IMETHOD (int, input) – choice of adaptivity method.

• IDEFAULT (int, input) – flag denoting whether to use default parameters (1) or that customized
parameters will be supplied (1).

• IPQ (int, input) – flag denoting whether to use the embedding order of accuracy (0) or the method
order of accuracy (1) within step adaptivity algorithm.

• PARAMS (realtype, input) – array of 3 parameters to be used within the adaptivity strategy.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Lastly, the user may provide functions to aid/replace those within ARKStep for handling adaptive error control and
explicit stability. The former of these is designed for advanced users who wish to investigate custom step adaptivity
approaches as opposed to using any of those built-in to ARKStep. In ARKStep’s C/C++ interface, this would be
provided by a function of type ARKAdaptFn(); in the Fortran interface this is provided through the user-supplied
function:

subroutine FARKADAPT(Y, T, H1, H2, H3, E1, E2, E3, Q, P, HNEW, IPAR, RPAR, IER)
It must set the new step size HNEW based on the three previous steps (H1, H2, H3) and the three previous error
estimates (E1, E2, E3).

Arguments:

• Y (realtype, input) – array containing state variables.

• T (realtype, input) – current value of the independent variable.

• H1 (realtype, input) – current step size.

• H2 (realtype, input) – previous step size.

• H3 (realtype, input) – previous-previous step size.

• E1 (realtype, input) – estimated temporal error in current step.

• E2 (realtype, input) – estimated temporal error in previous step.

• E3 (realtype, input) – estimated temporal error in previous-previous step.

• Q (int, input) – global order of accuracy for RK method.

• P (int, input) – global order of accuracy for RK embedded method.

• HNEW (realtype, output) – array containing the error weight vector.

• IPAR (long int, input) – array containing the integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input) – array containing the real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, ̸= 0 failure).

This routine is enabled by a call to the activation routine:

subroutine FARKADAPTSET(FLAG, IER)
Informs FARKODE to use the user-supplied FARKADAPT() function.

Arguments:

• FLAG (int, input) – flag, use “1” to denoting to use FARKADAPT(), or use “0” to denote a return
to the default adaptivity strategy.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Note: The call to FARKADAPTSET() must occur after the call to FARKMALLOC().

5.2. Fortran Data Types 129

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Similarly, if either an explicit or mixed implicit-explicit integration method is to be employed, the user may specify
a function to provide the maximum explicitly-stable step for their problem. Again, in the C/C++ interface this would
be a function of type ARKExpStabFn(), while in ARKStep’s Fortran interface this must be given through the
user-supplied function:

subroutine FARKEXPSTAB(Y, T, HSTAB, IPAR, RPAR, IER)
It must set the maximum explicitly-stable step size, HSTAB, based on the current solution, Y.

Arguments:

• Y (realtype, input) – array containing state variables.

• T (realtype, input) – current value of the independent variable.

• HSTAB (realtype, output) – maximum explicitly-stable step size.

• IPAR (long int, input) – array containing the integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input) – array containing the real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 success, ̸= 0 failure).

This routine is enabled by a call to the activation routine:

subroutine FARKEXPSTABSET(FLAG, IER)
Informs FARKODE to use the user-supplied FARKEXPSTAB() function.

Arguments:

• FLAG (int, input) – flag, use “1” to denoting to use FARKEXPSTAB(), or use “0” to denote a return
to the default error-based stability strategy.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Note: The call to FARKEXPSTABSET() must occur after the call to FARKMALLOC().

Nonlinear solver module specification

To use a non-default nonlinear solver algorithm, then after it has been initialized in step SUNNONLINSOL module
initialization above, the user of FARKODE must attach it to ARKSTEP by calling the FARKNLSINIT() routine:

subroutine FARKNLSINIT(IER)
Interfaces with the ARKStepSetNonlinearSolver() function to specify use of a non-default nonlinear
solver module.

Arguments:

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

System linear solver interface specification

To attach the linear solver (and optionally the matrix) object(s) initialized in steps SUNMATRIX module initialization
and SUNLINSOL module initialization above, the user of FARKODE must initialize the linear solver interface. To
attach any SUNLINSOL object (and optional SUNMATRIX object) to ARKStep, following calls to initialize the
SUNLINSOL (and SUNMATRIX) object(s) in steps SUNMATRIX module initialization and SUNLINSOL module
initialization above, the user must call the FARKLSINIT() routine:

subroutine FARKLSINIT(IER)
Interfaces with the ARKStepSetLinearSolver() function to attach a linear solver object (and optionally
a matrix object) to ARKStep.

130 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

Matrix-based linear solvers

As an option when using ARKSTEP with either the SUNLINSOL_DENSE or SUNLINSOL_LAPACKDENSE linear
solver modules, the user may supply a routine that computes a dense approximation of the system Jacobian 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 .
If supplied, it must have the following form:

subroutine FARKDJAC(NEQ, T, Y, FY, DJAC, H, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied dense Jacobian approximation function (of type ARKLsJacFn()), to be
used by the SUNLINSOL_DENSE or SUNLINSOL_LAPACKDENSE solver modules.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing values of the dependent state variables.

• FY (realtype, input) – array containing values of the dependent state derivatives.

• DJAC (realtype of size (NEQ,NEQ), output) – 2D array containing the Jacobian entries.

• H (realtype, input) – current step size.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Typically this routine will use only NEQ, T, Y, and DJAC. It must compute the Jacobian and store it
column-wise in DJAC.

If the above routine uses difference quotient approximations, it may need to access the error weight array EWT in the
calculation of suitable increments. The array EWT can be obtained by calling FARKGETERRWEIGHTS() using one
of the work arrays as temporary storage for EWT. It may also need the unit roundoff, which can be obtained as the
optional output ROUT(6), passed from the calling program to this routine using either RPAR or a common block.

If the FARKDJAC() routine is provided, then, following the call to FARKLSINIT(), the user must call the routine
FARKDENSESETJAC():

subroutine FARKDENSESETJAC(FLAG, IER)
Interface to the ARKStepSetJacFn() function, specifying to use the user-supplied routine FARKDJAC()
for the Jacobian approximation.

Arguments:

• FLAG (int, input) – any nonzero value specifies to use FARKDJAC().

• IER (int, output) – return flag (0 if success, ̸= 0 if an error occurred).

As an option when using ARKStep with either the SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND linear
solver modules, the user may supply a routine that computes a banded approximation of the linear system Jacobian
𝐽 = 𝜕𝑓𝐼

𝜕𝑦 . If supplied, it must have the following form:

5.2. Fortran Data Types 131

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

subroutine FARKBJAC(NEQ, MU, ML, MDIM, T, Y, FY, BJAC, H, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied band Jacobian approximation function (of type ARKLsJacFn()), to be
used by the SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND solver modules.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• MU (long int, input) – upper half-bandwidth.

• ML (long int, input) – lower half-bandwidth.

• MDIM (long int, input) – leading dimension of BJAC array.

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing dependent state variables.

• FY (realtype, input) – array containing dependent state derivatives.

• BJAC (realtype of size (MDIM,NEQ), output) – 2D array containing the Jacobian entries.

• H (realtype, input) – current step size.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Typically this routine will use only NEQ, MU, ML, T, Y, and BJAC. It must load the MDIM by N array
BJAC with the Jacobian matrix at the current (𝑡, 𝑦) in band form. Store in BJAC(k,j) the Jacobian element 𝐽𝑖,𝑗
with k = i - j + MU + 1 (or k = 1, ..., ML+MU+1) and j = 1, ..., N.

If the above routine uses difference quotient approximations, it may need to use the error weight array EWT in the
calculation of suitable increments. The array EWT can be obtained by calling FARKGETERRWEIGHTS() using one
of the work arrays as temporary storage for EWT. It may also need the unit roundoff, which can be obtained as the
optional output ROUT(6), passed from the calling program to this routine using either RPAR or a common block.

If the FARKBJAC() routine is provided, then, following the call to FARKLSINIT(), the user must call the routine
FARKBANDSETJAC().

subroutine FARKBANDSETJAC(FLAG, IER)
Interface to the ARKStepSetJacFn() function, specifying to use the user-supplied routine FARKBJAC()
for the Jacobian approximation.

Arguments:

• FLAG (int, input) – any nonzero value specifies to use FARKBJAC().

• IER (int, output) – return flag (0 if success, ̸= 0 if an error occurred).

When using ARKStep with either the SUNLINSOL_KLU or SUNLINSOL_SUPERLUMT sparse direct linear solver
modules, the user must supply a routine that computes a sparse approximation of the system Jacobian 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 . Both
the KLU and SuperLU_MT solvers allow specification of 𝐽 in either compressed-sparse-column (CSC) format or
compressed-sparse-row (CSR) format. The sparse Jacobian approximation function must have the following form:

subroutine FARKSPJAC(T, Y, FY, N, NNZ, JDATA, JINDEXVALS, JINDEXPTRS, H, IPAR, RPAR, WK1, WK2,
WK3, IER)

Interface to provide a user-supplied sparse Jacobian approximation function (of type ARKLsJacFn()), to be
used by the SUNLINSOL_KLU or SUNLINSOL_SUPERLUMT solver modules.

Arguments:

132 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing values of the dependent state variables.

• FY (realtype, input) – array containing values of the dependent state derivatives.

• N (sunindextype, input) – number of matrix rows and columns in Jacobian.

• NNZ (sunindextype, input) – allocated length of nonzero storage in Jacobian.

• JDATA (realtype of size NNZ, output) – nonzero values in Jacobian.

• JINDEXVALS (sunindextype of size NNZ, output) – row [CSR: column] indices for each nonzero
Jacobian entry.

• JINDEXPTRS (sunindextype of size N+1, output) – indices of where each column’s [CSR: row’s]
nonzeros begin in data array; last entry points just past end of data values.

• H (realtype, input) – current step size.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: due to the internal storage format of the SUNMATRIX_SPARSE module, the matrix-specific integer
parameters and arrays are all of type sunindextype – the index precision (32-bit vs 64-bit signed integers)
specified during the SUNDIALS build. It is assumed that the user’s Fortran codes are constructed to have
matching type to how SUNDIALS was installed.

If the above routine uses difference quotient approximations to compute the nonzero entries, it may need to access
the error weight array EWT in the calculation of suitable increments. The array EWT can be obtained by calling
FARKGETERRWEIGHTS() using one of the work arrays as temporary storage for EWT. It may also need the unit
roundoff, which can be obtained as the optional output ROUT(6), passed from the calling program to this routine using
either RPAR or a common block.

When supplying the FARKSPJAC() routine, following the call to FARKLSINIT(), the user must call the routine
FARKSPARSESETJAC().

subroutine FARKSPARSESETJAC(IER)
Interface to the ARKStepSetJacFn() function, specifying that the user-supplied routine FARKSPJAC()
has been provided for the Jacobian approximation.

Arguments:

• IER (int, output) – return flag (0 if success, ̸= 0 if an error occurred).

Iterative linear solvers

As described in the section Linear iteration error control, a user may adjust the linear solver tolerance scaling factor
𝜖𝐿. Fortran users may adjust this value by calling the function FARKLSSETEPSLIN():

subroutine FARKLSSETEPSLIN(EPLIFAC, IER)
Interface to the function ARKStepSetEpsLin() to specify the linear solver tolerance scale factor 𝜖𝐿 for the
Newton system linear solver.

This routine must be called after FARKLSINIT().

Arguments:

5.2. Fortran Data Types 133

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• EPLIFAC (realtype, input) – value to use for 𝜖𝐿. Passing a value of 0 indicates to use the default
value (0.05).

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Optional user-supplied routines FARKJTSETUP() and FARKJTIMES() may be provided to compute the product of
the system Jacobian 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 and a given vector 𝑣. If these are supplied, then following the call to FARKLSINIT(),
the user must call the FARKLSSETJAC() routine with FLAG ̸= 0:

subroutine FARKLSSETJAC(FLAG, IER)
Interface to the function ARKStepSetJacTimes() to specify use of the user-supplied Jacobian-times-vector
setup and product functions, FARKJTSETUP() and FARKJTIMES(), respectively.

This routine must be called after FARKLSINIT().

Arguments:

• FLAG (int, input) – flag denoting use of user-supplied Jacobian-times-vector routines. A nonzero
value specifies to use these the user-supplied routines, a zero value specifies not to use these.

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Similarly, optional user-supplied routines FARKPSET() and FARKPSOL() may be provided to perform precondi-
tioning of the iterative linear solver (note: the SUNLINSOL module must have been configured with preconditioning
enabled). If these routines are supplied, then following the call to FARKLSINIT() the user must call the routine
FARKLSSETPREC() with FLAG ̸= 0:

subroutine FARKLSSETPREC(FLAG, IER)
Interface to the function ARKStepSetPreconditioner() to specify use of the user-supplied precondi-
tioner setup and solve functions, FARKPSET() and FARKPSOL(), respectively.

This routine must be called after FARKLSINIT().

Arguments:

• FLAG (int, input) – flag denoting use of user-supplied preconditioning routines. A nonzero value
specifies to use these the user-supplied routines, a zero value specifies not to use these.

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

With treatment of the linear systems by any of the Krylov iterative solvers, there are four optional user-supplied
routines – FARKJTSETUP(), FARKJTIMES(), FARKPSET() and FARKPSOL(). The specifications of these
functions are given below.

As an option when using iterative linear solvers, the user may supply a routine that computes the product of the system
Jacobian 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 and a given vector 𝑣. If supplied, it must have the following form:

subroutine FARKJTIMES(V, FJV, T, Y, FY, H, IPAR, RPAR, WORK, IER)
Interface to provide a user-supplied Jacobian-times-vector product approximation function (corresponding to
a C interface routine of type ARKLsJacTimesVecFn()), to be used by one of the Krylov iterative linear
solvers.

Arguments:

• V (realtype, input) – array containing the vector to multiply.

• FJV (realtype, output) – array containing resulting product vector.

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing dependent state variables.

• FY (realtype, input) – array containing dependent state derivatives.

• H (realtype, input) – current step size.

134 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WORK (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Notes: Typically this routine will use only T, Y, V, and FJV. It must compute the product vector 𝐽𝑣, where 𝑣 is
given in V, and the product is stored in FJV.

If the user’s Jacobian-times-vector product routine requires that any Jacobian related data be evaluated or preprocessed,
then the following routine can be used for the evaluation and preprocessing of this data:

subroutine FARKJTSETUP(T, Y, FY, H, IPAR, RPAR, IER)
Interface to setup data for use in a user-supplied Jacobian-times-vector product approximation function (corre-
sponding to a C interface routine of type ARKLJacTimesSetupFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – array containing dependent state variables.

• FY (realtype, input) – array containing dependent state derivatives.

• H (realtype, input) – current step size.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Notes: Typically this routine will use only T and Y, and store the results in either the arrays IPAR and RPAR, or
in a Fortran module or common block.

If preconditioning is to be included, the following routine must be supplied, for solution of the preconditioner linear
system:

subroutine FARKPSOL(T, Y, FY, R, Z, GAMMA, DELTA, LR, IPAR, RPAR, VT, IER)
User-supplied preconditioner solve routine (of type ARKLsPrecSolveFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – current dependent state variable array.

• FY (realtype, input) – current dependent state variable derivative array.

• R (realtype, input) – right-hand side array.

• Z (realtype, output) – solution array.

• GAMMA (realtype, input) – Jacobian scaling factor.

• DELTA (realtype, input) – desired residual tolerance.

• LR (int, input) – flag denoting to solve the right or left preconditioner system: 1 = left preconditioner,
2 = right preconditioner.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

5.2. Fortran Data Types 135

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• IER (int, output) – return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable
failure).

Notes: Typically this routine will use only T, Y, GAMMA, R, LR, and Z. It must solve the preconditioner linear
system 𝑃𝑧 = 𝑟. The preconditioner (or the product of the left and right preconditioners if both are nontrivial)
should be an approximation to the matrix 𝑀−𝛾𝐽 , where 𝑀 is the system mass matrix, 𝛾 is the input GAMMA,
and 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 .

If the user’s preconditioner requires that any Jacobian related data be evaluated or preprocessed, then the following
routine can be used for the evaluation and preprocessing of the preconditioner:

subroutine FARKPSET(T, Y, FY, JOK, JCUR, GAMMA, H, IPAR, RPAR, IER)
User-supplied preconditioner setup routine (of type ARKLsPrecSetupFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• Y (realtype, input) – current dependent state variable array.

• FY (realtype, input) – current dependent state variable derivative array.

• JOK (int, input) – flag indicating whether Jacobian-related data needs to be recomputed: 0 = recom-
pute, 1 = reuse with the current value of GAMMA.

• JCUR (realtype, output) – return flag to denote if Jacobian data was recomputed (1=yes, 0=no).

• GAMMA (realtype, input) – Jacobian scaling factor.

• H (realtype, input) – current step size.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• IER (int, output) – return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable
failure).

Notes: This routine must set up the preconditioner 𝑃 to be used in the subsequent call to FARKPSOL(). The
preconditioner (or the product of the left and right preconditioners if using both) should be an approximation to
the matrix 𝑀 − 𝛾𝐽 , where 𝑀 is the system mass matrix, 𝛾 is the input GAMMA, and 𝐽 = 𝜕𝑓𝐼

𝜕𝑦 .

Notes:

1. If the user’s FARKJTSETUP(), FARKJTIMES() or FARKPSET() routines use difference quotient approxi-
mations, they may need to use the error weight array EWT and/or the unit roundoff, in the calculation of suitable
increments. Also, if FARKPSOL() uses an iterative method in its solution, the residual vector 𝜌 = 𝑟 − 𝑃𝑧 of
the system should be made less than 𝛿 = DELTA in the weighted l2 norm, i.e.(︃∑︁

𝑖

(𝜌𝑖 𝐸𝑊𝑇𝑖)
2

)︃1/2

< 𝛿.

2. If needed in FARKJTSETUP() FARKJTIMES(), FARKPSOL(), or FARKPSET(), the error weight array
EWT can be obtained by calling FARKGETERRWEIGHTS() using a user-allocated array as temporary storage
for EWT.

3. If needed in FARKJTSETUP() FARKJTIMES(), FARKPSOL(), or FARKPSET(), the unit roundoff can be
obtained as the optional output ROUT(6) (available after the call to FARKMALLOC()) and can be passed using
either the RPAR user data array or a common block.

136 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Mass matrix linear solver interface specification

To attach the mass matrix linear solver (and optionally the mass matrix) object(s) initialized in steps SUNMATRIX mod-
ule initialization and SUNLINSOL module initialization above, the user of FARKODE must initialize the mass-matrix
linear solver interface. To attach any SUNLINSOL object (and optional SUNMATRIX object) to the mass-matrix
solver interface, following calls to initialize the SUNLINSOL (and SUNMATRIX) object(s) in steps SUNMATRIX
module initialization and SUNLINSOL module initialization above, the user must call the FARKLSMASSINIT()
routine:

subroutine FARKLSMASSINIT(TIME_DEP, IER)
Interfaces with the ARKStepSetMassLinearSolver() function to attach a linear solver object (and op-
tionally a matrix object) to ARKStep’s mass-matrix linear solver interface.

Arguments:

• TIME_DEP (int, input) – flag indicating whether the mass matrix is time-dependent (1) or not (0).
Currently, only values of “0” are supported

• IER (int, output) – return flag (0 if success, -1 if a memory allocation error occurred, -2 for an illegal
input).

Matrix-based mass matrix linear solvers

When using the mass-matrix linear solver interface with the SUNLINSOL_DENSE or SUNLIN-
SOL_LAPACKDENSE mass matrix linear solver modules, the user must supply a routine that computes the
dense mass matrix 𝑀 . This routine must have the following form:

subroutine FARKDMASS(NEQ, T, DMASS, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied dense mass matrix computation function (of type ARKLsMassFn()), to
be used by the SUNLINSOL_DENSE or SUNLINSOL_LAPACKDENSE solver modules.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• T (realtype, input) – current value of the independent variable.

• DMASS (realtype of size (NEQ,NEQ), output) – 2D array containing the mass matrix entries.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Typically this routine will use only NEQ, T, and DMASS. It must compute the mass matrix and store it
column-wise in DMASS.

To indicate that the FARKDMASS() routine has been provided, then, following the call to FARKLSMASSINIT(),
the user must call the routine FARKDENSESETMASS():

subroutine FARKDENSESETMASS(IER)
Interface to the ARKStepSetMassFn() function, specifying to use the user-supplied routine FARKDMASS()
for the mass matrix calculation.

Arguments:

• IER (int, output) – return flag (0 if success, ̸= 0 if an error occurred).

5.2. Fortran Data Types 137

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

When using the mass-matrix linear solver interface with the SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND
mass matrix linear solver modules, the user must supply a routine that computes the banded mass matrix 𝑀 . This
routine must have the following form:

subroutine FARKBMASS(NEQ, MU, ML, MDIM, T, BMASS, IPAR, RPAR, WK1, WK2, WK3, IER)
Interface to provide a user-supplied band mass matrix calculation function (of type ARKLsMassFn()), to be
used by the SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND solver modules.

Arguments:

• NEQ (long int, input) – size of the ODE system.

• MU (long int, input) – upper half-bandwidth.

• ML (long int, input) – lower half-bandwidth.

• MDIM (long int, input) – leading dimension of BMASS array.

• T (realtype, input) – current value of the independent variable.

• BMASS (realtype of size (MDIM,NEQ), output) – 2D array containing the mass matrix entries.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: Typically this routine will use only NEQ, MU, ML, T, and BMASS. It must load the MDIM by N array
BMASS with the mass matrix at the current (𝑡) in band form. Store in BMASS(k,j) the mass matrix element 𝑀𝑖,𝑗

with k = i - j + MU + 1 (or k = 1, ..., ML+MU+1) and j = 1, ..., N.

To indicate that the FARKBMASS() routine has been provided, then, following the call to FARKLSMASSINIT(),
the user must call the routine FARKBANDSETMASS():

subroutine FARKBANDSETMASS(IER)
Interface to the ARKStepSetMassFn() function, specifying to use the user-supplied routine FARKBMASS()
for the mass matrix calculation.

Arguments:

• IER (int, output) – return flag (0 if success, ̸= 0 if an error occurred).

When using the mass-matrix linear solver interface with the SUNLINSOL_KLU or SUNLINSOL_SUPERLUMT
mass matrix linear solver modules, the user must supply a routine that computes the sparse mass matrix 𝑀 . Both the
KLU and SuperLU_MT solver interfaces support the compressed-sparse-column (CSC) and compressed-sparse-row
(CSR) matrix formats. The desired format must have been specified to the FSUNSPARSEMASSMATINIT() function
when initializing the sparse mass matrix. The user-provided routine to compute 𝑀 must have the following form:

subroutine FARKSPMASS(T, N, NNZ, MDATA, MINDEXVALS, MINDEXPTRS, IPAR, RPAR, WK1, WK2,
WK3, IER)

Interface to provide a user-supplied sparse mass matrix approximation function (of type ARKLsMassFn()), to
be used by the SUNLINSOL_KLU or SUNLINSOL_SUPERLUMT solver modules.

Arguments:

• T (realtype, input) – current value of the independent variable.

• N (sunindextype, input) – number of mass matrix rows and columns.

• NNZ (sunindextype, input) – allocated length of nonzero storage in mass matrix.

• MDATA (realtype of size NNZ, output) – nonzero values in mass matrix.

138 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• MINDEXVALS (sunindextype of size NNZ, output) – row [CSR: column] indices for each
nonzero mass matrix entry.

• MINDEXPTRS (sunindextype of size N+1, output) – indices of where each column’s [CSR:
row’s] nonzeros begin in data array; last entry points just past end of data values.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• WK1, WK2, WK3 (realtype, input) – array containing temporary workspace of same size as Y.

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecoverable
error occurred).

Notes: due to the internal storage format of the SUNMATRIX_SPARSE module, the matrix-specific integer
parameters and arrays are all of type sunindextype – the index precision (32-bit vs 64-bit signed integers)
specified during the SUNDIALS build. It is assumed that the user’s Fortran codes are constructed to have
matching type to how SUNDIALS was installed.

To indicate that the FARKSPMASS() routine has been provided, then, following the call to FARKLSMASSINIT(),
the user must call the routine FARKSPARSESETMASS():

subroutine FARKSPARSESETMASS(IER)
Interface to the ARKStepSetMassFn() function, specifying that the user-supplied routine FARKSPMASS()
has been provided for the mass matrix calculation.

Arguments:

• IER (int, output) – return flag (0 if success, ̸= 0 if an error occurred).

Iterative mass matrix linear solvers

As described in the section Linear iteration error control, a user may adjust the linear solver tolerance scal-
ing factor 𝜖𝐿. Fortran users may adjust this value for the mass matrix linear solver by calling the function
FARKLSSETMASSEPSLIN():

subroutine FARKLSSETMASSEPSLIN(EPLIFAC, IER)
Interface to the function ARKStepSetMassEpsLin() to specify the linear solver tolerance scale factor 𝜖𝐿
for the mass matrix linear solver.

This routine must be called after FARKLSMASSINIT().

Arguments:

• EPLIFAC (realtype, input) – value to use for 𝜖𝐿. Passing a value of 0 indicates to use the default
value (0.05).

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

With treatment of the mass matrix linear systems by any of the Krylov iterative solvers, there are two required
user-supplied routines, FARKMTSETUP() and FARKMTIMES(), and there are two optional user-supplied routines,
FARKMASSPSET() and FARKMASSPSOL(). The specifications of these functions are given below.

The required routines when using a Krylov iterative mass matrix linear solver perform setup and computation of the
product of the system mass matrix 𝑀 and a given vector 𝑣. The product routine must have the following form:

subroutine FARKMTIMES(V, MV, T, IPAR, RPAR, IER)
Interface to a user-supplied mass-matrix-times-vector product approximation function (corresponding to a C
interface routine of type ARKLsMassTimesVecFn()), to be used by one of the Krylov iterative linear solvers.

Arguments:

5.2. Fortran Data Types 139

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• V (realtype, input) – array containing the vector to multiply.

• MV (realtype, output) – array containing resulting product vector.

• T (realtype, input) – current value of the independent variable.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Notes: Typically this routine will use only T, V, and MV. It must compute the product vector 𝑀𝑣, where 𝑣 is
given in V, and the product is stored in MV.

If the user’s mass-matrix-times-vector product routine requires that any mass matrix data be evaluated or preprocessed,
then the following routine can be used for the evaluation and preprocessing of this data:

subroutine FARKMTSETUP(T, IPAR, RPAR, IER)
Interface to a user-supplied mass-matrix-times-vector setup function (corresponding to a C interface routine of
type ARKLsMassTimesSetupFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• IPAR (long int, input) – array containing integer user data that was passed to FARKMALLOC().

• RPAR (realtype, input) – array containing real user data that was passed to FARKMALLOC().

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Notes: Typically this routine will use only T, and store the results in either the arrays IPAR and RPAR, or in a
Fortran module or common block. If no mass matrix setup is needed, this routine should just set IER to 0 and
return.

To indicate that these routines have been supplied by the user, then, following the call to FARKLSMASSINIT(), the
user must call the routine FARKLSSETMASS():

subroutine FARKLSSETMASS(IER)
Interface to the function ARKStepSetMassTimes() to specify use of the user-supplied mass-matrix-times-
vector setup and product functions FARKMTSETUP() and FARKMTIMES().

This routine must be called after FARKLSMASSINIT().

Arguments:

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Two optional user-supplied preconditioning routines may be supplied to help accelerate convergence of the Krylov
mass matrix linear solver. If preconditioning was selected when enabling the Krylov solver (i.e. the solver was set up
with IPRETYPE ̸= 0), then the user must also call the routine FARKLSSETMASSPREC() with FLAG ̸= 0:

subroutine FARKLSSETMASSPREC(FLAG, IER)
Interface to the function ARKStepSetMassPreconditioner() to specify use of the user-supplied pre-
conditioner setup and solve functions, FARKMASSPSET() and FARKMASSPSOL(), respectively.

This routine must be called after FARKLSMASSINIT().

Arguments:

• FLAG (int, input) – flag denoting use of user-supplied preconditioning routines.

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

In addition, the user must provide the following two routines to implement the preconditioner setup and solve functions
to be used within the solve.

140 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

subroutine FARKMASSPSET(T, IPAR, RPAR, IER)
User-supplied preconditioner setup routine (of type ARKLsMassPrecSetupFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• IER (int, output) – return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable
failure).

Notes: This routine must set up the preconditioner 𝑃 to be used in the subsequent call to FARKMASSPSOL().
The preconditioner (or the product of the left and right preconditioners if using both) should be an approximation
to the system mass matrix, 𝑀 .

subroutine FARKMASSPSOL(T, R, Z, DELTA, LR, IPAR, RPAR, IER)
User-supplied preconditioner solve routine (of type ARKLsMassPrecSolveFn()).

Arguments:

• T (realtype, input) – current value of the independent variable.

• R (realtype, input) – right-hand side array.

• Z (realtype, output) – solution array.

• DELTA (realtype, input) – desired residual tolerance.

• LR (int, input) – flag denoting to solve the right or left preconditioner system: 1 = left preconditioner,
2 = right preconditioner.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• IER (int, output) – return flag (0 if success, >0 if a recoverable failure, <0 if a non-recoverable
failure).

Notes: Typically this routine will use only T, R, LR, and Z. It must solve the preconditioner linear system
𝑃𝑧 = 𝑟. The preconditioner (or the product of the left and right preconditioners if both are nontrivial) should
be an approximation to the system mass matrix 𝑀 .

Notes:

1. If the user’s FARKMASSPSOL() uses an iterative method in its solution, the residual vector 𝜌 = 𝑟 − 𝑃𝑧 of the
system should be made less than 𝛿 = DELTA in the weighted l2 norm, i.e.(︃∑︁

𝑖

(𝜌𝑖 𝐸𝑊𝑇𝑖)
2

)︃1/2

< 𝛿.

2. If needed in FARKMTIMES(), FARKMTSETUP(), FARKMASSPSOL(), or FARKMASSPSET(), the error
weight array EWT can be obtained by calling FARKGETERRWEIGHTS() using a user-allocated array as tem-
porary storage for EWT.

3. If needed in FARKMTIMES(), FARKMTSETUP(), FARKMASSPSOL(), or FARKMASSPSET(), the unit
roundoff can be obtained as the optional output ROUT(6) (available after the call to FARKMALLOC()) and
can be passed using either the RPAR user data array or a common block.

5.2. Fortran Data Types 141

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Problem solution

Carrying out the integration is accomplished by making calls to FARKODE().

subroutine FARKODE(TOUT, T, Y, ITASK, IER)
Fortran interface to the C routine ARKStepEvolve() for performing the solve, along with many of the
ARK*Get* routines for reporting on solver statistics.

Arguments:

• TOUT (realtype, input) – next value of 𝑡 at which a solution is desired.

• T (realtype, output) – value of independent variable that corresponds to the output Y

• Y (realtype, output) – array containing dependent state variables on output.

• ITASK (int, input) – task indicator :

– 1 = normal mode (overshoot TOUT and interpolate)

– 2 = one-step mode (return after each internal step taken)

– 3 = normal ‘tstop’ mode (like 1, but integration never proceeds past TSTOP, which must be
specified through a preceding call to FARKSETRIN() using the key STOP_TIME)

– 4 = one step ‘tstop’ mode (like 2, but integration never goes past TSTOP).

• IER (int, output) – completion flag:

– 0 = success,

– 1 = tstop return,

– 2 = root return,

– values -1, ..., -10 are failure modes (see ARKStepEvolve() and Appendix: ARKode Con-
stants).

Notes: The current values of the optional outputs are immediately available in IOUT and ROUT upon return
from this function (see Table: Optional FARKODE integer outputs and Table: Optional FARKODE real outputs).

A full description of error flags and output behavior of the solver (values filled in for T and Y) is provided in the
description of ARKStepEvolve().

Additional solution output

After a successful return from FARKODE(), the routine FARKDKY() may be used to obtain a derivative of the
solution, of order up to 3, at any 𝑡 within the last step taken.

subroutine FARKDKY(T, K, DKY, IER)
Fortran interface to the C routine ARKDKY() for interpolating output of the solution or its derivatives at any
point within the last step taken.

Arguments:

• T (realtype, input) – time at which solution derivative is desired, within the interval [𝑡𝑛 − ℎ, 𝑡𝑛].

• K (int, input) – derivative order (0 ≤ 𝑘 ≤ 3).

• DKY (realtype, output) – array containing the computed K-th derivative of 𝑦.

• IER (int, output) – return flag (0 if success, <0 if an illegal argument).

142 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Problem reinitialization

To re-initialize the ARKStep solver for the solution of a new problem of the same size as one already solved, the user
must call FARKREINIT():

subroutine FARKREINIT(T0, Y0, IMEX, IATOL, RTOL, ATOL, IER)
Re-initializes the Fortran interface to the ARKStep solver.

Arguments: The arguments have the same names and meanings as those of FARKMALLOC().

Notes: This routine performs no memory allocation, instead using the existing memory created by the previous
FARKMALLOC() call. The call to specify the linear system solution method may or may not be needed.

Following a call to FARKREINIT() if the choice of linear solver is being changed then a user must make a call
to create the alternate SUNLINSOL module and then attach it to ARKStep, as shown above. If only linear solver
parameters are being modified, then these calls may be made without re-attaching to ARKStep.

Resizing the ODE system

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when solv-
ing a spatially-adaptive PDE), the FARKODE() integrator may be “resized” between integration steps, through calls
to the FARKRESIZE() function, that interfaces with the C routine ARKStepResize(). This function modifies
ARKStep’s internal memory structures to use the new problem size, without destruction of the temporal adaptivity
heuristics. It is assumed that the dynamical time scales before and after the vector resize will be comparable, so that
all time-stepping heuristics prior to calling FARKRESIZE() remain valid after the call. If instead the dynamics should
be re-calibrated, the FARKODE memory structure should be deleted with a call to FARKFREE(), and re-created with
a call to FARKMALLOC().

subroutine FARKRESIZE(T0, Y0, HSCALE, ITOL, RTOL, ATOL, IER)
Re-initializes the Fortran interface to the ARKStep solver for a differently-sized ODE system.

Arguments:

• T0 (realtype, input) – initial value of the independent variable 𝑡.

• Y0 (realtype, input) – array of dependent-variable initial conditions.

• HSCALE (realtype, input) – desired step size scale factor:

– 1.0 is the default,

– any value <= 0.0 results in the default.

• ITOL (int, input) – flag denoting that a new relative tolerance and vector of absolute tolerances are
supplied in the RTOL and ATOL arguments:

– 0 = retain the current scalar-valued relative and absolute tolerances, or the user-supplied error
weight function, FARKEWT().

– 1 = RTOL contains the new scalar-valued relative tolerance and ATOL contains a new array of
absolute tolerances.

• RTOL (realtype, input) – scalar relative tolerance.

• ATOL (realtype, input) – array of absolute tolerances.

• IER (int, output) – return flag (0 success, ̸= 0 failure).

Notes: This routine performs the opposite set of of operations as FARKREINIT(): it does not reinitialize any
of the time-step heuristics, but it does perform memory reallocation.

5.2. Fortran Data Types 143

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Following a call to FARKRESIZE(), the internal data structures for all linear solver and matrix objects will be the
incorrect size. Hence, calls must be made to re-create the linear system solver, mass matrix solver, linear system
matrix, and mass matrix, followed by calls to attach the updated objects to ARKStep.

If any user-supplied linear solver helper routines were used (Jacobian evaluation, Jacobian-vector product, mass matrix
evaluation, mass-matrix-vector product, preconditioning, etc.), then the relevant “set” routines to specify their usage
must be called again following the re-specification of the linear solver module(s).

Memory deallocation

To free the internal memory created by FARKMALLOC(), FARKLSINIT(), FARKLSMASSINIT(), and the SUN-
MATRIX, SUNLINSOL and SUNNONLINSOL objects, the user may call FARKFREE(), as follows:

subroutine FARKFREE()
Frees the internal memory created by FARKMALLOC().

Arguments: None.

5.2.3 FARKODE optional output

We note that the optional inputs to FARKODE have already been described in the section Setting optional inputs.

IOUT and ROUT arrays

In the Fortran interface, the optional outputs from the FARKODE() solver are accessed not through individual func-
tions, but rather through a pair of user-allocated arrays, IOUT (having long int type) of dimension at least 35, and
ROUT (having realtype type) of dimension at least 6. These arrays must be allocated by the user program that
calls FARKODE(), that passes them through the Fortran interface as arguments to FARKMALLOC(). Following this
call, FARKODE() will modify the entries of these arrays to contain all optional output values provided to a Fortran
user.

In the following tables, Table: Optional FARKODE integer outputs and Table: Optional FARKODE real outputs, we
list the entries in these arrays by index, naming them according to their role with the main ARKStep solver, and list the
relevant ARKStep C/C++ function that is actually called to extract the output value. Similarly, optional integer output
values that are specific to the ARKLS linear solver interface are listed in Table: Optional ARKLS interface outputs.

For more details on the optional inputs and outputs to ARKStep, see the sections Optional input functions and Optional
output functions.

144 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Table: Optional FARKODE integer outputs

IOUT Index Optional output ARKStep function
1 LENRW ARKStepGetWorkSpace()
2 LENIW ARKStepGetWorkSpace()
3 NST ARKStepGetNumSteps()
4 NST_STB ARKStepGetNumExpSteps()
5 NST_ACC ARKStepGetNumAccSteps()
6 NST_ATT ARKStepGetNumStepAttempts()
7 NFE ARKStepGetNumRhsEvals() (num 𝑓𝐸 calls)
8 NFI ARKStepGetNumRhsEvals() (num 𝑓𝐼 calls)
9 NSETUPS ARKStepGetNumLinSolvSetups()
10 NETF ARKStepGetNumErrTestFails()
11 NNI ARKStepGetNumNonlinSolvIters()
12 NCFN ARKStepGetNumNonlinSolvConvFails()
13 NGE ARKStepGetNumGEvals()

Table: Optional FARKODE real outputs

ROUT Index Optional output ARKStep function
1 H0U ARKStepGetActualInitStep()
2 HU ARKStepGetLastStep()
3 HCUR ARKStepGetCurrentStep()
4 TCUR ARKStepGetCurrentTime()
5 TOLSF ARKStepGetTolScaleFactor()
6 UROUND UNIT_ROUNDOFF (see the section Data Types)

Table: Optional ARKLS interface outputs

IOUT Index Optional output ARKStep function
14 LENRWLS ARKLsGetWorkSpace()
15 LENIWLS ARKLsGetWorkSpace()
16 LSTF ARKLsGetLastFlag()
17 NFELS ARKLsGetNumRhsEvals()
18 NJE ARKLsGetNumJacEvals()
19 NJTS ARKLsGetNumJTSetupEvals()
20 NJTV ARKLsGetNumJtimesEvals()
21 NPE ARKLsGetNumPrecEvals()
22 NPS ARKLsGetNumPrecSolves()
23 NLI ARKLsGetNumLinIters()
24 NCFL ARKLsGetNumConvFails()

5.2. Fortran Data Types 145

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Table: Optional ARKLS mass interface outputs

IOUT Index Optional output ARKStep function
25 LENRWMS ARKLsGetMassWorkSpace()
26 LENIWMS ARKLsGetMassWorkSpace()
27 LSTMF ARKLsGetLastMassFlag()
28 NMSET ARKLsGetNumMassSetups()
29 NMSOL ARKLsGetNumMassSolves()
30 NMTSET ARKLsGetNumMTSetups()
31 NMMUL ARKLsGetNumMassMult()
32 NMPE ARKLsGetNumMassPrecEvals()
33 NMPS ARKLsGetNumMassPrecSolves()
34 NMLI ARKLsGetNumMassIters()
35 NMCFL ARKLsGetNumMassConvFails()

Additional optional output routines

In addition to the optional inputs communicated through FARKSET* calls and the optional outputs extracted from
IOUT and ROUT, the following user-callable routines are available.

To obtain the error weight array EWT, containing the multiplicative error weights used in the WRMS norms, the user
may call the routine FARKGETERRWEIGHTS() as follows:

subroutine FARKGETERRWEIGHTS(EWT, IER)
Retrieves the current error weight vector (interfaces with ARKStepGetErrWeights()).

Arguments:

• EWT (realtype, output) – array containing the error weight vector.

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Notes: The array EWT must have already been allocated by the user, of the same size as the solution array Y.

Similarly, to obtain the estimated local truncation errors, following a successful call to FARKODE(), the user may call
the routine FARKGETESTLOCALERR() as follows:

subroutine FARKGETESTLOCALERR(ELE, IER)
Retrieves the current local truncation error estimate vector (interfaces with
ARKStepGetEstLocalErrors()).

Arguments:

• ELE (realtype, output) – array with the estimated local truncation error vector.

• IER (int, output) – return flag (0 if success, ̸= 0 if an error).

Notes: The array ELE must have already been allocated by the user, of the same size as the solution array Y.

5.2.4 Usage of the FARKROOT interface to rootfinding

The FARKROOT interface package allows programs written in Fortran to use the rootfinding feature of the ARKStep
solver module. The user-callable functions in FARKROOT, with the corresponding ARKStep functions, are as follows:

• FARKROOTINIT() interfaces to ARKStepRootInit(),

• FARKROOTINFO() interfaces to ARKStepGetRootInfo(), and

146 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• FARKROOTFREE() interfaces to ARKStepRootInit(), freeing memory by calling the initializer with no
root functions.

Note that at this time, FARKROOT does not provide support to specify the direction of zero-crossing that is to be
monitored. Instead, all roots are considered. However, the actual direction of zero-crossing may be captured by the
user through monitoring the sign of any non-zero elements in the array INFO returned by FARKROOTINFO().

In order to use the rootfinding feature of ARKStep, after calling FARKMALLOC() but prior to calling FARKODE(),
the user must call FARKROOTINIT() to allocate and initialize memory for the FARKROOT module:

subroutine FARKROOTINIT(NRTFN, IER)
Initializes the Fortran interface to the FARKROOT module.

Arguments:

• NRTFN (int, input) – total number of root functions.

• IER (int, output) – return flag (0 success, -1 if ARKStep memory is NULL, and -11 if a memory
allocation error occurred).

If rootfinding is enabled, the user must specify the functions whose roots are to be found. These rootfinding functions
should be implemented in the user-supplied FARKROOTFN() subroutine:

subroutine FARKROOTFN(T, Y, G, IPAR, RPAR, IER)
User supplied function implementing the vector-valued function 𝑔(𝑡, 𝑦) such that the roots of the NRTFN com-
ponents 𝑔𝑖(𝑡, 𝑦) = 0 are sought.

Arguments:

• T (realtype, input) – independent variable value 𝑡.

• Y (realtype, input) – dependent variable array 𝑦.

• G (realtype, output) – function value array 𝑔(𝑡, 𝑦).

• IPAR (long int, input/output) – integer user data array, the same as the array passed to
FARKMALLOC().

• RPAR (realtype, input/output) – real-valued user data array, the same as the array passed to
FARKMALLOC().

• IER (int, output) – return flag (0 success, < 0 if error).

When making calls to FARKODE() to solve the ODE system, the occurrence of a root is flagged by the return value
IER = 2. In that case, if NRTFN > 1, the functions 𝑔𝑖(𝑡, 𝑦) which were found to have a root can be identified by calling
the routine FARKROOTINFO():

subroutine FARKROOTINFO(NRTFN, INFO, IER)
Initializes the Fortran interface to the FARKROOT module.

Arguments:

• NRTFN (int, input) – total number of root functions.

• INFO (int, input/output) – array of length NRTFN with root information (must be allocated by the
user). For each index, i = 1, ..., NRTFN:

– INFO(i) = 1 if 𝑔𝑖(𝑡, 𝑦) was found to have a root, and 𝑔𝑖 is increasing.

– INFO(i) = -1 if 𝑔𝑖(𝑡, 𝑦) was found to have a root, and 𝑔𝑖 is decreasing.

– INFO(i) = 0 otherwise.

• IER (int, output) – return flag (0 success, < 0 if error).

5.2. Fortran Data Types 147

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

The total number of calls made to the root function FARKROOTFN(), denoted NGE, can be obtained from IOUT(12).
If the FARKODE/ARKStep memory block is reinitialized to solve a different problem via a call to FARKREINIT(),
then the counter NGE is reset to zero.

Lastly, to free the memory resources allocated by a prior call to FARKROOTINIT(), the user must make a call to
FARKROOTFREE():

subroutine FARKROOTFREE()
Frees memory associated with the FARKODE rootfinding module.

5.2.5 Usage of the FARKODE interface to built-in preconditioners

The FARKODE interface enables usage of the two built-in preconditioning modules ARKBANDPRE and ARKBBD-
PRE. Details on how these preconditioners work are provided in the section Preconditioner modules. In this section,
we focus specifically on the Fortran interface to these modules.

Usage of the FARKBP interface to ARKBANDPRE

The FARKBP interface module is a package of C functions which, as part of the FARKODE interface module, sup-
port the use of the ARKStep solver with the serial or threaded NVector modules (The NVECTOR_SERIAL Module,
The NVECTOR_OPENMP Module or The NVECTOR_PTHREADS Module), and the combination of the ARKBAND-
PRE preconditioner module (see the section A serial banded preconditioner module) with the ARKStep linear solver
interface and any of the Krylov iterative linear solvers.

The two user-callable functions in this package, with the corresponding ARKStep function around which they wrap,
are:

• FARKBPINIT() interfaces to ARKBandPrecInit().

• FARKBPOPT() interfaces to the ARKBANDPRE optional output functions,
ARKBandPrecGetWorkSpace() and ARKBandPrecGetNumRhsEvals().

As with the rest of the FARKODE routines, the names of the user-supplied routines are mapped to actual values
through a series of definitions in the header file farkbp.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main program described
in the section Usage of the FARKODE interface module are italicized.

1. Right-hand side specification

2. NVECTOR module initialization

3. SUNLINSOL module initialization

Initialize one of the iterative SUNLINSOL modules, by calling one of FSUNPCGINIT, FSUNSPBCGSINIT,
FSUNSPFGMRINIT, FSUNSPGMRINIT or FSUNSPTFQMRINIT, supplying an argument to specify that the
SUNLINSOL module should utilize left or right preconditioning.

4. Problem specification

5. Set optional inputs

6. Linear solver interface specification

First, initialize the ARKStep linear solver interface by calling FARKLSINIT().

Optionally, to specify that ARKStep should use the supplied FARKJTIMES() and FARKJTSETUP() routines,
the user should call FARKLSSETJAC() with FLAG ̸= 0, as described in the section Iterative linear solvers.

Then, to initialize the ARKBANDPRE preconditioner, call the routine FARKBPINIT(), as follows:

148 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

subroutine FARKBPINIT(NEQ, MU, ML, IER)
Interfaces with the ARKBandPrecInit() function to allocate memory and initialize data associated
with the ARKBANDPRE preconditioner.

Arguments:

• NEQ (long int, input) – problem size.

• MU (long int, input) – upper half-bandwidth of the band matrix that is retained as an approx-
imation of the Jacobian.

• ML (long int, input) – lower half-bandwidth of the band matrix approximation to the Jacobian.

• IER (int, output) – return flag (0 if success, -1 if a memory failure).

7. Problem solution

8. ARKBANDPRE optional outputs

Optional outputs for ARKStep’s linear solver interface are listed in Table: Optional ARKLS interface out-
puts. To obtain the optional outputs associated with the ARKBANDPRE module, the user should call the
FARKBPOPT(), as specified below:

subroutine FARKBPOPT(LENRWBP, LENIWBP, NFEBP)
Interfaces with the ARKBANDPRE optional output functions.

Arguments:

• LENRWBP (long int, output) – length of real preconditioner work space (from
ARKBandPrecGetWorkSpace()).

• LENIWBP (long int, output) – length of integer preconditioner work space, in integer words
(from ARKBandPrecGetWorkSpace()).

• NFEBP (long int, output) – number of 𝑓𝐼(𝑡, 𝑦) evaluations (from
ARKBandPrecGetNumRhsEvals())

9. Additional solution output

10. Problem re-initialization

11. Memory deallocation

(The memory allocated for the FARKBP module is deallocated automatically by FARKFREE())

Usage of the FARKBBD interface to ARKBBDPRE

The FARKBBD interface module is a package of C functions which, as part of the FARKODE interface module,
support the use of the ARKStep solver with the parallel vector module (The NVECTOR_PARALLEL Module), and the
combination of the ARKBBDPRE preconditioner module (see the section A parallel band-block-diagonal precondi-
tioner module) with any of the Krylov iterative linear solvers.

The user-callable functions in this package, with the corresponding ARKStep and ARKBBDPRE functions, are as
follows:

• FARKBBDINIT() interfaces to ARKBBDPrecInit().

• FARKBBDREINIT() interfaces to ARKBBDPrecReInit().

• FARKBBDOPT() interfaces to the ARKBBDPRE optional output functions.

In addition to the functions required for general FARKODE usage, the user-supplied functions required by this pack-
age are listed in the table below, each with the corresponding interface function which calls it (and its type within
ARKBBDPRE or ARKStep).

5.2. Fortran Data Types 149

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Table: FARKBBD function mapping

FARKBBD routine (FORTRAN,
user-supplied)

ARKStep routine (C,
interface)

ARKStep interface function
type

FARKGLOCFN() FARKgloc ARKLocalFn()
FARKCOMMFN() FARKcfn ARKCommFn()
FARKJTIMES() FARKJtimes ARKLsJacTimesVecFn()
FARKJTSETUP() FARKJTSetup ARKLsJacTimesSetupFn()

As with the rest of the FARKODE routines, the names of all user-supplied routines here are fixed, in order to maximize
portability for the resulting mixed-language program. Additionally, based on flags discussed above in the section
FARKODE routines, the names of the user-supplied routines are mapped to actual values through a series of definitions
in the header file farkbbd.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main program described
in the section Usage of the FARKODE interface module are italicized.

1. Right-hand side specification

2. NVECTOR module initialization

3. SUNLINSOL module initialization

Initialize one of the iterative SUNLINSOL modules, by calling one of FSUNPCGINIT, FSUNSPBCGSINIT,
FSUNSPFGMRINIT, FSUNSPGMRINIT or FSUNSPTFQMRINIT, supplying an argument to specify that the
SUNLINSOL module should utilize left or right preconditioning.

4. Problem specification

5. Set optional inputs

6. Linear solver interface specification

First, initialize ARKStep’s linear solver interface by calling FARKLSINIT().

Optionally, to specify that ARKStep should use the supplied FARKJTIMES() and FARKJTSETUP() routines,
the user should call FARKLSSETJAC() with FLAG ̸= 0, as described in the section Iterative linear solvers.

Then, to initialize the ARKBBDPRE preconditioner, call the function FARKBBDINIT(), as described below:

subroutine FARKBBDINIT(NLOCAL, MUDQ, MLDQ, MU, ML, DQRELY, IER)
Interfaces with the ARKBBDPrecInit() routine to initialize the ARKBBDPRE preconditioning mod-
ule.

Arguments:

• NLOCAL (long int, input) – local vector size on this process.

• MUDQ (long int, input) – upper half-bandwidth to be used in the computation of the local
Jacobian blocks by difference quotients. These may be smaller than the true half-bandwidths of
the Jacobian of the local block of 𝑔, when smaller values may provide greater efficiency.

• MLDQ (long int, input) – lower half-bandwidth to be used in the computation of the local
Jacobian blocks by difference quotients.

• MU (long int, input) – upper half-bandwidth of the band matrix that is retained as an approx-
imation of the local Jacobian block (may be smaller than MUDQ).

• ML (long int, input) – lower half-bandwidth of the band matrix that is retained as an approx-
imation of the local Jacobian block (may be smaller than MLDQ).

• DQRELY (realtype, input) – relative increment factor in 𝑦 for difference quotients (0.0 indi-
cates to use the default).

• IER (int, output) – return flag (0 if success, -1 if a memory failure).

150 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

7. Problem solution

8. ARKBBDPRE optional outputs

Optional outputs from the ARKStep linear solver interface are listed in Table: Optional ARKLS interface
outputs. To obtain the optional outputs associated with the ARKBBDPRE module, the user should call
FARKBBDOPT(), as specified below:

subroutine FARKBBDOPT(LENRWBBD, LENIWBBD, NGEBBD)
Interfaces with the ARKBBDPRE optional output functions.

Arguments:

• LENRWBP (long int, output) – length of real preconditioner work space on this process (from
ARKBBDPrecGetWorkSpace()).

• LENIWBP (long int, output) – length of integer preconditioner work space on this process
(from ARKBBDPrecGetWorkSpace()).

• NGEBBD (long int, output) – number of 𝑔(𝑡, 𝑦) evaluations (from
ARKBBDPrecGetNumGfnEvals()) so far.

9. Additional solution output

10. Problem re-initialization

If a sequence of problems of the same size is being solved using the same linear solver in combination with the
ARKBBDPRE preconditioner, then the ARKStep package can be re-initialized for the second and subsequent
problems by calling FARKREINIT(), following which a call to FARKBBDREINIT() may or may not be
needed. If the input arguments are the same, no FARKBBDREINIT() call is needed.

If there is a change in input arguments other than MU or ML, then the user program should call
FARKBBDREINIT() as specified below:

subroutine FARKBBDREINIT(NLOCAL, MUDQ, MLDQ, DQRELY, IER)
Interfaces with the ARKBBDPrecReInit() function to reinitialize the ARKBBDPRE module.

Arguments: The arguments of the same names have the same meanings as in FARKBBDINIT().

However, if the value of MU or ML is being changed, then a call to FARKBBDINIT() must be made instead.

Finally, if there is a change in any of the linear solver inputs, then a call to one of FSUNSPGMRINIT(),
FSUNSPBCGSINIT(), FSUNSPTFQMRINIT(), FSUNSPFGMRINIT() or FSUNPCGINIT(), followed
by a call to FARKLSINIT() must also be made; in this case the linear solver memory is reallocated.

11. Problem resizing

If a sequence of problems of different sizes (but with similar dynamical time scales) is being solved using the
same linear solver (SPGMR, SPBCG, SPTFQMR, SPFGMR or PCG) in combination with the ARKBBDPRE
preconditioner, then the ARKStep package can be re-initialized for the second and subsequent problems by
calling FARKRESIZE(), following which a call to FARKBBDINIT() is required to delete and re-allocate the
preconditioner memory of the correct size.

subroutine FARKBBDREINIT(NLOCAL, MUDQ, MLDQ, DQRELY, IER)
Interfaces with the ARKBBDPrecReInit() function to reinitialize the ARKBBDPRE module.

Arguments: The arguments of the same names have the same meanings as in FARKBBDINIT().

However, if the value of MU or ML is being changed, then a call to FARKBBDINIT() must be made instead.

Finally, if there is a change in any of the linear solver inputs, then a call to one of FSUNSPGMRINIT(),
FSUNSPBCGSINIT(), FSUNSPTFQMRINIT(), FSUNSPFGMRINIT() or FSUNPCGINIT(), followed
by a call to FARKLSINIT() must also be made; in this case the linear solver memory is reallocated.

5.2. Fortran Data Types 151

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

12. Memory deallocation

(The memory allocated for the FARKBBD module is deallocated automatically by FARKFREE()).

13. User-supplied routines

The following two routines must be supplied for use with the ARKBBDPRE module:

subroutine FARKGLOCFN(NLOC, T, YLOC, GLOC, IPAR, RPAR, IER)
User-supplied routine (of type ARKLocalFn()) that computes a processor-local approximation 𝑔(𝑡, 𝑦)
to the right-hand side function 𝑓𝐼(𝑡, 𝑦).

Arguments:

• NLOC (long int, input) – local problem size.

• T (realtype, input) – current value of the independent variable.

• YLOC (realtype, input) – array containing local dependent state variables.

• GLOC (realtype, output) – array containing local dependent state derivatives.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecov-
erable error occurred).

subroutine FARKCOMMFN(NLOC, T, YLOC, IPAR, RPAR, IER)
User-supplied routine (of type ARKCommFn()) that performs all inter-process communication necessary
for the execution of the FARKGLOCFN() function above, using the input vector YLOC.

Arguments:

• NLOC (long int, input) – local problem size.

• T (realtype, input) – current value of the independent variable.

• YLOC (realtype, input) – array containing local dependent state variables.

• IPAR (long int, input/output) – array containing integer user data that was passed to
FARKMALLOC().

• RPAR (realtype, input/output) – array containing real user data that was passed to
FARKMALLOC().

• IER (int, output) – return flag (0 if success, >0 if a recoverable error occurred, <0 if an unrecov-
erable error occurred).

Notes: This subroutine must be supplied even if it is not needed, and must return IER = 0.

152 Chapter 5. FARKODE, an Interface Module for FORTRAN Applications

CHAPTER

SIX

USING ERKSTEP FOR C AND C++ APPLICATIONS

This chapter is concerned with the use of the ERKStep time-stepping module for the solution of nonstiff initial value
problems (IVPs) in a C or C++ language setting. The following sections discuss the header files and the layout of the
user’s main program, and provide descriptions of the ERKStep user-callable functions and user-supplied functions.

The example programs described in the companion document [R2018] may be helpful. Those codes may be used as
templates for new codes and are included in the ARKode package examples subdirectory.

ERKStep uses the input and output constants from the shared ARKode infrastructure. These are defined as needed in
this chapter, but for convenience the full list is provided separately in the section Appendix: ARKode Constants.

The relevant information on using ERKStep’s C and C++ interfaces is detailed in the following sub-sections.

6.1 Access to library and header files

At this point, it is assumed that the installation of ARKode, following the procedure described in the section ARKode
Installation Procedure, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by ARKode. The relevant library files
are

• libdir/libsundials_arkode.lib,

• libdir/libsundials_nvec*.lib,

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant header files
are located in the subdirectories

• incdir/include/arkode

• incdir/include/sundials

• incdir/include/nvector

The directories libdir and incdir are the installation library and include directories, respectively. For a default in-
stallation, these are instdir/lib and instdir/include, respectively, where instdir is the directory where
SUNDIALS was installed (see the section ARKode Installation Procedure for further details).

6.2 Data Types

The sundials_types.h file contains the definition of the variable type realtype, which is used by the SUN-
DIALS solvers for all floating-point data, the definition of the integer type sunindextype, which is used for vector
and matrix indices, and booleantype, which is used for certain logic operations within SUNDIALS.

153

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

6.2.1 Floating point types

The type “realtype” can be set to float, double, or long double, depending on how SUNDIALS was in-
stalled (with the default being double). The user can change the precision of the SUNDIALS solvers’ floating-point
arithmetic at the configuration stage (see the section Configuration options (Unix/Linux)).

Additionally, based on the current precision, sundials_types.h defines the values BIG_REAL to be the largest
value representable as a realtype, SMALL_REAL to be the smallest positive value representable as a realtype,
and UNIT_ROUNDOFF to be the smallest realtype number, 𝜀, such that 1.0 + 𝜀 ̸= 1.0.

Within SUNDIALS, real constants may be set to have the appropriate precision by way of a macro called RCONST.
It is this macro that needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant
with no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a float,
whereas using the suffix “L” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if realtype is double, to
1.0F if realtype is float, or to 1.0L if realtype is long double. SUNDIALS uses the RCONST macro
internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONSTmacro to handle floating-point constants is precision-
independent, except for any calls to precision-specific standard math library functions. Users can, however, use the
types double, float, or long double in their code (assuming that this usage is consistent with the size of
realtype values that are passed to and from SUNDIALS). Thus, a previously existing piece of ANSI C code
can use SUNDIALS without modifying the code to use realtype, so long as the SUNDIALS libraries have been
compiled using the same precision (for details see the section ARKode Installation Procedure).

6.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable int64_t type,
and the user can change it to int32_t at the configuration stage. The configuration system will detect if the compiler
does not support portable types, and will replace int32_t and int64_t with int and long int, respectively, to
ensure use of the desired sizes on Linux, Mac OS X, and Windows platforms. SUNDIALS currently does not support
unsigned integer types for vector and matrix indices, although these could be added in the future if there is sufficient
demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both index stor-
age types except for any calls to index storage-specific external libraries. (Our C and C++ example programs use
sunindextype.) Users can, however, use any one of int, long int, int32_t, int64_t or long long
int in their code, assuming that this usage is consistent with the typedef for sunindextype on their architec-
ture. Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying the code to use
sunindextype, so long as the SUNDIALS libraries use the appropriate index storage type (for details see the
section ARKode Installation Procedure).

6.3 Header Files

When using ERKStep, the calling program must include several header files so that various macros and data types can
be used. The header file that is always required is:

154 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• arkode/arkode_erkstep.h, the main header file for the ERKStep time-stepping module, which
defines the several types and various constants, includes function prototypes, and includes the shared
arkode/arkode.h header file.

Note that arkode.h includes sundials_types.h directly, which defines the types realtype,
sunindextype and booleantype and the constants SUNFALSE and SUNTRUE, so a user program does not
need to include sundials_types.h directly.

Additionally, the calling program must also include an NVECTOR implementation header file, of the form
nvector/nvector_***.h, corresponding to the user’s preferred data layout and form of parallelism. See
the section Vector Data Structures for details for the appropriate name. This file in turn includes the header file
sundials_nvector.h which defines the abstract N_Vector data type.

6.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
the ERKStep module. Most of the steps are independent of the NVECTOR implementation used. For the steps that
are not, refer to the section Vector Data Structures for the specific name of the function to be called or macro to be
referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use
within the threaded vector functions, if used.

2. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the form

y0 = N_VMake_***(..., ydata);

if the realtype array ydata containing the initial values of 𝑦 already exists. Otherwise, create a new vector
by making a call of the form

y0 = N_VNew_***(...);

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_***(y0);

See the sections The NVECTOR_SERIAL Module through The NVECTOR_PTHREADS Module for details.

For the HYPRE and PETSc vector wrappers, first create and initialize the underlying vector, and then create the
NVECTOR wrapper with a call of the form

y0 = N_VMake_***(yvec);

where yvec is a HYPRE or PETSc vector. Note that calls like N_VNew_***(...) and
N_VGetArrayPointer_***(...) are not available for these vector wrappers. See the sections The
NVECTOR_PARHYP Module and The NVECTOR_PETSC Module for details.

6.4. A skeleton of the user’s main program 155

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

If using either the CUDA- or RAJA-based vector implementations use a call of the form

y0 = N_VMake_***(..., c);

where c is a pointer to a suncudavec or sunrajavec vector class if this class already exists. Otherwise,
create a new vector by making a call of the form

N_VGetDeviceArrayPointer_***

or

N_VGetHostArrayPointer_***

Note that the vector class will allocate memory on both the host and device when instantiated. See the sections
The NVECTOR_CUDA Module and The NVECTOR_RAJA Module for details.

4. Create ERKStep object

Call arkode_mem = ERKStepCreate(...) to create the ERKStep memory block.
ERKStepCreate() returns a void* pointer to this memory structure. See the section ERKStep ini-
tialization and deallocation functions for details.

5. Specify integration tolerances

Call ERKStepSStolerances() or ERKStepSVtolerances() to specify either a scalar relative toler-
ance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respectively.
Alternatively, call ERKStepWFtolerances() to specify a function which sets directly the weights used in
evaluating WRMS vector norms. See the section ERKStep tolerance specification functions for details.

6. Set optional inputs

Call ERKStepSet* functions to change any optional inputs that control the behavior of ERKStep from their
default values. See the section Optional input functions for details.

7. Specify rootfinding problem

Optionally, call ERKStepRootInit() to initialize a rootfinding problem to be solved during the integration
of the ODE system. See the section Rootfinding initialization function for general details, and the section
Optional input functions for relevant optional input calls.

8. Advance solution in time

For each point at which output is desired, call

ier = ERKStepEvolve(arkode_mem, tout, yout, &tret, itask);

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y0 above) will
contain 𝑦(𝑡out). See the section ERKStep solver function for details.

9. Get optional outputs

Call ERKStepGet* functions to obtain optional output. See the section Optional output functions for details.

10. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the NVECTOR
destructor function:

N_VDestroy(y);

11. Free solver memory

Call ERKStepFree(&arkode_mem) to free the memory allocated for the ERKStep module.

156 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

12. Finalize MPI, if used

Call MPI_Finalize to terminate MPI.

6.5 ERKStep User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the ERKStep
time-stepping module. Some of these are required; however, starting with the section Optional input functions, the
functions listed involve optional inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of
ARKode’s ERKStep module. In any case, refer to the preceding section, A skeleton of the user’s main program, for
the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to stderr by default. However, the user can
set a file as error output or can provide her own error handler function (see the section Optional input functions for
details).

6.5.1 ERKStep initialization and deallocation functions

void* ERKStepCreate(ARKRhsFn f, realtype t0, N_Vector y0)
This function allocates and initializes memory for a problem to be solved using the ERKStep time-stepping
module in ARKode.

Arguments:

• f – the name of the C function (of type ARKRhsFn()) defining the right-hand side function in �̇� =
𝑓(𝑡, 𝑦).

• t0 – the initial value of 𝑡.

• y0 – the initial condition vector 𝑦(𝑡0).

Return value: If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing ERKStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.

void ERKStepFree(void** arkode_mem)
This function frees the problem memory arkode_mem created by ERKStepCreate().

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

Return value: None

6.5.2 ERKStep tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to
ERKStepEvolve(); otherwise default values of reltol = 1e-4 and abstol = 1e-9 will be used, which
may be entirely incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of
ERKStepSStolerances(), this vector has components

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol);

whereas in the case of ERKStepSVtolerances() the vector components are given by

6.5. ERKStep User-callable functions 157

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

ewt[i] = 1.0/(reltol*abs(y[i]) + abstol[i]);

This vector is used in all error tests, which use a weighted RMS norm on all error-like vectors v:

‖𝑣‖𝑊𝑅𝑀𝑆 =

(︃
1

𝑁

𝑁∑︁
𝑖=1

(𝑣𝑖 𝑒𝑤𝑡𝑖)
2

)︃1/2

,

where 𝑁 is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to
ERKStepWFtolerances().

int ERKStepSStolerances(void* arkode_mem, realtype reltol, realtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• reltol – scalar relative tolerance.

• abstol – scalar absolute tolerance.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ERKStepSVtolerances(void* arkode_mem, realtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different absolute
tolerance for each vector component).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• reltol – scalar relative tolerance.

• abstol – vector containing the absolute tolerances for each solution component.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

• ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ERKStepWFtolerances(void* arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• efun – the name of the function (of type ARKEwtFn()) that implements the error weight vector
computation.

Return value:

158 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_NO_MALLOC if the ERKStep memory was not allocated by the time-stepping module

General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol and abstol are a concern. The following
pieces of advice are relevant.

1. The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10−4 means that errors
are controlled to .01%. We do not recommend using reltol larger than 10−3. On the other hand, reltol
should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally around
10−15 for double-precision).

2. The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector 𝑦 may be so small that pure relative error control is meaningless. For example,
if 𝑦𝑖 starts at some nonzero value, but in time decays to zero, then pure relative error control on 𝑦𝑖 makes no
sense (and is overly costly) after 𝑦𝑖 is below some noise level. Then abstol (if scalar) or abstol[i] (if a
vector) needs to be set to that noise level. If the different components have different noise levels, then abstol
should be a vector. For example, see the example problem ark_robertson.c, and the discussion of it in
the ARKode Examples Documentation [R2018]. In that problem, the three components vary between 0 and 1,
and have different noise levels; hence the atols vector therein. It is impossible to give any general advice on
abstol values, because the appropriate noise levels are completely problem-dependent. The user or modeler
hopefully has some idea as to what those noise levels are.

3. Finally, it is important to pick all the tolerance values conservatively, because they control the error committed
on each individual step. The final (global) errors are an accumulation of those per-step errors, where that
accumulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of
10 from the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice
for reltol is 10−5. In any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

1. The best way to control the size of unwanted negative computed values is with tighter absolute tolerances. Again
this requires some knowledge of the noise level of these components, which may or may not be different for
different components. Some experimentation may be needed.

2. If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the context
of the output medium. Then the internal values carried by the solver are unaffected. Remember that a small
negative value in 𝑦 returned by ERKStep, with magnitude comparable to abstol or less, is equivalent to zero
as far as the computation is concerned.

3. The user’s right-hand side routine 𝑓 should never change a negative value in the solution vector 𝑦 to a non-
negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the 𝑓 routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the offending value
should be changed to zero or a tiny positive number in a temporary variable (not in the input 𝑦 vector) for the
purposes of computing 𝑓(𝑡, 𝑦).

6.5. ERKStep User-callable functions 159

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

4. Positivity and non-negativity constraints on components can be enforced by use of the recoverable error return
feature in the user-supplied right-hand side function, 𝑓 . When a recoverable error is encountered, ERKStep will
retry the step with a smaller step size, which typically alleviates the problem. However, because this option
involves some additional overhead cost, it should only be exercised if the use of absolute tolerances to control
the computed values is unsuccessful.

6.5.3 Rootfinding initialization function

As described in the section Rootfinding, while solving the IVP, ARKode’s time-stepping modules have the capa-
bility to find the roots of a set of user-defined functions. To activate the root-finding algorithm, call the following
function. This is normally called only once, prior to the first call to ERKStepEvolve(), but if the rootfinding prob-
lem is to be changed during the solution, ERKStepRootInit() can also be called prior to a continuation call to
ERKStepEvolve().

int ERKStepRootInit(void* arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ERKStepCreate(), and before ERKStepEvolve().

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nrtfn – number of functions 𝑔𝑖, an integer ≥ 0.

• g – name of user-supplied function, of type ARKRootFn(), defining the functions 𝑔𝑖 whose roots
are sought.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_MEM_FAIL if there was a memory allocation failure

• ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes: To disable the rootfinding feature after it has already been initialized, or to free memory associated with
ERKStep’s rootfinding module, call ERKStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ERKStepReInit(), where the new IVP has no rootfinding
problem but the prior one did, then call ERKStepRootInit with nrtfn = 0.

6.5.4 ERKStep solver function

This is the central step in the solution process – the call to perform the integration of the IVP. One of the input
arguments (itask) specifies one of two modes as to where ERKStep is to return a solution. These modes are modified
if the user has set a stop time (with a call to the optional input function ERKStepSetStopTime()) or has requested
rootfinding.

int ERKStepEvolve(void* arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in 𝑡.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tout – the next time at which a computed solution is desired.

• yout – the computed solution vector.

160 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• tret – the time corresponding to yout (output).

• itask – a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, tout, in the direction of integration, i.e. 𝑡𝑛−1 < tout ≤ 𝑡𝑛 for forward inte-
gration, or 𝑡𝑛 ≤ tout < 𝑡𝑛−1 for backward integration. It will then compute an approximation to
the solution 𝑦(𝑡𝑜𝑢𝑡) by interpolation (using one of the dense output routines described in the section
Interpolation).

The ARK_ONE_STEP option tells the solver to only take a single internal step 𝑦𝑛−1 → 𝑦𝑛 and then
return control back to the calling program. If this step will overtake tout then the solver will again
return an interpolated result; otherwise it will return a copy of the internal solution 𝑦𝑛 in the vector
yout

Return value:

• ARK_SUCCESS if successful.

• ARK_ROOT_RETURN if ERKStepEvolve() succeeded, and found one or more roots. If the num-
ber of root functions, nrtfn, is greater than 1, call ERKStepGetRootInfo() to see which 𝑔𝑖 were
found to have a root at (*tret).

• ARK_TSTOP_RETURN if ERKStepEvolve() succeeded and returned at tstop.

• ARK_MEM_NULL if the arkode_mem argument was NULL.

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if one of the inputs to ERKStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

1. A component of the error weight vector became zero during internal time-stepping.

2. A root of one of the root functions was found both at a point 𝑡 and also very near 𝑡.

• ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

• ARK_TOO_MUCH_ACC if the solver could not satisfy the accuracy demanded by the user for some
internal step.

• ARK_ERR_FAILURE if error test failures occurred either too many times (ark_maxnef) during one
internal time step or occurred with |ℎ| = ℎ𝑚𝑖𝑛.

• ARK_VECTOROP_ERR a vector operation error occured.

Notes: The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ERKStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale of
the independent variable. All failure return values are negative and so testing the return argument for negative
values will trap all ERKStepEvolve() failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the user
should issue a call to ERKStepSetStopTime() before the call to ERKStepEvolve() to specify a fixed
stop time to end the time step and return to the user. Upon return from ERKStepEvolve(), a copy of the
internal solution 𝑦𝑛 will be returned in the vector yout. Once the integrator returns at a tstop time, any future
testing for tstop is disabled (and can be re-enabled only though a new call to ERKStepSetStopTime()).

On any error return in which one or more internal steps were taken by ERKStepEvolve(), the returned values
of tret and yout correspond to the farthest point reached in the integration. On all other error returns, tret and
yout are left unchanged from those provided to the routine.

6.5. ERKStep User-callable functions 161

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

6.5.5 Optional input functions

There are numerous optional input parameters that control the behavior of the ERKStep solver, each of which may
be modified from its default value through calling an appropriate input function. The following tables list all optional
input functions, grouped by which aspect of ERKStep they control. Detailed information on the calling syntax and
arguments for each function are then provided following each table.

The optional inputs are grouped into the following categories:

• General ERKStep options (Optional inputs for ERKStep),

• IVP method solver options (Optional inputs for IVP method selection),

• Step adaptivity solver options (Optional inputs for time step adaptivity),

For the most casual use of ERKStep, relying on the default set of solver parameters, the reader can skip to the following
section, User-supplied functions.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
We also note that all error return values are negative, so a test on the return arguments for negative values will catch
all errors.

Optional inputs for ERKStep

Optional input Function name Default
Return ERKStep solver parameters to their defaults ERKStepSetDefaults() internal
Set dense output order ERKStepSetDenseOrder() 3
Supply a pointer to a diagnostics output file ERKStepSetDiagnostics() NULL
Supply a pointer to an error output file ERKStepSetErrFile() stderr
Supply a custom error handler function ERKStepSetErrHandlerFn() internal fn
Disable time step adaptivity (fixed-step mode) ERKStepSetFixedStep() disabled
Supply an initial step size to attempt ERKStepSetInitStep() estimated
Maximum no. of warnings for 𝑡𝑛 + ℎ = 𝑡𝑛 ERKStepSetMaxHnilWarns() 10
Maximum no. of internal steps before tout ERKStepSetMaxNumSteps() 500
Maximum absolute step size ERKStepSetMaxStep() ∞
Minimum absolute step size ERKStepSetMinStep() 0.0
Set a value for 𝑡𝑠𝑡𝑜𝑝 ERKStepSetStopTime() ∞
Supply a pointer for user data ERKStepSetUserData() NULL
Maximum no. of ERKStep error test failures ERKStepSetMaxErrTestFails() 7

int ERKStepSetDefaults(void* arkode_mem)
Resets all optional input parameters to ERKStep’s original default values.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Does not change problem-defining function pointer f or the user_data pointer.

Also leaves alone any data structures or options related to root-finding (those can be reset using
ERKStepRootInit()).

162 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int ERKStepSetDenseOrder(void* arkode_mem, int dord)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• dord – requested polynomial order of accuracy.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Allowed values are between 0 and min(q,5), where q is the order of the overall integration method.

int ERKStepSetDiagnostics(void* arkode_mem, FILE* diagfp)
Specifies the file pointer for a diagnostics file where all ERKStep step adaptivity and solver information is
written.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• diagfp – pointer to the diagnostics output file.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to
a unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer, all
diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from all
processes would be identical.

int ERKStepSetErrFile(void* arkode_mem, FILE* errfp)
Specifies a pointer to the file where all ERKStep warning and error messages will be written if the default
internal error handling function is used.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• errfp – pointer to the output file.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the ERKStep memory
pointer is NULL). This use of the function is strongly discouraged.

6.5. ERKStep User-callable functions 163

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

If used, this routine should be called before any other optional input functions, in order to take effect for subse-
quent error messages.

int ERKStepSetErrHandlerFn(void* arkode_mem, ARKErrHandlerFn ehfun, void* eh_data)
Specifies the optional user-defined function to be used in handling error messages.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• ehfun – name of user-supplied error handler function.

• eh_data – pointer to user data passed to ehfun every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Error messages indicating that the ERKStep solver memory is NULLwill always be directed to stderr.

int ERKStepSetFixedStep(void* arkode_mem, realtype hfixed)
Disabled time step adaptivity within ERKStep, and specifies the fixed time step size to use for all internal steps.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hfixed – value of the fixed step size to use.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass 0.0 to return ERKStep to the default (adaptive-step) mode.

Use of this function is not recommended, since we it gives no assurance of the validity of the computed solutions.
It is primarily provided for code-to-code verification testing purposes.

When using ERKStepSetFixedStep(), any values provided to the functions
ERKStepSetInitStep(), ERKStepSetAdaptivityFn(), ERKStepSetMaxErrTestFails(),
ERKStepSetAdaptivityMethod(), ERKStepSetCFLFraction(), ERKStepSetErrorBias(),
ERKStepSetFixedStepBounds(), ERKStepSetMaxEFailGrowth(),
ERKStepSetMaxFirstGrowth(), ERKStepSetMaxGrowth(), ERKStepSetSafetyFactor(),
ERKStepSetSmallNumEFails() and ERKStepSetStabilityFn() will be ignored, since temporal
adaptivity is disabled.

If both ERKStepSetFixedStep() and ERKStepSetStopTime() are used, then the fixed step size will
be used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to ERKStepSetFixedStep() must be made prior to calling
ERKStepEvolve() to resume integration.

It is not recommended that ERKStepSetFixedStep() be used in concert with ERKStepSetMaxStep()
or ERKStepSetMinStep(), since at best those latter two routines will provide no useful information to the
solver, and at worst they may interfere with the desired fixed step size.

int ERKStepSetInitStep(void* arkode_mem, realtype hin)
Specifies the initial time step size ERKStep should use after initialization or re-initialization.

164 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hin – value of the initial step to be attempted (̸= 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass 0.0 to use the default value.

By default, ERKStep estimates the initial step size to be the solution ℎ of the equation
⃦⃦⃦
ℎ2𝑦
2

⃦⃦⃦
= 1, where 𝑦 is

an estimated value of the second derivative of the solution at t0.

int ERKStepSetMaxHnilWarns(void* arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that 𝑡 + ℎ = 𝑡 on the next internal
step, before ERKStep will instead return with an error.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• mxhnil – maximum allowed number of warning messages (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

int ERKStepSetMaxNumSteps(void* arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before ERKStep will return with an error.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• mxsteps – maximum allowed number of internal steps.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Passing mxsteps = 0 results in ERKStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

int ERKStepSetMaxStep(void* arkode_mem, realtype hmax)
Specifies the upper bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

6.5. ERKStep User-callable functions 165

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• hmax – maximum absolute value of the time step size (≥ 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass hmax ≤ 0.0 to set the default value of∞.

int ERKStepSetMinStep(void* arkode_mem, realtype hmin)
Specifies the lower bound on the magnitude of the time step size.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hmin – minimum absolute value of the time step size (≥ 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Pass hmin ≤ 0.0 to set the default value of 0.

int ERKStepSetStopTime(void* arkode_mem, realtype tstop)
Specifies the value of the independent variable 𝑡 past which the solution is not to proceed.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tstop – stopping time for the integrator.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default is that no stop time is imposed.

int ERKStepSetUserData(void* arkode_mem, void* user_data)
Specifies the user data block user_data and attaches it to the main ERKStep memory block.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• user_data – pointer to the user data.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

166 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int ERKStepSetMaxErrTestFails(void* arkode_mem, int maxnef)
Specifies the maximum number of error test failures permitted in attempting one step, before returning with an
error.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• maxnef – maximum allowed number of error test failures (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 7; set maxnef ≤ 0 to specify this default.

Optional inputs for IVP method selection

Optional input Function name Default
Set integrator method order ERKStepSetOrder() 4
Set explicit RK table ERKStepSetTable() internal
Specify explicit RK table number ERKStepSetTableNum() internal

int ERKStepSetOrder(void* arkode_mem, int ord)
Specifies the order of accuracy for the ERK integration method.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• ord – requested order of accuracy.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The allowed values are 2 ≤ ord ≤ 8. Any illegal input will result in the default value of 4.

Since ord affects the memory requirements for the internal ERKStep memory block, it cannot be changed after
the first call to ERKStepEvolve(), unless ERKStepReInit() is called.

int ERKStepSetTable(void* arkode_mem, ARKodeButcherTable B)
Specifies a customized Butcher table for the ERK method.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• B – the Butcher table for the explicit RK method.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

6.5. ERKStep User-callable functions 167

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables see
Butcher Table Data Structure.

No error checking is performed to ensure that either the method order p or the embedding order q specified in
the Butcher table structure correctly describe the coefficients in the Butcher table.

Error checking is performed to ensure that the Butcher table is strictly lower-triangular (i.e. that it specifies an
ERK method).

If the Butcher table does not contain an embedding, the user must call ERKStepSetFixedStep() to enable
fixed-step mode and set the desired time step size.

int ERKStepSetTableNum(void* arkode_mem, int etable)
Indicates to use a specific built-in Butcher table for the ERK method.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• etable – index of the Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: etable should match an existing explicit method from the section Explicit Butcher tables. Error-checking
is performed to ensure that the table exists, and is not implicit.

Optional inputs for time step adaptivity

The mathematical explanation of ARKode’s time step adaptivity algorithm, including how each of the parameters
below is used within the code, is provided in the section Time step adaptivity.

Optional input Function name Default
Set a custom time step adaptivity function ERKStepSetAdaptivityFn() internal
Choose an existing time step adaptivity method ERKStepSetAdaptivityMethod() 0
Explicit stability safety factor ERKStepSetCFLFraction() 0.5
Time step error bias factor ERKStepSetErrorBias() 1.5
Bounds determining no change in step size ERKStepSetFixedStepBounds() 1.0 1.5
Maximum step growth factor on error test fail ERKStepSetMaxEFailGrowth() 0.3
Maximum first step growth factor ERKStepSetMaxFirstGrowth() 10000.0
Maximum general step growth factor ERKStepSetMaxGrowth() 20.0
Time step safety factor ERKStepSetSafetyFactor() 0.96
Error fails before MaxEFailGrowth takes effect ERKStepSetSmallNumEFails() 2
Explicit stability function ERKStepSetStabilityFn() none

int ERKStepSetAdaptivityFn(void* arkode_mem, ARKAdaptFn hfun, void* h_data)
Sets a user-supplied time-step adaptivity function.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hfun – name of user-supplied adaptivity function.

• h_data – pointer to user data passed to hfun every time it is called.

168 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should focus on accuracy-based time step estimation; for stability based time steps the
function ERKStepSetStabilityFn() should be used instead.

int ERKStepSetAdaptivityMethod(void* arkode_mem, int imethod, int idefault, int pq, real-
type* adapt_params)

Specifies the method (and associated parameters) used for time step adaptivity.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• imethod – accuracy-based adaptivity method choice (0 ≤ imethod ≤ 5): 0 is PID, 1 is PI, 2 is I, 3 is
explicit Gustafsson, 4 is implicit Gustafsson, and 5 is the ImEx Gustafsson.

• idefault – flag denoting whether to use default adaptivity parameters (1), or that they will be supplied
in the adapt_params argument (0).

• pq – flag denoting whether to use the embedding order of accuracy p (0) or the method order of
accuracy q (1) within the adaptivity algorithm. p is the default.

• adapt_params[0] – 𝑘1 parameter within accuracy-based adaptivity algorithms.

• adapt_params[1] – 𝑘2 parameter within accuracy-based adaptivity algorithms.

• adapt_params[2] – 𝑘3 parameter within accuracy-based adaptivity algorithms.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: If custom parameters are supplied, they will be checked for validity against published stability intervals.
If other parameter values are desired, it is recommended to instead provide a custom function through a call to
ERKStepSetAdaptivityFn().

int ERKStepSetCFLFraction(void* arkode_mem, realtype cfl_frac)
Specifies the fraction of the estimated explicitly stable step to use.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• cfl_frac – maximum allowed fraction of explicitly stable step (default is 0.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ERKStepSetErrorBias(void* arkode_mem, realtype bias)
Specifies the bias to be applied to the error estimates within accuracy-based adaptivity strategies.

Arguments:

6.5. ERKStep User-callable functions 169

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• arkode_mem – pointer to the ERKStep memory block.

• bias – bias applied to error in accuracy-based time step estimation (default is 1.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value below 1.0 will imply a reset to the default value.

int ERKStepSetFixedStepBounds(void* arkode_mem, realtype lb, realtype ub)
Specifies the step growth interval in which the step size will remain unchanged.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• lb – lower bound on window to leave step size fixed (default is 1.0).

• ub – upper bound on window to leave step size fixed (default is 1.5).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any interval not containing 1.0 will imply a reset to the default values.

int ERKStepSetMaxEFailGrowth(void* arkode_mem, realtype etamxf)
Specifies the maximum step size growth factor upon multiple successive accuracy-based error failures in the
solver.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• etamxf – time step reduction factor on multiple error fails (default is 0.3).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value outside the interval (0, 1] will imply a reset to the default value.

int ERKStepSetMaxFirstGrowth(void* arkode_mem, realtype etamx1)
Specifies the maximum allowed step size change following the very first integration step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• etamx1 – maximum allowed growth factor after the first time step (default is 10000.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

170 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value ≤ 1.0 will imply a reset to the default value.

int ERKStepSetMaxGrowth(void* arkode_mem, realtype mx_growth)
Specifies the maximum growth of the step size between consecutive steps in the integration process.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• growth – maximum allowed growth factor between consecutive time steps (default is 20.0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any value ≤ 1.0 will imply a reset to the default value.

int ERKStepSetSafetyFactor(void* arkode_mem, realtype safety)
Specifies the safety factor to be applied to the accuracy-based estimated step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• safety – safety factor applied to accuracy-based time step (default is 0.96).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ERKStepSetSmallNumEFails(void* arkode_mem, int small_nef)
Specifies the threshold for “multiple” successive error failures before the etamxf parameter from
ERKStepSetMaxEFailGrowth() is applied.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• small_nef – bound to determine ‘multiple’ for etamxf (default is 2).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Any non-positive parameter will imply a reset to the default value.

int ERKStepSetStabilityFn(void* arkode_mem, ARKExpStabFn EStab, void* estab_data)
Sets the problem-dependent function to estimate a stable time step size for the explicit portion of the ODE
system.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

6.5. ERKStep User-callable functions 171

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• EStab – name of user-supplied stability function.

• estab_data – pointer to user data passed to EStab every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This function should return an estimate of the absolute value of the maximum stable time step for the
the ODE system. It is not required, since accuracy-based adaptivity may be sufficient for retaining stability, but
this can be quite useful for problems where the right-hand side function 𝑓(𝑡, 𝑦) may contain stiff terms.

Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in the section Rootfinding.

Optional input Function name Default
Direction of zero-crossings to monitor ERKStepSetRootDirection() both
Disable inactive root warnings ERKStepSetNoInactiveRootWarn() enabled

int ERKStepSetRootDirection(void* arkode_mem, int* rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• rootdir – state array of length nrtfn, the number of root functions 𝑔𝑖 (the value of nrtfn was supplied
in the call to ERKStepRootInit()). If rootdir[i] == 0 then crossing in either direction for
𝑔𝑖 should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where 𝑔𝑖 is increasing or decreasing, respectively.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default behavior is to monitor for both zero-crossing directions.

int ERKStepSetNoInactiveRootWarn(void* arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory is NULL

Notes: ERKStep will not report the initial conditions as a possible zero-crossing (assuming that one or more
components 𝑔𝑖 are zero at the initial time). However, if it appears that some 𝑔𝑖 is identically zero at the initial
time (i.e., 𝑔𝑖 is zero at the initial time and after the first step), ERKStep will issue a warning which can be
disabled with this optional input function.

172 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

6.5.6 Interpolated output function

An optional function ERKStepGetDky() is available to obtain additional values of solution-related quantities. This
function should only be called after a successful return from ERKStepEvolve(), as it provides interpolated values
either of 𝑦 or of its derivatives (up to the 5th derivative) interpolated to any value of 𝑡 in the last internal step taken
by ERKStepEvolve(). Internally, this dense output algorithm is identical to the algorithm used for the maximum
order implicit predictors, described in the section Maximum order predictor, except that derivatives of the polynomial
model may be evaluated upon request.

int ERKStepGetDky(void* arkode_mem, realtype t, int k, N_Vector dky)
Computes the k-th derivative of the function 𝑦 at the time t, i.e. 𝑑(𝑘)

𝑑𝑡(𝑘) 𝑦(𝑡), for values of the independent variable
satisfying 𝑡𝑛 − ℎ𝑛 ≤ 𝑡 ≤ 𝑡𝑛, with 𝑡𝑛 as current internal time reached, and ℎ𝑛 is the last internal step size suc-
cessfully used by the solver. This routine uses an interpolating polynomial of degree max(dord, k), where dord is
the argument provided to ERKStepSetDenseOrder(). The user may request k in the range {0,...,*dord*}.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• t – the value of the independent variable at which the derivative is to be evaluated.

• k – the derivative order requested.

• dky – output vector (must be allocated by the user).

Return value:

• ARK_SUCCESS if successful

• ARK_BAD_K if k is not in the range {0,...,*dord*}.

• ARK_BAD_T if t is not in the interval [𝑡𝑛 − ℎ𝑛, 𝑡𝑛]

• ARK_BAD_DKY if the dky vector was NULL

• ARK_MEM_NULL if the ERKStep memory is NULL

Notes: It is only legal to call this function after a successful return from ERKStepEvolve().

A user may access the values 𝑡𝑛 and ℎ𝑛 via the functions ERKStepGetCurrentTime() and
ERKStepGetLastStep(), respectively.

6.5.7 Optional output functions

ERKStep provides an extensive set of functions that can be used to obtain solver performance information. We
organize these into groups:

1. SUNDIALS version information accessor routines are in the subsection SUNDIALS version information,

2. General ERKStep output routines are in the subsection Main solver optional output functions,

3. Output routines regarding root-finding results are in the subsection Rootfinding optional output functions,

4. General usability routines (e.g. to print the current ERKStep parameters, or output the current Butcher table)
are in the subsection General usability functions.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of
various methods inside ERKStep. For example:

• The counters nsteps and nf_evals provide a rough measure of the overall cost of a given run, and can be compared
between runs with different solver options to suggest which set of options is the most efficient.

6.5. ERKStep User-callable functions 173

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• The ratio nsteps/step_attempts can measure the quality of the time step adaptivity algorithm, since a poor algo-
rithm will result in more failed steps, and hence a lower ratio.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:

• version – character array to hold the SUNDIALS version information.

• len – allocated length of the version character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS version

Notes: An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber(int *major, int *minor, int *patch, char *label, int len)
This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:

• major – SUNDIALS release major version number.

• minor – SUNDIALS release minor version number.

• patch – SUNDIALS release patch version number.

• label – string to hold the SUNDIALS release label.

• len – allocated length of the label character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS label

Notes: An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

174 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Main solver optional output functions

Optional output Function name
Size of ERKStep real and integer workspaces ERKStepGetWorkSpace()
Cumulative number of internal steps ERKStepGetNumSteps()
Actual initial time step size used ERKStepGetActualInitStep()
Step size used for the last successful step ERKStepGetLastStep()
Step size to be attempted on the next step ERKStepGetCurrentStep()
Current internal time reached by the solver ERKStepGetCurrentTime()
Suggested factor for tolerance scaling ERKStepGetTolScaleFactor()
Error weight vector for state variables ERKStepGetErrWeights()
Single accessor to many statistics at once ERKStepGetStepStats()
Name of constant associated with a return flag ERKStepGetReturnFlagName()
No. of explicit stability-limited steps ERKStepGetNumExpSteps()
No. of accuracy-limited steps ERKStepGetNumAccSteps()
No. of attempted steps ERKStepGetNumStepAttempts()
No. of calls to f function ERKStepGetNumRhsEvals()
No. of local error test failures that have occurred ERKStepGetNumErrTestFails()
Current ERK Butcher table ERKStepGetCurrentButcherTable()
Estimated local truncation error vector ERKStepGetEstLocalErrors()
Single accessor to many statistics at once ERKStepGetTimestepperStats()

int ERKStepGetWorkSpace(void* arkode_mem, long int* lenrw, long int* leniw)
Returns the ERKStep real and integer workspace sizes.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• lenrw – the number of realtype values in the ERKStep workspace.

• leniw – the number of integer values in the ERKStep workspace.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumSteps(void* arkode_mem, long int* nsteps)
Returns the cumulative number of internal steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nsteps – number of steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetActualInitStep(void* arkode_mem, realtype* hinused)
Returns the value of the integration step size used on the first step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hinused – actual value of initial step size.

6.5. ERKStep User-callable functions 175

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes: Even if the value of the initial integration step was specified by the user through a call to
ERKStepSetInitStep(), this value may have been changed by ERKStep to ensure that the step size fell
within the prescribed bounds (ℎ𝑚𝑖𝑛 ≤ ℎ0 ≤ ℎ𝑚𝑎𝑥), or to satisfy the local error test condition.

int ERKStepGetLastStep(void* arkode_mem, realtype* hlast)
Returns the integration step size taken on the last successful internal step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hlast – step size taken on the last internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetCurrentStep(void* arkode_mem, realtype* hcur)
Returns the integration step size to be attempted on the next internal step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• hcur – step size to be attempted on the next internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetCurrentTime(void* arkode_mem, realtype* tcur)
Returns the current internal time reached by the solver.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetTolScaleFactor(void* arkode_mem, realtype* tolsfac)
Returns a suggested factor by which the user’s tolerances should be scaled when too much accuracy has been
requested for some internal step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• tolsfac – suggested scaling factor for user-supplied tolerances.

Return value:

• ARK_SUCCESS if successful

176 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetErrWeights(void* arkode_mem, N_Vector eweight)
Returns the current error weight vector.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• eweight – solution error weights at the current time.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes: The user must allocate space for eweight, that will be filled in by this function.

int ERKStepGetStepStats(void* arkode_mem, long int* nsteps, realtype* hinused, realtype* hlast, real-
type* hcur, realtype* tcur)

Returns many of the most useful optional outputs in a single call.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nsteps – number of steps taken in the solver.

• hinused – actual value of initial step size.

• hlast – step size taken on the last internal step.

• hcur – step size to be attempted on the next internal step.

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

char *ERKStepGetReturnFlagName(long int flag)
Returns the name of the ERKStep constant corresponding to flag.

Arguments:

• flag – a return flag from an ERKStep function.

Return value: The return value is a string containing the name of the corresponding constant.

int ERKStepGetNumExpSteps(void* arkode_mem, long int* expsteps)
Returns the cumulative number of stability-limited steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• expsteps – number of stability-limited steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumAccSteps(void* arkode_mem, long int* accsteps)
Returns the cumulative number of accuracy-limited steps taken by the solver (so far).

6.5. ERKStep User-callable functions 177

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• accsteps – number of accuracy-limited steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumStepAttempts(void* arkode_mem, long int* step_attempts)
Returns the cumulative number of steps attempted by the solver (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• step_attempts – number of steps attempted by solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumRhsEvals(void* arkode_mem, long int* nf_evals)
Returns the number of calls to the user’s right-hand side function, 𝑓 (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• nf_evals – number of calls to the user’s 𝑓(𝑡, 𝑦) function.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetNumErrTestFails(void* arkode_mem, long int* netfails)
Returns the number of local error test failures that have occurred (so far).

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• netfails – number of error test failures.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

int ERKStepGetCurrentButcherTable(void* arkode_mem, ARKodeButcherTable *B)
Returns the Butcher table currently in use by the solver.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• B – pointer to Butcher table structure.

Return value:

• ARK_SUCCESS if successful

178 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes: The ARKodeButcherTable data structure is defined as a pointer to the following C structure:

typedef struct ARKodeButcherTableMem {

int q; /* method order of accuracy */
int p; /* embedding order of accuracy */
int stages; /* number of stages */
realtype **A; /* Butcher table coefficients */
realtype *c; /* canopy node coefficients */
realtype *b; /* root node coefficients */
realtype *d; /* embedding coefficients */

} *ARKodeButcherTable;

For more details see :ref:`ARKodeButcherTable`.

int ERKStepGetEstLocalErrors(void* arkode_mem, N_Vector ele)
Returns the vector of estimated local truncation errors for the current step.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• ele – vector of estimated local truncation errors.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes: The user must allocate space for ele, that will be filled in by this function.

The values returned in ele are valid only after a successful call to ERKStepEvolve() (i.e. it returned a
non-negative value).

The ele vector, together with the eweight vector from ERKStepGetErrWeights(), can be used to determine
how the various components of the system contributed to the estimated local error test. Specifically, that error
test uses the WRMS norm of a vector whose components are the products of the components of these two
vectors. Thus, for example, if there were recent error test failures, the components causing the failures are those
with largest values for the products, denoted loosely as eweight[i]*ele[i].

int ERKStepGetTimestepperStats(void* arkode_mem, long int* expsteps, long int* accsteps, long
int* step_attempts, long int* nf_evals, long int* netfails)

Returns many of the most useful time-stepper statistics in a single call.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• expsteps – number of stability-limited steps taken in the solver.

• accsteps – number of accuracy-limited steps taken in the solver.

• step_attempts – number of steps attempted by the solver.

• nf_evals – number of calls to the user’s 𝑓(𝑡, 𝑦) function.

• netfails – number of error test failures.

Return value:

• ARK_SUCCESS if successful

6.5. ERKStep User-callable functions 179

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_MEM_NULL if the ERKStep memory was NULL

Rootfinding optional output functions

Optional output Function name
Array showing roots found ERKStepGetRootInfo()
No. of calls to user root function ERKStepGetNumGEvals()

int ERKStepGetRootInfo(void* arkode_mem, int* rootsfound)
Returns an array showing which functions were found to have a root.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• rootsfound – array of length nrtfn with the indices of the user functions 𝑔𝑖 found to have a root
(the value of nrtfn was supplied in the call to ERKStepRootInit()). For 𝑖 = 0 . . . nrtfn-1,
rootsfound[i] is nonzero if 𝑔𝑖 has a root, and 0 if not.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes: The user must allocate space for rootsfound prior to calling this function.

For the components of 𝑔𝑖 for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that 𝑔𝑖 is increasing, while a value of -1 indicates a decreasing 𝑔𝑖.

int ERKStepGetNumGEvals(void* arkode_mem, long int* ngevals)
Returns the cumulative number of calls made to the user’s root function 𝑔.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• ngevals – number of calls made to 𝑔 so far.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

General usability functions

The following optional routines may be called by a user to inquire about existing solver parameters, to retrieve stored
Butcher tables, write the current Butcher table, or even to test a provided Butcher table to determine its analytical order
of accuracy. While none of these would typically be called during the course of solving an initial value problem, these
may be useful for users wishing to better understand ERKStep and/or specific Runge-Kutta methods.

Optional routine Function name
Output all ERKStep solver parameters ERKStepWriteParameters()
Output the current Butcher table ERKStepWriteButcher()

int ERKStepWriteParameters(void* arkode_mem, FILE *fp)
Outputs all ERKStep solver parameters to the provided file pointer.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

180 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• fp – pointer to use for printing the solver parameters.

Return value:

• ARKS_SUCCESS if successful

• ARKS_MEM_NULL if the ERKStep memory was NULL

Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for all
processes would be identical.

int ERKStepWriteButcher(void* arkode_mem, FILE *fp)
Outputs the current Butcher table to the provided file pointer.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• fp – pointer to use for printing the Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all pro-
cesses would be identical.

6.5.8 ERKStep re-initialization functions

To reinitialize the ERKStep module for the solution of a new problem, where a prior call to ERKStepCreate() has
been made, the user must call the function ERKStepReInit(). The new problem must have the same size as the
previous one. This routine performs the same input checking and initializations that are done in ERKStepCreate(),
but it performs no memory allocation as is assumes that the existing internal memory is sufficient for the new prob-
lem. A call to this re-initialization routine deletes the solution history that was stored internally during the previous
integration. Following a successful call to ERKStepReInit(), call ERKStepEvolve() again for the solution of
the new problem.

The use of ERKStepReInit() requires that the number of Runge Kutta stages, denoted by s, be no larger for the
new problem than for the previous problem. This condition is automatically fulfilled if the method order q and the
problem type (explicit, implicit, ImEx) are left unchanged.

One important use of the ERKStepReInit() function is in the treating of jump discontinuities in the RHS function.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the discontinuity is
known, simply make that location a value of tout. To stop when the location of the discontinuity is determined by the
solution, use the rootfinding feature. In either case, it is critical that the RHS function not incorporate the discontinuity,
but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent rootfinding, if used)
can be done efficiently. Then use a switch within the RHS function (communicated through user_data) that can
be flipped between the stopping of the integration and the restart, so that the restarted problem uses the new values
(which have jumped). Similar comments apply if there is to be a jump in the dependent variable vector.

int ERKStepReInit(void* arkode_mem, ARKRhsFn f, realtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the ERKStep time-stepper module.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

6.5. ERKStep User-callable functions 181

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• f – the name of the C function (of type ARKRhsFn()) defining the right-hand side function in �̇� =
𝑓(𝑡, 𝑦).

• t0 – the initial value of 𝑡.

• y0 – the initial condition vector 𝑦(𝑡0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, ERKStepReInit() also sends an error message to the error handler function.

6.5.9 ERKStep system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the ERKStep integrator may be “resized”
between integration steps, through calls to the ERKStepResize() function. This function modifies ERKStep’s
internal memory structures to use the new problem size, without destruction of the temporal adaptivity heuristics.
It is assumed that the dynamical time scales before and after the vector resize will be comparable, so that all time-
stepping heuristics prior to calling ERKStepResize() remain valid after the call. If instead the dynamics should
be recomputed from scratch, the ERKStep memory structure should be deleted with a call to ERKStepFree(), and
recreated with a call to ERKStepCreate().

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type
ARKVecResizeFn()) is not supplied (i.e. is set to NULL), then all existing vectors internal to ERKStep will be
destroyed and re-cloned from the new input vector.

In the case that the dynamical time scale should be modified slightly from the previous time scale, an input hscale is
allowed, that will rescale the upcoming time step by the specified factor. If a value hscale ≤ 0 is specified, the default
of 1.0 will be used.

int ERKStepResize(void* arkode_mem, N_Vector ynew, realtype hscale, realtype t0, ARKVecResizeFn re-
size, void* resize_data)

Re-initializes ERKStep with a different state vector but with comparable dynamical time scale.

Arguments:

• arkode_mem – pointer to the ERKStep memory block.

• ynew – the newly-sized solution vector, holding the current dependent variable values 𝑦(𝑡0).

• hscale – the desired scaling factor for the dynamical time scale (i.e. the next step will be of size
h*hscale).

• t0 – the current value of the independent variable 𝑡0 (this must be consistent with ynew).

• resize – the user-supplied vector resize function (of type ARKVecResizeFn().

• resize_data – the user-supplied data structure to be passed to resize when modifying internal ERKStep
vectors.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the ERKStep memory was NULL

182 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, ERKStepResize() also sends an error message to the error handler function.

Resizing the absolute tolerance array

If using array-valued absolute tolerances, the absolute tolerance vector will be invalid after the call
to ERKStepResize(), so the new absolute tolerance vector should be re-set following each call to
ERKStepResize() through a new call to ERKStepSVtolerances().

If scalar-valued tolerances or a tolerance function was specified through either ERKStepSStolerances() or
ERKStepWFtolerances(), then these will remain valid and no further action is necessary.

Note: For an example showing usage of the similar ARKStepResize() routine, see the supplied serial C example
problem, ark_heat1D_adapt.c.

6.6 User-supplied functions

The user-supplied functions for ERKStep consist of:

• a function that defines the ODE (required),

• a function that handles error and warning messages (optional),

• a function that provides the error weight vector (optional),

• a function that handles adaptive time step error control (optional),

• a function that handles explicit time step stability (optional),

• a function that defines the root-finding problem(s) to solve (optional),

• a function that handles vector resizing operations, if the underlying vector structure supports resizing (as opposed
to deletion/recreation), and if the user plans to call ERKStepResize() (optional).

6.6.1 ODE right-hand side

The user must supply a function of type ARKRhsFn to specify the right-hand side of the ODE system:

typedef int (*ARKRhsFn)(realtype t, N_Vector y, N_Vector ydot, void* user_data)
This function computes the ODE right-hand side for a given value of the independent variable 𝑡 and state vector
𝑦.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• ydot – the output vector that forms the ODE RHS 𝑓(𝑡, 𝑦).

• user_data – the user_data pointer that was passed to ERKStepSetUserData().

Return value: An ARKRhsFn should return 0 if successful, a positive value if a recoverable error occurred (in
which case ERKStep will attempt to correct), or a negative value if it failed unrecoverably (in which case the
integration is halted and ARK_RHSFUNC_FAIL is returned).

6.6. User-supplied functions 183

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Notes: Allocation of memory for ydot is handled within the ERKStep module. A recoverable failure error
return from the ARKRhsFn is typically used to flag a value of the dependent variable 𝑦 that is “illegal” in
some way (e.g., negative where only a non-negative value is physically meaningful). If such a return is made,
ERKStep will attempt to recover by reducing the step size in order to avoid this recoverable error return. There
are some situations in which recovery is not possible even if the right-hand side function returns a recoverable
error flag. One is when this occurs at the very first call to the ARKRhsFn (in which case ERKStep returns
ARK_FIRST_RHSFUNC_ERR).

6.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
ERKStepSetErrFile()), the user may provide a function of type ARKErrHandlerFn to process any such
messages.

typedef void (*ARKErrHandlerFn)(int error_code, const char* module, const char* function, char* msg,
void* user_data)

This function processes error and warning messages from ERKStep and its sub-modules.

Arguments:

• error_code – the error code.

• module – the name of the ERKStep module reporting the error.

• function – the name of the function in which the error occurred.

• msg – the error message.

• user_data – a pointer to user data, the same as the eh_data parameter that was passed to
ERKStepSetErrHandlerFn().

Return value: An ARKErrHandlerFn function has no return value.

Notes: error_code is negative for errors and positive (ARK_WARNING) for warnings. If a function that returns
a pointer to memory encounters an error, it sets error_code to 0.

6.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of type ARKEwtFn

to compute a vector ewt containing the weights in the WRMS norm ‖𝑣‖𝑊𝑅𝑀𝑆 =
(︁

1
𝑛

∑︀𝑛
𝑖=1 (𝑒𝑤𝑡𝑖 𝑣𝑖)

2
)︁1/2

. These
weights will be used in place of those defined in the section Error norms.

typedef int (*ARKEwtFn)(N_Vector y, N_Vector ewt, void* user_data)
This function computes the WRMS error weights for the vector 𝑦.

Arguments:

• y – the dependent variable vector at which the weight vector is to be computed.

• ewt – the output vector containing the error weights.

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ERKStepSetUserData().

Return value: An ARKEwtFn function must return 0 if it successfully set the error weights, and -1 otherwise.

Notes: Allocation of memory for ewt is handled within ERKStep.

The error weight vector must have all components positive. It is the user’s responsibility to perform this test and
return -1 if it is not satisfied.

184 Chapter 6. Using ERKStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

6.6.4 Time step adaptivity function

As an alternative to using one of the built-in time step adaptivity methods for controlling solution error, the user may
provide a function of type ARKAdaptFn to compute a target step size ℎ for the next integration step. These steps
should be chosen as the maximum value such that the error estimates remain below 1.

typedef int (*ARKAdaptFn)(N_Vector y, realtype t, realtype h1, realtype h2, realtype h3, realtype e1, real-
type e2, realtype e3, int q, int p, realtype* hnew, void* user_data)

This function implements a time step adaptivity algorithm that chooses ℎ satisfying the error tolerances.

Arguments:

• y – the current value of the dependent variable vector.

• t – the current value of the independent variable.

• h1 – the current step size, 𝑡𝑛 − 𝑡𝑛−1.

• h2 – the previous step size, 𝑡𝑛−1 − 𝑡𝑛−2.

• h3 – the step size 𝑡𝑛−2 − 𝑡𝑛−3.

• e1 – the error estimate from the current step, 𝑛.

• e2 – the error estimate from the previous step, 𝑛− 1.

• e3 – the error estimate from the step 𝑛− 2.

• q – the global order of accuracy for the method.

• p – the global order of accuracy for the embedded method.

• hnew – the output value of the next step size.

• user_data – a pointer to user data, the same as the h_data parameter that was passed to
ERKStepSetAdaptivityFn().

Return value: An ARKAdaptFn function should return 0 if it successfully set the next step size, and a non-zero
value otherwise.

6.6.5 Explicit stability function

A user may supply a function to predict the maximum stable step size for the explicit Runge Kutta method on this
problem. While the accuracy-based time step adaptivity algorithms may be sufficient for retaining a stable solution
to the ODE system, these may be inefficient if 𝑓(𝑡, 𝑦) contains moderately stiff terms. In this scenario, a user may
provide a function of type ARKExpStabFn to provide this stability information to ERKStep. This function must
set the scalar step size satisfying the stability restriction for the upcoming time step. This value will subsequently be
bounded by the user-supplied values for the minimum and maximum allowed time step, and the accuracy-based time
step.

typedef int (*ARKExpStabFn)(N_Vector y, realtype t, realtype* hstab, void* user_data)
This function predicts the maximum stable step size for the ODE system.

Arguments:

• y – the current value of the dependent variable vector.

• t – the current value of the independent variable.

• hstab – the output value with the absolute value of the maximum stable step size.

• user_data – a pointer to user data, the same as the estab_data parameter that was passed to
ERKStepSetStabilityFn().

6.6. User-supplied functions 185

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Return value: An ARKExpStabFn function should return 0 if it successfully set the upcoming stable step size,
and a non-zero value otherwise.

Notes: If this function is not supplied, or if it returns hstab ≤ 0.0, then ERKStep will assume that there is no
explicit stability restriction on the time step size.

6.6.6 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must supply a function of
type ARKRootFn.

typedef int (*ARKRootFn)(realtype t, N_Vector y, realtype* gout, void* user_data)
This function implements a vector-valued function 𝑔(𝑡, 𝑦) such that the roots of the nrtfn components 𝑔𝑖(𝑡, 𝑦)
are sought.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• gout – the output array, of length nrtfn, with components 𝑔𝑖(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
ERKStepSetUserData().

Return value: An ARKRootFn function should return 0 if successful or a non-zero value if an error occurred
(in which case the integration is halted and ERKStep returns ARK_RTFUNC_FAIL).

Notes: Allocation of memory for gout is handled within ERKStep.

6.6.7 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the ERKStep integrator may be “resized” between integration steps, through
calls to the ERKStepResize() function. Typically, when performing adaptive simulations the solution is stored in
a customized user-supplied data structure, to enable adaptivity without repeated allocation/deallocation of memory. In
these scenarios, it is recommended that the user supply a customized vector kernel to interface between SUNDIALS
and their problem-specific data structure. If this vector kernel includes a function of type ARKVecResizeFn to
resize a given vector implementation, then this function may be supplied to ERKStepResize() so that all internal
ERKStep vectors may be resized, instead of deleting and re-creating them at each call. This resize function should
have the following form:

typedef int (*ARKVecResizeFn)(N_Vector y, N_Vector ytemplate, void* user_data)
This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.

Arguments:

• y – the vector to resize.

• ytemplate – a vector of the desired size.

• user_data – a pointer to user data, the same as the resize_data parameter that was passed to
ERKStepResize().

Return value: An ARKVecResizeFn function should return 0 if it successfully resizes the vector y, and a non-
zero value otherwise.

Notes: If this function is not supplied, then ERKStep will instead destroy the vector y and clone a new vector y
off of ytemplate.

186 Chapter 6. Using ERKStep for C and C++ Applications

CHAPTER

SEVEN

USING MRISTEP FOR C AND C++ APPLICATIONS

This chapter is concerned with the use of the MRIStep time-stepping module for the solution of two-rate initial value
problems (IVPs) in a C or C++ language setting. The following sections discuss the header files and the layout of the
user’s main program, and provide descriptions of the MRIStep user-callable functions and user-supplied functions.

The example programs described in the companion document [R2018] may be helpful. Those codes may be used as
templates for new codes and are included in the ARKode package examples subdirectory.

MRIStep uses the input and output constants from the shared ARKode infrastructure. These are defined as needed in
this chapter, but for convenience the full list is provided separately in the section Appendix: ARKode Constants.

The relevant information on using MRIStep’s C and C++ interfaces is detailed in the following sub-sections.

7.1 Access to library and header files

At this point, it is assumed that the installation of ARKode, following the procedure described in the section ARKode
Installation Procedure, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must make
reference to the appropriate locations for the library and header files required by ARKode. The relevant library files
are

• libdir/libsundials_arkode.lib,

• libdir/libsundials_nvec*.lib,

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant header files
are located in the subdirectories

• incdir/include/arkode

• incdir/include/sundials

• incdir/include/nvector

The directories libdir and incdir are the installation library and include directories, respectively. For a default in-
stallation, these are instdir/lib and instdir/include, respectively, where instdir is the directory where
SUNDIALS was installed (see the section ARKode Installation Procedure for further details).

7.2 Data Types

The sundials_types.h file contains the definition of the variable type realtype, which is used by the SUN-
DIALS solvers for all floating-point data, the definition of the integer type sunindextype, which is used for vector
and matrix indices, and booleantype, which is used for certain logic operations within SUNDIALS.

187

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

7.2.1 Floating point types

The type “realtype” can be set to float, double, or long double, depending on how SUNDIALS was in-
stalled (with the default being double). The user can change the precision of the SUNDIALS solvers’ floating-point
arithmetic at the configuration stage (see the section Configuration options (Unix/Linux)).

Additionally, based on the current precision, sundials_types.h defines the values BIG_REAL to be the largest
value representable as a realtype, SMALL_REAL to be the smallest positive value representable as a realtype,
and UNIT_ROUNDOFF to be the smallest realtype number, 𝜀, such that 1.0 + 𝜀 ̸= 1.0.

Within SUNDIALS, real constants may be set to have the appropriate precision by way of a macro called RCONST.
It is this macro that needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant
with no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a float,
whereas using the suffix “L” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be a long double
constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if realtype is double, to
1.0F if realtype is float, or to 1.0L if realtype is long double. SUNDIALS uses the RCONST macro
internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONSTmacro to handle floating-point constants is precision-
independent, except for any calls to precision-specific standard math library functions. Users can, however, use the
types double, float, or long double in their code (assuming that this usage is consistent with the size of
realtype values that are passed to and from SUNDIALS). Thus, a previously existing piece of ANSI C code
can use SUNDIALS without modifying the code to use realtype, so long as the SUNDIALS libraries have been
compiled using the same precision (for details see the section ARKode Installation Procedure).

7.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable int64_t type,
and the user can change it to int32_t at the configuration stage. The configuration system will detect if the compiler
does not support portable types, and will replace int32_t and int64_t with int and long int, respectively, to
ensure use of the desired sizes on Linux, Mac OS X, and Windows platforms. SUNDIALS currently does not support
unsigned integer types for vector and matrix indices, although these could be added in the future if there is sufficient
demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both index stor-
age types except for any calls to index storage-specific external libraries. (Our C and C++ example programs use
sunindextype.) Users can, however, use any one of int, long int, int32_t, int64_t or long long
int in their code, assuming that this usage is consistent with the typedef for sunindextype on their architec-
ture. Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying the code to use
sunindextype, so long as the SUNDIALS libraries use the appropriate index storage type (for details see the
section ARKode Installation Procedure).

7.3 Header Files

When using MRIStep, the calling program must include several header files so that various macros and data types can
be used. The header file that is always required is:

188 Chapter 7. Using MRIStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• arkode/arkode_mristep.h, the main header file for the MRIStep time-stepping module, which
defines the several types and various constants, includes function prototypes, and includes the shared
arkode/arkode.h header file.

Note that arkode.h includes sundials_types.h directly, which defines the types realtype,
sunindextype, and booleantype and the constants SUNFALSE and SUNTRUE, so a user program does not
need to include sundials_types.h directly.

Additionally, the calling program must also include an NVECTOR implementation header file, of the form
nvector/nvector_***.h, corresponding to the user’s preferred data layout and form of parallelism. See
the section Vector Data Structures for details for the appropriate name. This file in turn includes the header file
sundials_nvector.h which defines the abstract N_Vector data type.

7.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
the MRIStep module. Most of the steps are independent of the NVECTOR implementation used. For the steps that
are not, refer to the section Vector Data Structures for the specific name of the function to be called or macro to be
referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use
within the threaded vector functions, if used.

2. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the form

y0 = N_VMake_***(..., ydata);

if the realtype array ydata containing the initial values of 𝑦 already exists. Otherwise, create a new vector
by making a call of the form

y0 = N_VNew_***(...);

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_***(y0);

See the sections The NVECTOR_SERIAL Module through The NVECTOR_PTHREADS Module for details.

For the HYPRE and PETSc vector wrappers, first create and initialize the underlying vector, and then create the
NVECTOR wrapper with a call of the form

y0 = N_VMake_***(yvec);

where yvec is a HYPRE or PETSc vector. Note that calls like N_VNew_***(...) and
N_VGetArrayPointer_***(...) are not available for these vector wrappers. See the sections The
NVECTOR_PARHYP Module and The NVECTOR_PETSC Module for details.

7.4. A skeleton of the user’s main program 189

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

If using either the CUDA- or RAJA-based vector implementations use a call of the form

y0 = N_VMake_***(..., c);

where c is a pointer to a suncudavec or sunrajavec vector class if this class already exists. Otherwise,
create a new vector by making a call of the form

N_VGetDeviceArrayPointer_***

or

N_VGetHostArrayPointer_***

Note that the vector class will allocate memory on both the host and device when instantiated. See the sections
The NVECTOR_CUDA Module and The NVECTOR_RAJA Module for details.

4. Create MRIStep object

Call arkode_mem = MRIStepCreate(...) to create the MRIStep memory block.
MRIStepCreate() returns a void* pointer to this memory structure. See the section MRIStep ini-
tialization and deallocation functions for details.

5. Set the slow and fast step sizes

Call MRIStepSetFixedStep() to specify the slow and fast time step sizes.

6. Set optional inputs

Call MRIStepSet* functions to change any optional inputs that control the behavior of MRIStep from their
default values. See the section Optional input functions for details.

7. Specify rootfinding problem

Optionally, call MRIStepRootInit() to initialize a rootfinding problem to be solved during the integration
of the ODE system. See the section Rootfinding initialization function for general details, and the section
Optional input functions for relevant optional input calls.

8. Advance solution in time

For each point at which output is desired, call

ier = MRIStepEvolve(arkode_mem, tout, yout, &tret, itask);

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y0 above) will
contain 𝑦(𝑡out). See the section MRIStep solver function for details.

9. Get optional outputs

Call MRIStepGet* functions to obtain optional output. See the section Optional output functions for details.

10. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the NVECTOR
destructor function:

N_VDestroy(y);

11. Free solver memory

Call MRIStepFree(&arkode_mem) to free the memory allocated for the MRIStep module.

12. Finalize MPI, if used

Call MPI_Finalize to terminate MPI.

190 Chapter 7. Using MRIStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

7.5 MRIStep User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the MRIStep
time-stepping module. Some of these are required; however, starting with the section Optional input functions, the
functions listed involve optional inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of
ARKode’s MRIStep module. In any case, refer to the preceding section, A skeleton of the user’s main program, for
the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to stderr by default. However, the user can
set a file as error output or can provide her own error handler function (see the section Optional input functions for
details).

7.5.1 MRIStep initialization and deallocation functions

void* MRIStepCreate(ARKRhsFn fs, ARKRhsFn ff, realtype t0, N_Vector y0)
This function allocates and initializes memory for a problem to be solved using the MRIStep time-stepping
module in ARKode.

Arguments:

• fs – the name of the C function (of type ARKRhsFn()) defining the slow portion of the right-hand
side function in �̇� = 𝑓𝑠(𝑡, 𝑦) + 𝑓𝑓 (𝑡, 𝑦).

• ff – the name of the C function (of type ARKRhsFn()) defining the fast portion of the right-hand
side function in �̇� = 𝑓𝑠(𝑡, 𝑦) + 𝑓𝑓 (𝑡, 𝑦).

• t0 – the initial value of 𝑡.

• y0 – the initial condition vector 𝑦(𝑡0).

Return value: If successful, a pointer to initialized problem memory of type void*, to be passed to all user-
facing MRIStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.

void MRIStepFree(void** arkode_mem)
This function frees the problem memory arkode_mem created by MRIStepCreate().

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

Return value: None

7.5.2 Rootfinding initialization function

As described in the section Rootfinding, while solving the IVP, ARKode’s time-stepping modules have the capability
to find the roots of a set of user-defined functions. In the MRIStep module root finding is performed between slow
solution time steps only (i.e., it is not performed within the sub-stepping a fast time scales). To activate the root-finding
algorithm, call the following function. This is normally called only once, prior to the first call to MRIStepEvolve(),
but if the rootfinding problem is to be changed during the solution, MRIStepRootInit() can also be called prior
to a continuation call to MRIStepEvolve().

int MRIStepRootInit(void* arkode_mem, int nrtfn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
MRIStepCreate(), and before MRIStepEvolve().

Arguments:

7.5. MRIStep User-callable functions 191

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• arkode_mem – pointer to the MRIStep memory block.

• nrtfn – number of functions 𝑔𝑖, an integer ≥ 0.

• g – name of user-supplied function, of type ARKRootFn(), defining the functions 𝑔𝑖 whose roots
are sought.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

• ARK_MEM_FAIL if there was a memory allocation failure

• ARK_ILL_INPUT if nrtfn is greater than zero but g = NULL.

Notes: To disable the rootfinding feature after it has already been initialized, or to free memory associated with
MRIStep’s rootfinding module, call MRIStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to MRIStepReInit(), where the new IVP has no rootfinding
problem but the prior one did, then call MRIStepRootInit with nrtfn = 0.

7.5.3 MRIStep solver function

This is the central step in the solution process – the call to perform the integration of the IVP. The input argument itask
specifies one of two modes as to where MRIStep is to return a solution. These modes are modified if the user has set
a stop time (with a call to the optional input function MRIStepSetStopTime()) or has requested rootfinding.

int MRIStepEvolve(void* arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in 𝑡.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• tout – the next time at which a computed solution is desired.

• yout – the computed solution vector.

• tret – the time corresponding to yout (output).

• itask – a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, tout, in the direction of integration, i.e. 𝑡𝑛−1 < tout ≤ 𝑡𝑛 for forward inte-
gration, or 𝑡𝑛 ≤ tout < 𝑡𝑛−1 for backward integration. It will then compute an approximation to
the solution 𝑦(𝑡𝑜𝑢𝑡) by interpolation (using one of the dense output routines described in the section
Interpolation).

The ARK_ONE_STEP option tells the solver to only take a single internal step 𝑦𝑛−1 → 𝑦𝑛 and then
return control back to the calling program. If this step will overtake tout then the solver will again
return an interpolated result; otherwise it will return a copy of the internal solution 𝑦𝑛 in the vector
yout

Return value:

• ARK_SUCCESS if successful.

• ARK_ROOT_RETURN if MRIStepEvolve() succeeded, and found one or more roots. If the num-
ber of root functions, nrtfn, is greater than 1, call MRIStepGetRootInfo() to see which 𝑔𝑖 were
found to have a root at (*tret).

• ARK_TSTOP_RETURN if MRIStepEvolve() succeeded and returned at tstop.

192 Chapter 7. Using MRIStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_MEM_NULL if the arkode_mem argument was NULL.

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if one of the inputs to MRIStepEvolve() is illegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

1. A component of the error weight vector became zero during internal time-stepping.

2. A root of one of the root functions was found both at a point 𝑡 and also very near 𝑡.

• ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach tout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

• ARK_VECTOROP_ERR a vector operation error occured.

• ARK_INNERSTEP_FAILED if the inner stepper returned with an unrecoverable error. The value
returned from the inner stepper can be obtained with MRIStepGetLastInnerStepFlag().

Notes: The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
MRIStepCreate().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale of
the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
MRIStepEvolve() failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the user
should issue a call to MRIStepSetStopTime() before the call to MRIStepEvolve() to specify a fixed
stop time to end the time step and return to the user. Upon return from MRIStepEvolve(), a copy of the
internal solution 𝑦𝑛 will be returned in the vector yout. Once the integrator returns at a tstop time, any future
testing for tstop is disabled (and can be re-enabled only though a new call to MRIStepSetStopTime()).

On any error return in which one or more internal steps were taken by MRIStepEvolve(), the returned values
of tret and yout correspond to the farthest point reached in the integration. On all other error returns, tret and
yout are left unchanged from those provided to the routine.

7.5.4 Optional input functions

There are numerous optional input parameters that control the behavior of the MRIStep solver, each of which may be
modified from its default value through calling an appropriate input function. The following tables list all optional
input functions, grouped by which aspect of MRIStep they control. Detailed information on the calling syntax and
arguments for each function are then provided following each table.

The optional inputs are grouped into the following categories:

• General MRIStep options (Optional inputs for MRIStep),

• IVP method solver options (Optional inputs for IVP method selection),

For the most casual use of MRIStep, relying on the default set of solver parameters, the reader can skip to the following
section, User-supplied functions.

We note that, on an error return, all of the optional input functions send an error message to the error handler function.
We also note that all error return values are negative, so a test on the return arguments for negative values will catch
all errors.

7.5. MRIStep User-callable functions 193

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Optional inputs for MRIStep

Optional input Function name Default
Return MRIStep solver parameters to their defaults MRIStepSetDefaults() internal
Set dense output order MRIStepSetDenseOrder() 3
Supply a pointer to a diagnostics output file MRIStepSetDiagnostics() NULL
Supply a pointer to an error output file MRIStepSetErrFile() stderr
Supply a custom error handler function MRIStepSetErrHandlerFn() internal fn
Run with fixed-step sizes MRIStepSetFixedStep() required
Maximum no. of warnings for 𝑡𝑛 + ℎ = 𝑡𝑛 MRIStepSetMaxHnilWarns() 10
Maximum no. of internal steps before tout MRIStepSetMaxNumSteps() 500
Set a value for 𝑡𝑠𝑡𝑜𝑝 MRIStepSetStopTime() ∞
Supply a pointer for user data MRIStepSetUserData() NULL

int MRIStepSetDefaults(void* arkode_mem)

Resets all optional input parameters to MRIStep’s original default values.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This function does not change problem-defining function pointers fs and ff or the user_data pointer.
It also does not affect any data structures or options related to root-finding (those can be reset using
MRIStepRootInit()).

int MRIStepSetDenseOrder(void* arkode_mem, int dord)
Specifies the degree of the polynomial interpolant used for dense output (i.e. interpolation of solution output
values).

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• dord – requested polynomial order of accuracy.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Allowed values are between 0 and min(q,5), where q is the order of the overall integration method.

int MRIStepSetDiagnostics(void* arkode_mem, FILE* diagfp)
Specifies the file pointer for a diagnostics file where all MRIStep step adaptivity and solver information is
written.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• diagfp – pointer to the diagnostics output file.

Return value:

194 Chapter 7. Using MRIStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: This parameter can be stdout or stderr, although the suggested approach is to specify a pointer to
a unique file opened by the user and returned by fopen. If not called, or if called with a NULL file pointer, all
diagnostics output is disabled.

When run in parallel, only one process should set a non-NULL value for this pointer, since statistics from all
processes would be identical.

int MRIStepSetErrFile(void* arkode_mem, FILE* errfp)
Specifies a pointer to the file where all MRIStep warning and error messages will be written if the default internal
error handling function is used.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• errfp – pointer to the output file.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value for errfp is stderr.

Passing a NULL value disables all future error message output (except for the case wherein the MRIStep memory
pointer is NULL). This use of the function is strongly discouraged.

If used, this routine should be called before any other optional input functions, in order to take effect for subse-
quent error messages.

int MRIStepSetErrHandlerFn(void* arkode_mem, ARKErrHandlerFn ehfun, void* eh_data)
Specifies the optional user-defined function to be used in handling error messages.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• ehfun – name of user-supplied error handler function.

• eh_data – pointer to user data passed to ehfun every time it is called.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Error messages indicating that the MRIStep solver memory is NULL will always be directed to stderr.

int MRIStepSetFixedStep(void* arkode_mem, realtype hs, realtype hf)
Set the slow and fast step size used within MRIStep.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• hs – value of the slow step size.

7.5. MRIStep User-callable functions 195

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• hf – value of the fast step size.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes:

If hf does not evenly divide the time interval between the stages of the slow method, then the actual value used
for the fast steps will be slightly smaller than hf to ensure (𝑐𝑠𝑖 − 𝑐𝑠𝑖−1)ℎ𝑠/ℎ𝑓 is an integer value. Specifically,

the fast step for the i-th slow stage will be ℎ =
(𝑐𝑠𝑖−𝑐𝑠𝑖−1)ℎ𝑠

⌈(𝑐𝑠𝑖−𝑐𝑠𝑖−1)ℎ𝑠/ℎ𝑓⌉ .

If both MRIStepSetFixedStep() and MRIStepSetStopTime() are used, then the fixed step size will
be used for all steps until the final step preceding the provided stop time (which may be shorter). To resume
use of the previous fixed step size, another call to MRIStepSetFixedStep() must be made prior to calling
MRIStepEvolve() to resume integration.

int MRIStepSetMaxHnilWarns(void* arkode_mem, int mxhnil)
Specifies the maximum number of messages issued by the solver to warn that 𝑡 + ℎ = 𝑡 on the next internal
step, before MRIStep will instead return with an error.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• mxhnil – maximum allowed number of warning messages (> 0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default value is 10; set mxhnil to zero to specify this default.

A negative value indicates that no warning messages should be issued.

int MRIStepSetMaxNumSteps(void* arkode_mem, long int mxsteps)
Specifies the maximum number of steps to be taken by the solver in its attempt to reach the next output time,
before MRIStep will return with an error.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• mxsteps – maximum allowed number of internal steps.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: Passing mxsteps = 0 results in MRIStep using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

int MRIStepSetStopTime(void* arkode_mem, realtype tstop)
Specifies the value of the independent variable 𝑡 past which the solution is not to proceed.

196 Chapter 7. Using MRIStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• tstop – stopping time for the integrator.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default is that no stop time is imposed.

int MRIStepSetUserData(void* arkode_mem, void* user_data)
Specifies the user data block user_data and attaches it to the main MRIStep memory block.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• user_data – pointer to the user data.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: If specified, the pointer to user_data is passed to all user-supplied functions for which it is an argument;
otherwise NULL is passed.

Optional inputs for IVP method selection

Optional input Function name Default
Set MRI RK tables MRIStepSetMRITables() internal
Specify MRI RK table numbers MRIStepSetMRITableNum() internal

int MRIStepSetMRITables(void* arkode_mem, int q, ARKodeButcherTable Bs, ARKodeButcherTable Bf)
Specifies a customized Butcher table pair for the MRI method.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• q – global order of accuracy for the MRI method.

• Bs – the Butcher table for the slow RK method.

• Bf – the Butcher table for the fast RK method.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes:

For a description of the ARKodeButcherTable type and related functions for creating Butcher tables see
Butcher Table Data Structure.

7.5. MRIStep User-callable functions 197

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

At this time the slow and fast Butcher tables must define an explicit Runge-Kutta method. Additionally, the
slow table must have stage times that are unique and ordered (i.e., 𝑐𝑠𝑖 > 𝑐𝑠𝑖−1) and the final stage time must be
less than 1. Error checking is performed to ensure that Bs and Bf define ERK methods (i.e., the A component of
Bs and Bf are strictly lower-triangular) and the stage times of Bs satisfy the aforementioned restrictions.

The input value of q is used rather than the orders encoded in the individual tables as the overall order of the
MRI method may differ from the orders of the individual tables. No error checking is performed to ensure that
p correctly describe the coefficients that were input.

int MRIStepSetMRITableNum(void* arkode_mem, int istable, int iftable)
Indicates to use specific built-in Butcher tables for the MRI method.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• istable – index of the slow Butcher table.

• iftable – index of the fast Butcher table.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: istable and iftable should match existing explicit methods from the section Explicit Butcher tables.
Error-checking is performed to ensure that these tables exists, and are not implicit.

Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm, the mathematics of
which are described in the section Rootfinding.

Optional input Function name Default
Direction of zero-crossings to monitor MRIStepSetRootDirection() both
Disable inactive root warnings MRIStepSetNoInactiveRootWarn() enabled

int MRIStepSetRootDirection(void* arkode_mem, int* rootdir)
Specifies the direction of zero-crossings to be located and returned.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• rootdir – state array of length nrtfn, the number of root functions 𝑔𝑖 (the value of nrtfn was supplied
in the call to MRIStepRootInit()). If rootdir[i] == 0 then crossing in either direction for
𝑔𝑖 should be reported. A value of +1 or -1 indicates that the solver should report only zero-crossings
where 𝑔𝑖 is increasing or decreasing, respectively.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

• ARK_ILL_INPUT if an argument has an illegal value

Notes: The default behavior is to monitor for both zero-crossing directions.

int MRIStepSetNoInactiveRootWarn(void* arkode_mem)
Disables issuing a warning if some root function appears to be identically zero at the beginning of the integration.

198 Chapter 7. Using MRIStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory is NULL

Notes: MRIStep will not report the initial conditions as a possible zero-crossing (assuming that one or more
components 𝑔𝑖 are zero at the initial time). However, if it appears that some 𝑔𝑖 is identically zero at the initial
time (i.e., 𝑔𝑖 is zero at the initial time and after the first step), MRIStep will issue a warning which can be
disabled with this optional input function.

7.5.5 Interpolated output function

An optional function MRIStepGetDky() is available to obtain additional values of solution-related quantities. This
function should only be called after a successful return from MRIStepEvolve(), as it provides interpolated values
either of 𝑦 or of its derivatives (up to the 3rd derivative) interpolated to any value of 𝑡 in the last internal step taken
by MRIStepEvolve(). Internally, this dense output algorithm is identical to the algorithm used for the maximum
order implicit predictors, described in the section Maximum order predictor, except that derivatives of the polynomial
model may be evaluated upon request.

int MRIStepGetDky(void* arkode_mem, realtype t, int k, N_Vector dky)
Computes the k-th derivative of the function 𝑦 at the time t, i.e. 𝑑(𝑘)

𝑑𝑡(𝑘) 𝑦(𝑡), for values of the independent variable
satisfying 𝑡𝑛 − ℎ𝑛 ≤ 𝑡 ≤ 𝑡𝑛, with 𝑡𝑛 as current internal time reached, and ℎ𝑛 is the last internal step size suc-
cessfully used by the solver. This routine uses an interpolating polynomial of degree max(dord, k), where dord is
the argument provided to MRIStepSetDenseOrder(). The user may request k in the range {0,...,*dord*}.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• t – the value of the independent variable at which the derivative is to be evaluated.

• k – the derivative order requested.

• dky – output vector (must be allocated by the user).

Return value:

• ARK_SUCCESS if successful

• ARK_BAD_K if k is not in the range {0,...,*dord*}.

• ARK_BAD_T if t is not in the interval [𝑡𝑛 − ℎ𝑛, 𝑡𝑛]

• ARK_BAD_DKY if the dky vector was NULL

• ARK_MEM_NULL if the MRIStep memory is NULL

Notes: It is only legal to call this function after a successful return from MRIStepEvolve().

A user may access the values 𝑡𝑛 and ℎ𝑛 via the functions MRIStepGetCurrentTime() and
MRIStepGetLastStep(), respectively.

7.5.6 Optional output functions

MRIStep provides an extensive set of functions that can be used to obtain solver performance information. We organize
these into groups:

7.5. MRIStep User-callable functions 199

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

1. SUNDIALS version information accessor routines are in the subsection SUNDIALS version information,

2. General MRIStep output routines are in the subsection Main solver optional output functions,

3. Output routines regarding root-finding results are in the subsection Rootfinding optional output functions,

4. General usability routines (e.g. to print the current MRIStep parameters, or output the current Butcher tables)
are in the subsection General usability functions.

Following each table, we elaborate on each function.

Some of the optional outputs, especially the various counters, can be very useful in determining the efficiency of
various methods inside MRIStep. For example:

• The counters nssteps, nfsteps, nfs_evals, and nff_evals provide a rough measure of the overall cost of a given
run, and can be compared between runs with different solver options to suggest which set of options is the most
efficient.

It is therefore recommended that users retrieve and output these statistics following each run, and take some time to
investigate alternate solver options that will be more optimal for their particular problem of interest.

SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.

int SUNDIALSGetVersion(char *version, int len)
This routine fills a string with SUNDIALS version information.

Arguments:

• version – character array to hold the SUNDIALS version information.

• len – allocated length of the version character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS version

Notes: An array of 25 characters should be sufficient to hold the version information.

int SUNDIALSGetVersionNumber(int *major, int *minor, int *patch, char *label, int len)
This routine sets integers for the SUNDIALS major, minor, and patch release numbers and fills a string with the
release label if applicable.

Arguments:

• major – SUNDIALS release major version number.

• minor – SUNDIALS release minor version number.

• patch – SUNDIALS release patch version number.

• label – string to hold the SUNDIALS release label.

• len – allocated length of the label character array.

Return value:

• 0 if successful

• -1 if the input string is too short to store the SUNDIALS label

Notes: An array of 10 characters should be sufficient to hold the label information. If a label is not used in the
release version, no information is copied to label.

200 Chapter 7. Using MRIStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Main solver optional output functions

Optional output Function name
Size of MRIStep real and integer workspaces MRIStepGetWorkSpace()
Cumulative numbers of internal steps MRIStepGetNumSteps()
Step size used for the last successful step MRIStepGetLastStep()
Name of constant associated with a return flag MRIStepGetReturnFlagName()
No. of calls to the fs and ff functions MRIStepGetNumRhsEvals()
Current MRI Butcher tables MRIStepGetCurrentButcherTables()
Last inner stepper return value MRIStepGetLastInnerStepFlag()

int MRIStepGetWorkSpace(void* arkode_mem, long int* lenrw, long int* leniw)
Returns the MRIStep real and integer workspace sizes.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• lenrw – the number of realtype values in the MRIStep workspace.

• leniw – the number of integer values in the MRIStep workspace.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetNumSteps(void* arkode_mem, long int* nssteps, long int* nfsteps)
Returns the cumulative number of slow and fast internal steps taken by the solver (so far).

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nssteps – number of slow steps taken in the solver.

• nfsteps – number of fast steps taken in the solver.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetLastStep(void* arkode_mem, realtype* hlast)
Returns the integration step size taken on the last successful internal step.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• hlast – step size taken on the last internal step.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetCurrentTime(void* arkode_mem, realtype* tcur)
Returns the current internal time reached by the solver.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

7.5. MRIStep User-callable functions 201

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• tcur – current internal time reached.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

char *MRIStepGetReturnFlagName(long int flag)
Returns the name of the MRIStep constant corresponding to flag.

Arguments:

• flag – a return flag from an MRIStep function.

Return value: The return value is a string containing the name of the corresponding constant.

int MRIStepGetNumRhsEvals(void* arkode_mem, long int* nfs_evals, long int* nff_evals)
Returns the number of calls to the user’s slow and fast right-hand side functions, 𝑓𝑠 and 𝑓𝑓 (so far).

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• nfs_evals – number of calls to the user’s 𝑓𝑠(𝑡, 𝑦) function.

• nff_evals – number of calls to the user’s 𝑓𝑓(𝑡, 𝑦) function.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

int MRIStepGetCurrentButcherTables(void* arkode_mem, ARKodeButcherTable *Bs, ARKode-
ButcherTable *Bf)

Returns the slow and fast Butcher tables currently in use by the solver.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• Bs – pointer to slow Butcher table structure.

• Bf – pointer to fast Butcher table structure.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

Notes: The ARKodeButcherTable data structure is defined in the header file arkode/arkode_butcher.h.
It is defined as a pointer to the following C structure:

typedef struct ARKodeButcherTableMem {

int q; /* method order of accuracy */
int p; /* embedding order of accuracy */
int stages; /* number of stages */
realtype **A; /* Butcher table coefficients */
realtype *c; /* canopy node coefficients */
realtype *b; /* root node coefficients */
realtype *d; /* embedding coefficients */

} *ARKodeButcherTable;

202 Chapter 7. Using MRIStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int MRIStepGetLastInnerStepFlag(void* arkode_mem, int* flag)
Returns the last return value from the inner stepper.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• flag – inner stepper return value.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

General usability functions

The following optional routines may be called by a user to inquire about existing solver parameters, to retrieve stored
Butcher tables, write the current Butcher table, or even to test a provided Butcher table to determine its analytical order
of accuracy. While none of these would typically be called during the course of solving an initial value problem, these
may be useful for users wishing to better understand MRIStep and/or specific Runge-Kutta methods.

Optional routine Function name
Output all MRIStep solver parameters MRIStepWriteParameters()
Output the current Butcher tables MRIStepWriteButcher()

int MRIStepWriteParameters(void* arkode_mem, FILE *fp)
Outputs all MRIStep solver parameters to the provided file pointer.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• fp – pointer to use for printing the solver parameters.

Return value:

• ARKS_SUCCESS if successful

• ARKS_MEM_NULL if the MRIStep memory was NULL

Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since parameters for all
processes would be identical.

int MRIStepWriteButcher(void* arkode_mem, FILE *fp)
Outputs the current Butcher tables to the provided file pointer.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• fp – pointer to use for printing the Butcher tables.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

Notes: The fp argument can be stdout or stderr, or it may point to a specific file created using fopen.

When run in parallel, only one process should set a non-NULL value for this pointer, since tables for all pro-
cesses would be identical.

7.5. MRIStep User-callable functions 203

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Rootfinding optional output functions

Optional output Function name
Array showing roots found MRIStepGetRootInfo()
No. of calls to user root function MRIStepGetNumGEvals()

int MRIStepGetRootInfo(void* arkode_mem, int* rootsfound)
Returns an array showing which functions were found to have a root.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• rootsfound – array of length nrtfn with the indices of the user functions 𝑔𝑖 found to have a root
(the value of nrtfn was supplied in the call to MRIStepRootInit()). For 𝑖 = 0 . . . nrtfn-1,
rootsfound[i] is nonzero if 𝑔𝑖 has a root, and 0 if not.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

Notes: The user must allocate space for rootsfound prior to calling this function.

For the components of 𝑔𝑖 for which a root was found, the sign of rootsfound[i] indicates the direction of
zero-crossing. A value of +1 indicates that 𝑔𝑖 is increasing, while a value of -1 indicates a decreasing 𝑔𝑖.

int MRIStepGetNumGEvals(void* arkode_mem, long int* ngevals)
Returns the cumulative number of calls made to the user’s root function 𝑔.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• ngevals – number of calls made to 𝑔 so far.

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

7.5.7 MRIStep re-initialization functions

To reinitialize the MRIStep module for the solution of a new problem, where a prior call to MRIStepCreate() has
been made, the user must call the function MRIStepReInit(). The new problem must have the same size as the
previous one. This routine performs the same input checking and initializations that are done in MRIStepCreate(),
but it performs no memory allocation as is assumes that the existing internal memory is sufficient for the new prob-
lem. A call to this re-initialization routine deletes the solution history that was stored internally during the previous
integration. Following a successful call to MRIStepReInit(), call MRIStepEvolve() again for the solution of
the new problem.

The use of MRIStepReInit() requires that the number of Runge Kutta stages for both the slow and fast methods
be no larger for the new problem than for the previous problem.

One important use of the MRIStepReInit() function is in the treating of jump discontinuities in the RHS functions.
Except in cases of fairly small jumps, it is usually more efficient to stop at each point of discontinuity and restart the
integrator with a readjusted ODE model, using a call to this routine. To stop when the location of the discontinuity
is known, simply make that location a value of tout. To stop when the location of the discontinuity is determined
by the solution, use the rootfinding feature. In either case, it is critical that the RHS functions not incorporate the
discontinuity, but rather have a smooth extension over the discontinuity, so that the step across it (and subsequent

204 Chapter 7. Using MRIStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

rootfinding, if used) can be done efficiently. Then use a switch within the RHS functions (communicated through
user_data) that can be flipped between the stopping of the integration and the restart, so that the restarted problem
uses the new values (which have jumped). Similar comments apply if there is to be a jump in the dependent variable
vector.

int MRIStepReInit(void* arkode_mem, ARKRhsFn fs, ARKRhsFn ff, realtype t0, N_Vector y0)
Provides required problem specifications and re-initializes the MRIStep time-stepper module.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• fs – the name of the C function (of type ARKRhsFn()) defining the slow right-hand side function in
�̇� = 𝑓𝑠(𝑡, 𝑦) + 𝑓𝑓 (𝑡, 𝑦).

• ff – the name of the C function (of type ARKRhsFn()) defining the fast right-hand side function in
�̇� = 𝑓𝑠(𝑡, 𝑦) + 𝑓𝑓 (𝑡, 𝑦).

• t0 – the initial value of 𝑡.

• y0 – the initial condition vector 𝑦(𝑡0).

Return value:

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

• ARK_MEM_FAIL if a memory allocation failed

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, MRIStepReInit() also sends an error message to the error handler function.

7.5.8 MRIStep system resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatially-adaptive PDE simulations under a method-of-lines approach), the MRIStep integrator may be “resized” be-
tween slow integration steps, through calls to the MRIStepResize() function. This function modifies MRIStep’s
internal memory structures to use the new problem size.

To aid in the vector resize operation, the user can supply a vector resize function that will take as input a vector with
the previous size, and transform it in-place to return a corresponding vector of the new size. If this function (of type
ARKVecResizeFn()) is not supplied (i.e. is set to NULL), then all existing vectors internal to MRIStep will be
destroyed and re-cloned from the new input vector.

int MRIStepResize(void* arkode_mem, N_Vector ynew, realtype t0, ARKVecResizeFn resize, void* re-
size_data)

Re-initializes MRIStep with a different state vector.

Arguments:

• arkode_mem – pointer to the MRIStep memory block.

• ynew – the newly-sized solution vector, holding the current dependent variable values 𝑦(𝑡0).

• t0 – the current value of the independent variable 𝑡0 (this must be consistent with ynew).

• resize – the user-supplied vector resize function (of type ARKVecResizeFn().

• resize_data – the user-supplied data structure to be passed to resize when modifying internal MRIStep
vectors.

Return value:

7.5. MRIStep User-callable functions 205

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• ARK_SUCCESS if successful

• ARK_MEM_NULL if the MRIStep memory was NULL

• ARK_NO_MALLOC if arkode_mem was not allocated.

• ARK_ILL_INPUT if an argument has an illegal value.

Notes: If an error occurred, MRIStepResize() also sends an error message to the error handler function.

7.6 User-supplied functions

The user-supplied functions for MRIStep consist of:

• functions that defines the ODE (required),

• a function that handles error and warning messages (optional),

• a function that defines the root-finding problem(s) to solve (optional),

• a function that handles vector resizing operations, if the underlying vector structure supports resizing (as opposed
to deletion/recreation), and if the user plans to call MRIStepResize() (optional).

7.6.1 ODE right-hand side

The user must supply two functions of type ARKRhsFn to specify the right-hand side of the ODE system:

typedef int (*ARKRhsFn)(realtype t, N_Vector y, N_Vector ydot, void* user_data)
This function computes a portion of the ODE right-hand side for a given value of the independent variable 𝑡 and
state vector 𝑦.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• ydot – the output vector that forms a portion the ODE RHS 𝑓(𝑡, 𝑦).

• user_data – the user_data pointer that was passed to MRIStepSetUserData().

Return value: An ARKRhsFn should return 0 if successful, a positive value if a recoverable error occurred, or a
negative value if it failed unrecoverably. As the MRIStep module only supports fixed step sizes at this time any
non-zero return value will halt the integration.

Notes: Allocation of memory for ydot is handled within the MRIStep module. A recoverable failure error return
from the ARKRhsFn is typically used to flag a value of the dependent variable 𝑦 that is “illegal” in some way
(e.g., negative where only a non-negative value is physically meaningful).

7.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to by errfp (see
MRIStepSetErrFile()), the user may provide a function of type ARKErrHandlerFn to process any such
messages.

typedef void (*ARKErrHandlerFn)(int error_code, const char* module, const char* function, char* msg,
void* user_data)

This function processes error and warning messages from MRIStep and its sub-modules.

Arguments:

206 Chapter 7. Using MRIStep for C and C++ Applications

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• error_code – the error code.

• module – the name of the MRIStep module reporting the error.

• function – the name of the function in which the error occurred.

• msg – the error message.

• user_data – a pointer to user data, the same as the eh_data parameter that was passed to
MRIStepSetErrHandlerFn().

Return value: An ARKErrHandlerFn function has no return value.

Notes: error_code is negative for errors and positive (ARK_WARNING) for warnings. If a function that returns
a pointer to memory encounters an error, it sets error_code to 0.

7.6.3 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must supply a function of
type ARKRootFn.

typedef int (*ARKRootFn)(realtype t, N_Vector y, realtype* gout, void* user_data)
This function implements a vector-valued function 𝑔(𝑡, 𝑦) such that the roots of the nrtfn components 𝑔𝑖(𝑡, 𝑦)
are sought.

Arguments:

• t – the current value of the independent variable.

• y – the current value of the dependent variable vector.

• gout – the output array, of length nrtfn, with components 𝑔𝑖(𝑡, 𝑦).

• user_data – a pointer to user data, the same as the user_data parameter that was passed to
MRIStepSetUserData().

Return value: An ARKRootFn function should return 0 if successful or a non-zero value if an error occurred
(in which case the integration is halted and MRIStep returns ARK_RTFUNC_FAIL).

Notes: Allocation of memory for gout is handled within MRIStep.

7.6.4 Vector resize function

For simulations involving changes to the number of equations and unknowns in the ODE system (e.g. when using
spatial adaptivity in a PDE simulation), the MRIStep integrator may be “resized” between integration steps, through
calls to the MRIStepResize() function. Typically, when performing adaptive simulations the solution is stored in
a customized user-supplied data structure, to enable adaptivity without repeated allocation/deallocation of memory. In
these scenarios, it is recommended that the user supply a customized vector kernel to interface between SUNDIALS
and their problem-specific data structure. If this vector kernel includes a function of type ARKVecResizeFn to
resize a given vector implementation, then this function may be supplied to MRIStepResize() so that all internal
MRIStep vectors may be resized, instead of deleting and re-creating them at each call. This resize function should
have the following form:

typedef int (*ARKVecResizeFn)(N_Vector y, N_Vector ytemplate, void* user_data)
This function resizes the vector y to match the dimensions of the supplied vector, ytemplate.

Arguments:

• y – the vector to resize.

• ytemplate – a vector of the desired size.

7.6. User-supplied functions 207

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• user_data – a pointer to user data, the same as the resize_data parameter that was passed to
MRIStepResize().

Return value: An ARKVecResizeFn function should return 0 if it successfully resizes the vector y, and a non-
zero value otherwise.

Notes: If this function is not supplied, then MRIStep will instead destroy the vector y and clone a new vector y
off of ytemplate.

208 Chapter 7. Using MRIStep for C and C++ Applications

CHAPTER

EIGHT

BUTCHER TABLE DATA STRUCTURE

To store the Butcher table defining a Runge Kutta method ARKode provides the ARKodeButcherTable type and
several related utilitiy routines. We use the following Butcher table notation (shown for a 3-stage method):

𝑐 𝐴
𝑞 𝑏

𝑝 �̃�

=

𝑐1 𝑎1,1 𝑎1,2 𝑎1,3
𝑐2 𝑎2,1 𝑎2,2 𝑎2,3
𝑐3 𝑎3,1 𝑎3,2 𝑎3,3
𝑞 𝑏1 𝑏2 𝑏3
𝑝 �̃�1 �̃�2 �̃�3

where the method and embedding share stage 𝐴 and abscissa 𝑐 values, but use their stages 𝑧𝑖 differently through the
coefficients 𝑏 and �̃� to generate methods of orders 𝑞 (the main method) and 𝑝 (the embedding, typically 𝑞 = 𝑝 + 1,
though sometimes this is reversed). ARKodeButcherTable is defined as

typedef ARKodeButcherTableMem* ARKodeButcherTable

where ARKodeButcherTableMem is the structure

typedef struct ARKodeButcherTableMem {

int q;
int p;
int stages;
realtype **A;
realtype *c;
realtype *b;
realtype *d;

};

where stages is the number of stages in the RK method, the variables q, p, A, c, and b have the same meaning as
in the Butcher table above, and d is used to store �̃�.

209

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

8.1 ARKodeButcherTable functions

Function name Description
ARKodeButcherTable_LoadERK() Retrieve a given explicit Butcher table by its unique name
ARKodeButcherTable_LoadDIRK() Retrieve a given implicit Butcher table by its unique name
ARKodeButcherTable_Alloc() Allocate an empty Butcher table
ARKodeButcherTable_Create() Create a new Butcher table
ARKodeButcherTable_Copy() Create a copy of a Butcher table
ARKodeButcherTable_Space() Get the Butcher table real and integer workspace size
ARKodeButcherTable_Free() Deallocate a Butcher table
ARKodeButcherTable_Write() Write the Butcher table to an output file
ARKodeButcherTable_CheckOrder() Check the order of a Butcher table
ARKodeButcherTable_CheckARKOrder() Check the order of an ARK pair of Butcher tables

ARKodeButcherTable ARKodeButcherTable_LoadERK(int emethod)
Retrieves a specified explicit Butcher table. The prototype for this function, as well as the integer names for each
provided method, are defined in the header file arkode/arkode_butcher_erk.h. For further information
on these tables and their corresponding identifiers, see Appendix: Butcher tables.

Arguments:

• emethod – integer input specifying the given Butcher table.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if imethod was invalid.

ARKodeButcherTable ARKodeButcherTable_LoadDIRK(int imethod)
Retrieves a specified diagonally-implicit Butcher table. The prototype for this function, as well as the integer
names for each provided method, are defined in the header file arkode/arkode_butcher_dirk.h. For
further information on these tables and their corresponding identifiers, see Appendix: Butcher tables.

Arguments:

• imethod – integer input specifying the given Butcher table.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if imethod was invalid.

ARKodeButcherTable ARKodeButcherTable_Alloc(int stages, booleantype embedded)
Allocates an empty Butcher table.

Arguments:

• stages – the number of stages in the Butcher table.

• embedded – flag denoting whether the Butcher table has an embedding (SUNTRUE) or not
(SUNFALSE).

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if stages was invalid or an allocation error occured.

ARKodeButcherTable ARKodeButcherTable_Create(int s, int q, int p, realtype *c, realtype *A, real-
type *b, realtype *d)

Allocates a Butcher table and fills it with the given values.

210 Chapter 8. Butcher Table Data Structure

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• s – number of stages in the RK method.

• q – global order of accuracy for the RK method.

• p – global order of accuracy for the embedded RK method.

• c – array (of length s) of stage times for the RK method.

• A – array of coefficients defining the RK stages. This should be stored as a 1D array of size s*s, in
row-major order.

• b – array of coefficients (of length s) defining the time step solution.

• d – array of coefficients (of length s) defining the embedded solution.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer if stages was invalid or an allocation error occured.

Notes: If the method does not have an embedding then d should be NULL and q should be equal to zero.

ARKodeButcherTable ARKodeButcherTable_Copy(ARKodeButcherTable B)
Creates copy of the given Butcher table.

Arguments:

• B – the Butcher table to copy.

Return value:

• ARKodeButcherTable structure if successful.

• NULL pointer an allocation error occured.

void ARKodeButcherTable_Space(ARKodeButcherTable B, sunindextype *liw, sunindextype *lrw)
Get the real and integer workspace size for a Butcher table.

Arguments:

• B – the Butcher table.

• lenrw – the number of realtype values in the Butcher table workspace.

• leniw – the number of integer values in the Butcher table workspace.

Return value:

• ARK_SUCCESS if successful.

• ARK_MEM_NULL if the Butcher table memory was NULL.

void ARKodeButcherTable_Free(ARKodeButcherTable B)
Deallocate the Butcher table memory.

Arguments:

• B – the Butcher table.

void ARKodeButcherTable_Write(ARKodeButcherTable B, FILE *outfile)
Write the Butcher table to the provided file pointer.

Arguments:

• B – the Butcher table.

• outfile – pointer to use for printing the Butcher table.

8.1. ARKodeButcherTable functions 211

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Notes: The outfile argument can be stdout or stderr, or it may point to a specific file created using fopen.

int ARKodeButcherTable_CheckOrder(ARKodeButcherTable B, int* q, int* p, FILE* outfile)
Determine the analytic order of accuracy for the specified Butcher table. The analytic (necessary) conditions are
checked up to order 6. For orders greater than 6 the Butcher simplifying (sufficient) assumptions are used.

Arguments:

• B – the Butcher table.

• q – the measured order of accuracy for the method.

• p – the measured order of accuracy for the embedding; 0 if the method does not have an embedding.

• outfile – file pointer for printing results; NULL to suppress output.

Return value:

• 0 – success, the measured vales of q and p match the values of q and p in the provided Butcher tables.

• 1 – warning, the values of q and p in the provided Butcher tables are lower than the measured values,
or the measured values achieve the maximum order possible with this function and the values of q and
p in the provided Butcher tables table are higher.

• -1 – failure, the values of q and p in the provided Butcher tables are higher than the measured values.

• -2 – failure, the input Butcher table or critical table contents are NULL.

Notes: For embedded methods, if the return flags for q and p would differ, failure takes precedence over warning,
which takes precedence over success.

int ARKodeButcherTable_CheckARKOrder(ARKodeButcherTable B1, ARKodeButcherTable B2, int *q,
int *p, FILE *outfile)

Determine the analytic order of accuracy (up to order 6) for a specified ARK pair of Butcher tables.

Arguments:

• B1 – a Butcher table in the ARK pair.

• B2 – a Butcher table in the ARK pair.

• q – the measured order of accuracy for the method.

• p – the measured order of accuracy for the embedding; 0 if the method does not have an embedding.

• outfile – file pointer for printing results; NULL to suppress output.

Return value:

• 0 – success, the measured vales of q and p match the values of q and p in the provided Butcher tables.

• 1 – warning, the values of q and p in the provided Butcher tables are lower than the measured values,
or the measured values achieve the maximum order possible with this function and the values of q and
p in the provided Butcher tables table are higher.

• -1 – failure, the input Butcher tables or critical table contents are NULL.

Notes: For embedded methods, if the return flags for q and p would differ, warning takes precedence over
success.

212 Chapter 8. Butcher Table Data Structure

CHAPTER

NINE

VECTOR DATA STRUCTURES

The SUNDIALS library comes packaged with a variety of NVECTOR implementations, designed for simulations
in serial, shared-memory parallel, and distributed-memory parallel environments, as well as interfaces to vector data
structures used within external linear solver libraries. All native implementations assume that the process-local data is
stored contiguously, and they in turn provide a variety of standard vector algebra operations that may be performed on
the data.

In addition, SUNDIALS provides a simple interface for generic vectors (akin to a C++ abstract base class). All of
the major SUNDIALS solvers (CVODE(s), IDA(s), KINSOL, ARKODE) in turn are constructed to only depend on
these generic vector operations, making them immediately extensible to new user-defined vector objects. The only
exceptions to this rule relate to the dense, banded and sparse-direct linear system solvers, since they rely on particular
data storage and access patterns in the NVECTORS used.

9.1 Description of the NVECTOR Modules

The SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors (of type
N_Vector) through a set of operations defined by, and specific to, the particular NVECTOR implementation. Users
can provide a custom implementation of the NVECTOR module or use one of four provided within SUNDIALS – a
serial and three parallel implementations. The generic operations are described below. In the sections following, the
implementations provided with SUNDIALS are described.

The generic N_Vector type is a pointer to a structure that has an implementation-dependent content field containing
the description and actual data of the vector, and an ops field pointing to a structure with generic vector operations.
The type N_Vector is defined as:

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {
void *content;
struct _generic_N_Vector_Ops *ops;

};

Here, the _generic_N_Vector_Op structure is essentially a list of function pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {
N_Vector_ID (*nvgetvectorid)(N_Vector);
N_Vector (*nvclone)(N_Vector);
N_Vector (*nvcloneempty)(N_Vector);
void (*nvdestroy)(N_Vector);
void (*nvspace)(N_Vector, sunindextype *, sunindextype *);
realtype* (*nvgetarraypointer)(N_Vector);
void (*nvsetarraypointer)(realtype *, N_Vector);

213

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);
void (*nvconst)(realtype, N_Vector);
void (*nvprod)(N_Vector, N_Vector, N_Vector);
void (*nvdiv)(N_Vector, N_Vector, N_Vector);
void (*nvscale)(realtype, N_Vector, N_Vector);
void (*nvabs)(N_Vector, N_Vector);
void (*nvinv)(N_Vector, N_Vector);
void (*nvaddconst)(N_Vector, realtype, N_Vector);
realtype (*nvdotprod)(N_Vector, N_Vector);
realtype (*nvmaxnorm)(N_Vector);
realtype (*nvwrmsnorm)(N_Vector, N_Vector);
realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);
realtype (*nvmin)(N_Vector);
realtype (*nvwl2norm)(N_Vector, N_Vector);
realtype (*nvl1norm)(N_Vector);
void (*nvcompare)(realtype, N_Vector, N_Vector);
booleantype (*nvinvtest)(N_Vector, N_Vector);
booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);
realtype (*nvminquotient)(N_Vector, N_Vector);
int (*nvlinearcombination)(int, realtype *, N_Vector *, N_Vector);
int (*nvscaleaddmulti)(int, realtype *, N_Vector, N_Vector *, N_Vector *);
int (*nvdotprodmulti)(int, N_Vector, N_Vector *, realtype *);
int (*nvlinearsumvectorarray)(int, realtype, N_Vector *, realtype,

N_Vector *, N_Vector *);
int (*nvscalevectorarray)(int, realtype *, N_Vector *, N_Vector *);
int (*nvconstvectorarray)(int, realtype, N_Vector *);
int (*nvwrmsnomrvectorarray)(int, N_Vector *, N_Vector *, realtype *);
int (*nvwrmsnomrmaskvectorarray)(int, N_Vector *, N_Vector *, N_Vector,

realtype *);
int (*nvscaleaddmultivectorarray)(int, int, realtype *, N_Vector *,

N_Vector **, N_Vector **);
int (*nvlinearcombinationvectorarray)(int, int, realtype *, N_Vector **,

N_Vector *);
};

The generic NVECTOR module defines and implements the vector operations acting on a N_Vector. These routines
are nothing but wrappers for the vector operations defined by a particular NVECTOR implementation, which are
accessed through the ops field of the N_Vector structure. To illustrate this point we show below the implementation
of a typical vector operation from the generic NVECTOR module, namely N_VScale, which performs the scaling of
a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z) {
z->ops->nvscale(c, x, z);

}

The subsection Description of the NVECTOR operations contains a complete list of all standard vector operations
defined by the generic NVECTOR module. The subsections Description of the NVECTOR fused operations and
Description of the NVECTOR vector array operations list optional fused and vector array operations respectively.

Fused and vector array operations are intended to increase data reuse, reduce parallel communication on distributed
memory systems, and lower the number of kernel launches on systems with accelerators. If a particular NVECTOR
implementation defines a fused or vector array operation as NULL, the generic NVECTOR module will automatically
call standard vector operations as necessary to complete the desired operation. Currently, all fused and vector array
operations are disabled by default however, SUNDIALS provided NVECTOR implementations define additional user-
callable functions to enable/disable any or all of the fused and vector array operations. See the following sections for
the implementation specific functions to enable/disable operations.

Finally, we note that the generic NVECTOR module defines the functions N_VCloneVectorArray and

214 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

N_VCloneVectorArrayEmpty. Both functions create (by cloning) an array of count variables of type
N_Vector, each of the same type as an existing N_Vector. Their prototypes are:

N_Vector *N_VCloneVectorArray(int count, N_Vector w);
N_Vector *N_VCloneVectorArrayEmpty(int count, N_Vector w);

and their definitions are based on the implementation-specific N_VClone and N_VCloneEmpty operations, respec-
tively.

An array of variables of type N_Vector can be destroyed by calling N_VDestroyVectorArray, whose prototype
is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N_VDestroy operation.

A particular implementation of the NVECTOR module must:

• Specify the content field of the N_Vector.

• Define and implement the necessary vector operations. Note that the names of these routines should be unique to
that implementation in order to permit using more than one NVECTOR module (each with different N_Vector
internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a N_Vector with the
new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined N_Vector (e.g.,
a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly defined N_Vector.

Each NVECTOR implementation included in SUNDIALS has a unique identifier specified in enumeration
and shown in the table below. It is recommended that a user supplied NVECTOR implementation use the
SUNDIALS_NVEC_CUSTOM identifier.

9.1.1 Vector Identifications associated with vector kernels supplied with SUNDI-
ALS

Vector ID Vector type ID Value
SUNDIALS_NVEC_SERIAL Serial 0
SUNDIALS_NVEC_PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel 2
SUNDIALS_NVEC_PTHREADS PThreads shared memory parallel 3
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector 4
SUNDIALS_NVEC_PETSC PETSc parallel vector 5
SUNDIALS_NVEC_CUSTOM User-provided custom vector 6

9.2 Description of the NVECTOR operations

The standard vector operations defined by the generic N_Vector module are defined as follows. For each of these
operations, we give the name, usage of the function, and a description of its mathematical operations below.

N_Vector_ID N_VGetVectorID(N_Vector w)
Returns the vector type identifier for the vector w. It is used to determine the vector implementation type (e.g.

9.2. Description of the NVECTOR operations 215

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

serial, parallel, ...) from the abstract N_Vector interface. Returned values are given in the table, Vector
Identifications associated with vector kernels supplied with SUNDIALS

Usage:

id = N_VGetVectorID(w);

N_Vector N_VClone(N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not copy the
vector, but rather allocates storage for the new vector.

Usage:

v = N_VClone(w);

N_Vector N_VCloneEmpty(N_Vector w)
Creates a new N_Vector of the same type as an existing vector w and sets the ops field. It does not allocate
storage for the new vector’s data.

Usage:

v = N VCloneEmpty(w);

void N_VDestroy(N_Vector v)
Destroys the N_Vector v and frees memory allocated for its internal data.

Usage:

N_VDestroy(v);

void N_VSpace(N_Vector v, sunindextype* lrw, sunindextype* liw)
Returns storage requirements for the N_Vector v: lrw contains the number of realtype words and liw
contains the number of integer words. This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied NVECTOR module if that information is not of
interest.

Usage:

N_VSpace(nvSpec, &lrw, &liw);

realtype* N_VGetArrayPointer(N_Vector v)
Returns a pointer to a realtype array from the N_Vector v. Note that this assumes that the internal data in
the N_Vector is a contiguous array of realtype. This routine is only used in the solver-specific interfaces to
the dense and banded (serial) linear solvers, and in the interfaces to the banded (serial) and band-block-diagonal
(parallel) preconditioner modules provided with SUNDIALS.

Usage:

vdata = NVGetArrayPointer(v);

void N_VSetArrayPointer(realtype* vdata, N_Vector v)
Replaces the data array pointer in an N_Vector with a given array of realtype. Note that this assumes
that the internal data in the N_Vector is a contiguous array of realtype. This routine is only used in the
interfaces to the dense (serial) linear solver, hence need not exist in a user-supplied NVECTOR module.

Usage:

NVSetArrayPointer(vdata,v);

216 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

void N_VLinearSum(realtype a, N_Vector x, realtype b, N_Vector y, N_Vector z)
Performs the operation z = ax + by, where a and b are realtype scalars and x and y are of type N_Vector:

𝑧𝑖 = 𝑎𝑥𝑖 + 𝑏𝑦𝑖, 𝑖 = 0, . . . , 𝑛− 1.

Usage:

N_VLinearSum(a, x, b, y, z);

void N_VConst(realtype c, N_Vector z)
Sets all components of the N_Vector z to realtype c:

𝑧𝑖 = 𝑐, 𝑖 = 0, . . . , 𝑛− 1.

Usage:

N_VConst(c, z);

void N_VProd(N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:

𝑧𝑖 = 𝑥𝑖𝑦𝑖, 𝑖 = 0, . . . , 𝑛− 1.

Usage:

N_VProd(x, y, z);

void N_VDiv(N_Vector x, N_Vector y, N_Vector z)
Sets the N_Vector z to be the component-wise ratio of the N_Vector inputs x and y:

𝑧𝑖 =
𝑥𝑖

𝑦𝑖
, 𝑖 = 0, . . . , 𝑛− 1.

The 𝑦𝑖 may not be tested for 0 values. It should only be called with a y that is guaranteed to have all nonzero
components.

Usage:

N_VDiv(x, y, z);

void N_VScale(realtype c, N_Vector x, N_Vector z)
Scales the N_Vector x by the realtype scalar c and returns the result in z:

𝑧𝑖 = 𝑐𝑥𝑖, 𝑖 = 0, . . . , 𝑛− 1.

Usage:

N_VScale(c, x, z);

void N_VAbs(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the absolute values of the components of the N_Vector x:

𝑦𝑖 = |𝑥𝑖|, 𝑖 = 0, . . . , 𝑛− 1.

Usage:

N_VAbs(x, z);

void N_VInv(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x:

𝑧𝑖 = 1.0/𝑥𝑖, 𝑖 = 0, . . . , 𝑛− 1.

9.2. Description of the NVECTOR operations 217

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

This routine may not check for division by 0. It should be called only with an x which is guaranteed to have all
nonzero components.

Usage:

N_VInv(x, z);

void N_VAddConst(N_Vector x, realtype b, N_Vector z)
Adds the realtype scalar b to all components of x and returns the result in the N_Vector z:

𝑧𝑖 = 𝑥𝑖 + 𝑏, 𝑖 = 0, . . . , 𝑛− 1.

Usage:

N_VAddConst(x, b, z);

realtype N_VDotProd(N_Vector x, N_Vector z)
Returns the value of the dot-product of the N_Vectors x and y:

𝑑 =

𝑛−1∑︁
𝑖=0

𝑥𝑖𝑦𝑖.

Usage:

d = N_VDotProd(x, y);

realtype N_VMaxNorm(N_Vector x)
Returns the value of the 𝑙∞ norm of the N_Vector x:

𝑚 = max
0≤𝑖≤𝑛−1

|𝑥𝑖|.

Usage:

m = N_VMaxNorm(x);

realtype N_VWrmsNorm(N_Vector x, N_Vector w)
Returns the weighted root-mean-square norm of the N_Vector x with (positive) realtype weight vector w:

𝑚 =

⎯⎸⎸⎷(︃𝑛−1∑︁
𝑖=0

(𝑥𝑖𝑤𝑖)2

)︃
/𝑛

Usage:

m = N_VWrmsNorm(x, w);

realtype N_VWrmsNormMask(N_Vector x, N_Vector w, N_Vector id)
Returns the weighted root mean square norm of the N_Vector x with realtype weight vector w built using
only the elements of x corresponding to positive elements of the N_Vector id:

𝑚 =

⎯⎸⎸⎷(︃𝑛−1∑︁
𝑖=0

(𝑥𝑖𝑤𝑖𝐻(𝑖𝑑𝑖))2

)︃
/𝑛,

where 𝐻(𝛼) =

{︃
1 𝛼 > 0

0 𝛼 ≤ 0
.

218 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

m = N_VWrmsNormMask(x, w, id);

realtype N_VMin(N_Vector x)
Returns the smallest element of the N_Vector x:

𝑚 = min
0≤𝑖≤𝑛−1

𝑥𝑖.

Usage:

m = N_VMin(x);

realtype N_VWl2Norm(N_Vector x, N_Vector w)
Returns the weighted Euclidean 𝑙2 norm of the N_Vector x with realtype weight vector w:

𝑚 =

⎯⎸⎸⎷𝑛−1∑︁
𝑖=0

(𝑥𝑖𝑤𝑖)
2
.

Usage:

m = N_VWL2Norm(x, w);

realtype N_VL1Norm(N_Vector x)
Returns the 𝑙1 norm of the N_Vector x:

𝑚 =

𝑛−1∑︁
𝑖=0

|𝑥𝑖|.

Usage:

m = N_VL1Norm(x);

void N_VCompare(realtype c, N_Vector x, N_Vector z)
Compares the components of the N_Vector x to the realtype scalar c and returns an N_Vector z such
that for all 0 ≤ 𝑖 ≤ 𝑛− 1,

𝑧𝑖 =

{︃
1.0 if |𝑥𝑖| ≥ 𝑐,

0.0 otherwise
.

Usage:

N_VCompare(c, x, z);

booleantype N_VInvTest(N_Vector x, N_Vector z)
Sets the components of the N_Vector z to be the inverses of the components of the N_Vector x, with prior
testing for zero values:

𝑧𝑖 = 1.0/𝑥𝑖, 𝑖 = 0, . . . , 𝑛− 1.

This routine returns a boolean assigned to SUNTRUE if all components of x are nonzero (successful inversion)
and returns SUNFALSE otherwise.

Usage:

t = N_VInvTest(x, z);

9.2. Description of the NVECTOR operations 219

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

booleantype N_VConstrMask(N_Vector c, N_Vector x, N_Vector m)
Performs the following constraint tests based on the values in 𝑐𝑖:

𝑥𝑖 > 0 if 𝑐𝑖 = 2,

𝑥𝑖 ≥ 0 if 𝑐𝑖 = 1,

𝑥𝑖 < 0 if 𝑐𝑖 = −2,

𝑥𝑖 ≤ 0 if 𝑐𝑖 = −1.

There is no constraint on 𝑥𝑖 if 𝑐𝑖 = 0. This routine returns a boolean assigned to SUNFALSE if any element
failed the constraint test and assigned to SUNTRUE if all passed. It also sets a mask vector m, with elements
equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine is used only for constraint
checking.

Usage:

t = N_VConstrMask(c, x, m);

realtype N_VMinQuotient(N_Vector num, N_Vector denom)
This routine returns the minimum of the quotients obtained by termwise dividing the elements of n by the
elements in d:

min
𝑖=0,...,𝑛−1

num𝑖

denom𝑖
.

A zero element in denom will be skipped. If no such quotients are found, then the large value BIG_REAL
(defined in the header file sundials_types.h) is returned.

Usage:

minq = N_VMinQuotient(num, denom);

9.2.1 Description of the NVECTOR fused operations

The following fused vector operations are optional. These operations are intended to increase data reuse, reduce
parallel communication on distributed memory systems, and lower the number of kernel launches on systems with
accelerators. If a particular NVECTOR implementation defines one of the fused vector operations as NULL, the
NVECTOR interface will call one of the above standard vector operations as necessary. As above, for each operation,
we give the name, usage of the function, and a description of its mathematical operations below.

int N_VLinearCombination(int nv, realtype* c, N_Vector* X, N_Vector z)
This routine computes the linear combination of nv vectors with 𝑛 elements:

𝑧𝑖 =

𝑛𝑣−1∑︁
𝑗=0

𝑐𝑗𝑥𝑗,𝑖, 𝑖 = 0, . . . , 𝑛− 1,

where 𝑐 is an array of 𝑛𝑣 scalars, 𝑥𝑗 is a vector in the vector array X, and z is the output vector. If the output
vector z is one of the vectors in X, then it must be the first vector in the vector array. The operation returns 0 for
success and a non-zero value otherwise.

Usage:

ier = N_VLinearCombination(nv, c, X, z);

int N_VScaleAddMulti(int nv, realtype* c, N_Vector x, N_Vector* Y, N_Vector* Z)
This routine scales and adds one vector to nv vectors with 𝑛 elements:

𝑧𝑗,𝑖 = 𝑐𝑗𝑥𝑖 + 𝑦𝑗,𝑖, 𝑗 = 0, . . . , 𝑛𝑣 − 1 𝑖 = 0, . . . , 𝑛− 1,

220 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

where c is an array of scalars, x is a vector, 𝑦𝑗 is a vector in the vector array Y, and 𝑧𝑗 is an output vector in the
vector array Z. The operation returns 0 for success and a non-zero value otherwise.

Usage:

ier = N_VScaleAddMulti(nv, c, x, Y, Z);

int N_VDotProdMulti(int nv, N_Vector x, N_Vector* Y, realtype* d)
This routine computes the dot product of a vector with nv vectors having 𝑛 elements:

𝑑𝑗 =

𝑛−1∑︁
𝑖=0

𝑥𝑖𝑦𝑗,𝑖, 𝑗 = 0, . . . , 𝑛𝑣 − 1,

where d is an array of scalars containing the computed dot products, x is a vector, and 𝑦𝑗 is a vector the vector
array Y. The operation returns 0 for success and a non-zero value otherwise.

Usage:

ier = N_VDotProdMulti(nv, x, Y, d);

9.2.2 Description of the NVECTOR vector array operations

The following vector array operations are also optional. As with the fused vector operations, these are intended to
increase data reuse, reduce parallel communication on distributed memory systems, and lower the number of kernel
launches on systems with accelerators. If a particular NVECTOR implementation defines one of the fused or vector
array operations as NULL, the NVECTOR interface will call one of the above standard vector operations as necessary.
As above, for each operation, we give the name, usage of the function, and a description of its mathematical operations
below.

int N_VLinearSumVectorArray(int nv, realtype a, N_Vector X, realtype b, N_Vector* Y, N_Vector* Z)
This routine computes the linear sum of two vector arrays of nv vectors with 𝑛 elements:

𝑧𝑗,𝑖 = 𝑎𝑥𝑗,𝑖 + 𝑏𝑦𝑗,𝑖, 𝑖 = 0, . . . , 𝑛− 1 𝑗 = 0, . . . , 𝑛𝑣 − 1,

where a and b are scalars, 𝑥𝑗 and 𝑦𝑗 are vectors in the vector arrays X and Y respectively, and 𝑧𝑗 is a vector in
the output vector array Z. The operation returns 0 for success and a non-zero value otherwise.

Usage:

ier = N_VLinearSumVectorArray(nv, a, X, b, Y, Z);

int N_VScaleVectorArray(int nv, realtype* c, N_Vector* X, N_Vector* Z)
This routine scales each element in a vector of 𝑛 elements in a vector array of nv vectors by a potentially different
constant:

𝑧𝑗,𝑖 = 𝑐𝑗𝑥𝑗,𝑖, 𝑖 = 0, . . . , 𝑛− 1 𝑗 = 0, . . . , 𝑛𝑣 − 1,

where c is an array of scalars, 𝑥𝑗 is a vector in the vector array X, and 𝑧𝑗 is a vector in the output vector array Z.
The operation returns 0 for success and a non-zero value otherwise.

Usage:

ier = N_VScaleVectorArray(nv, c, X, Z);

int N_VConstVectorArray(int nv, realtype c, N_Vector* Z)
This routine sets each element in a vector of 𝑛 elements in a vector array of nv vectors to the same value:

𝑧𝑗,𝑖 = 𝑐, 𝑖 = 0, . . . , 𝑛− 1 𝑗 = 0, . . . , 𝑛𝑣 − 1,

9.2. Description of the NVECTOR operations 221

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

where c is a scalar and 𝑧𝑗 is a vector in the vector array Z. The operation returns 0 for success and a non-zero
value otherwise.

Usage:

ier = N_VConstVectorArray(nv, c, Z);

int N_VWrmsNormVectorArray(int nv, N_Vector* X, N_Vector* W, realtype* m)
This routine computes the weighted root mean square norm of each vector in a vector array:

𝑚𝑗 =

(︃
1

𝑛

𝑛−1∑︁
𝑖=0

(𝑥𝑗,𝑖𝑤𝑗,𝑖)
2

)︃1/2

, 𝑗 = 0, . . . , 𝑛𝑣 − 1,

where 𝑥𝑗 is a vector in the vector array X, 𝑤𝑗 is a weight vector in the vector array W, and m is the output array
of scalars containing the computed norms. The operation returns 0 for success and a non-zero value otherwise.

Usage:

ier = N_VWrmsNormVectorArray(nv, X, W, m);

int N_VWrmsNormMaskVectorArray(int nv, N_Vector* X, N_Vector* W, N_Vector id, realtype* m)
This routine computes the masked weighted root mean square norm of each vector in a vector array:

𝑚𝑗 =

(︃
1

𝑛

𝑛−1∑︁
𝑖=0

(𝑥𝑗,𝑖𝑤𝑗,𝑖𝐻(𝑖𝑑𝑖))
2

)︃1/2

, 𝑗 = 0, . . . , 𝑛𝑣 − 1,

where 𝐻(𝑖𝑑𝑖) = 1 for 𝑖𝑑𝑖 > 0 and is zero otherwise, 𝑥𝑗 is a vector in the vector array X, 𝑤𝑗 is a weight vector
in the vector array W, id is the mask vector, and m is the output array of scalars containing the computed norms.
The operation returns 0 for success and a non-zero value otherwise.

Usage:

ier = N_VWrmsNormMaskVectorArray(nv, X, W, id, m);

int N_VScaleAddMultiVectorArray(int nv, int nsum, realtype* c, N_Vector* X, N_Vector** YY,
N_Vector** ZZ)

This routine scales and adds a vector array of nv vectors to nsum other vector arrays:

𝑧𝑘,𝑗,𝑖 = 𝑐𝑘𝑥𝑗,𝑖 + 𝑦𝑘,𝑗,𝑖, 𝑖 = 0, . . . , 𝑛− 1 𝑗 = 0, . . . , 𝑛𝑣 − 1, 𝑘 = 0, . . . , 𝑛𝑠𝑢𝑚− 1

where c is an array of scalars, 𝑥𝑗 is a vector in the vector array X, 𝑦𝑘,𝑗 is a vector in the array of vector arrays YY,
and 𝑧𝑘,𝑗 is an output vector in the array of vector arrays ZZ. The operation returns 0 for success and a non-zero
value otherwise.

Usage:

ier = N_VScaleAddMultiVectorArray(nv, nsum, c, x, YY, ZZ);

int N_VLinearCombinationVectorArray(int nv, int nsum, realtype* c, N_Vector** XX, N_Vector* Z)
This routine computes the linear combination of nsum vector arrays containing nv vectors:

𝑧𝑗,𝑖 =

𝑛𝑠𝑢𝑚−1∑︁
𝑘=0

𝑐𝑘𝑥𝑘,𝑗,𝑖, 𝑖 = 0, . . . , 𝑛− 1 𝑗 = 0, . . . , 𝑛𝑣 − 1,

where c is an array of scalars, 𝑥𝑘,𝑗 is a vector in array of vector arrays XX, and 𝑧𝑗,𝑖 is an output vector in the
vector array Z. If the output vector array is one of the vector arrays in XX, it must be the first vector array in XX.
The operation returns 0 for success and a non-zero value otherwise.

Usage:

222 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

ier = N_VLinearCombinationVectorArray(nv, nsum, c, XX, Z);

9.3 The NVECTOR_SERIAL Module

The serial implementation of the NVECTOR module provided with SUNDIALS, NVECTOR_SERIAL, defines the
content field of a N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a
contiguous data array, and a boolean flag own_data which specifies the ownership of data.

struct _N_VectorContent_Serial {
sunindextype length;
booleantype own_data;
realtype *data;

};

The header file to be included when using this module is nvector_serial.h.

The following five macros are provided to access the content of an NVECTOR_SERIAL vector. The suffix _S in the
names denotes the serial version.

NV_CONTENT_S(v)
This macro gives access to the contents of the serial vector N_Vector v.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the serial N_Vector con-
tent structure.

Implementation:

#define NV_CONTENT_S(v) ((N_VectorContent_Serial)(v->content))

NV_OWN_DATA_S(v)
Access the own_data component of the serial N_Vector v.

Implementation:

#define NV_OWN_DATA_S(v) (NV_CONTENT_S(v)->own_data)

NV_DATA_S(v)
The assignment v_data = NV_DATA_S(v) sets v_data to be a pointer to the first component of the data
for the N_Vector v.

Similarly, the assignment NV_DATA_S(v) = v_data sets the component array of v to be v_data by stor-
ing the pointer v_data.

Implementation:

#define NV_DATA_S(v) (NV_CONTENT_S(v)->data)

NV_LENGTH_S(v)
Access the length component of the serial N_Vector v.

The assignment v_len = NV_LENGTH_S(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_S(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_S(v) (NV_CONTENT_S(v)->length)

NV_Ith_S(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

9.3. The NVECTOR_SERIAL Module 223

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

The assignment r = NV_Ith_S(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to 𝑛− 1 for a vector of length 𝑛.

Implementation:

#define NV_Ith_S(v,i) (NV_DATA_S(v)[i])

The NVECTOR_SERIAL module defines serial implementations of all vector operations listed in the sections Descrip-
tion of the NVECTOR operations, Description of the NVECTOR fused operations and Description of the NVECTOR
vector array operations. Their names are obtained from those in those sections by appending the suffix _Serial
(e.g. N_VDestroy_Serial). The module NVECTOR_SERIAL provides the following additional user-callable
routines:

N_Vector N_VNew_Serial(sunindextype vec_length)
This function creates and allocates memory for a serial N_Vector. Its only argument is the vector length.

N_Vector N_VNewEmpty_Serial(sunindextype vec_length)
This function creates a new serial N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Serial(sunindextype vec_length, realtype* v_data)
This function creates and allocates memory for a serial vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

N_Vector* N_VCloneVectorArray_Serial(int count, N_Vector w)
This function creates (by cloning) an array of count serial vectors.

N_Vector* N_VCloneVectorArrayEmpty_Serial(int count, N_Vector w)
This function creates (by cloning) an array of count serial vectors, each with an empty (‘NULL) data array.

void N_VDestroyVectorArray_Serial(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_Serial() or with N_VCloneVectorArrayEmpty_Serial().

sunindextype N_VGetLength_Serial(N_Vector v)
This function returns the number of vector elements.

void N_VPrint_Serial(N_Vector v)
This function prints the content of a serial vector to stdout.

void N_VPrintFile_Serial(N_Vector v, FILE *outfile)
This function prints the content of a serial vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_SERIAL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Serial(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Serial() will have the default settings for the NVECTOR_SERIAL module.

void N_VEnableFusedOps_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the serial
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearCombination_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the serial
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

224 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

void N_VEnableScaleAddMulti_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

void N_VEnableDotProdMulti_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearSumVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the serial
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableConstVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the serial
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormMaskVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

void N_VEnableScaleAddMultiVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the serial vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

void N_VEnableLinearCombinationVectorArray_Serial(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the serial vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the compo-
nent array via v_data = NV_DATA_S(v) and then access v_data[i] within the loop than it is to use
NV_Ith_S(v,i) within the loop.

• N_VNewEmpty_Serial(), N_VMake_Serial(), and N_VCloneVectorArrayEmpty_Serial()
set the field own_data to SUNFALSE. The functions N_VDestroy_Serial() and
N_VDestroyVectorArray_Serial() will not attempt to free the pointer data for any N_Vector
with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_SERIAL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same length.

For solvers that include a Fortran interface module, the NVECTOR_SERIAL module also includes a Fortran-callable
function FNVINITS(code, NEQ, IER), to initialize this NVECTOR_SERIAL module. Here code is an input
solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKode); NEQ is the problem size (declared so as to match
C type long int); and IER is an error return flag equal 0 for success and -1 for failure.

9.3. The NVECTOR_SERIAL Module 225

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

9.4 The NVECTOR_PARALLEL Module

The NVECTOR_PARALLEL implementation of the NVECTOR module provided with SUNDIALS is based on MPI.
It defines the content field of a N_Vector to be a structure containing the global and local lengths of the vector, a
pointer to the beginning of a contiguous local data array, an MPI communicator, an a boolean flag own_data indicating
ownership of the data array data.

struct _N_VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
realtype *data;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_parallel.h.

The following seven macros are provided to access the content of a NVECTOR_PARALLEL vector. The suffix _P in
the names denotes the distributed memory parallel version.

NV_CONTENT_P(v)
This macro gives access to the contents of the parallel N_Vector v.

The assignment v_cont = NV_CONTENT_P(v) sets v_cont to be a pointer to the N_Vector content
structure of type struct N_VectorContent_Parallel.

Implementation:

#define NV_CONTENT_P(v) ((N_VectorContent_Parallel)(v->content))

NV_OWN_DATA_P(v)
Access the own_data component of the parallel N_Vector v.

Implementation:

#define NV_OWN_DATA_P(v) (NV_CONTENT_P(v)->own_data)

NV_DATA_P(v)
The assignment v_data = NV_DATA_P(v) sets v_data to be a pointer to the first component of the lo-
cal_data for the N_Vector v.

The assignment NV_DATA_P(v) = v_data sets the component array of v to be v_data by storing the
pointer v_data into data.

Implementation:

#define NV_DATA_P(v) (NV_CONTENT_P(v)->data)

NV_LOCLENGTH_P(v)
The assignment v_llen = NV_LOCLENGTH_P(v) sets v_llen to be the length of the local part of v.

The call NV_LOCLENGTH_P(v) = llen_v sets the local_length of v to be llen_v.

Implementation:

#define NV_LOCLENGTH_P(v) (NV_CONTENT_P(v)->local_length)

NV_GLOBLENGTH_P(v)
The assignment v_glen = NV_GLOBLENGTH_P(v) sets v_glen to be the global_length of the vector v.

The call NV_GLOBLENGTH_P(v) = glen_v sets the global_length of v to be glen_v.

226 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Implementation:

#define NV_GLOBLENGTH_P(v) (NV_CONTENT_P(v)->global_length)

NV_COMM_P(v)
This macro provides access to the MPI communicator used by the parallel N_Vector v.

Implementation:

#define NV_COMM_P(v) (NV_CONTENT_P(v)->comm)

NV_Ith_P(v, i)
This macro gives access to the individual components of the local_data array of an N_Vector.

The assignment r = NV_Ith_P(v,i) sets r to be the value of the i-th component of the local part of v.

The assignment NV_Ith_P(v,i) = r sets the value of the i-th component of the local part of v to be r.

Here i ranges from 0 to 𝑛− 1, where 𝑛 is the local_length.

Implementation:

#define NV_Ith_P(v,i) (NV_DATA_P(v)[i])

The NVECTOR_PARALLEL module defines parallel implementations of all vector operations listed in the sections
Description of the NVECTOR operations, Description of the NVECTOR fused operations and Description of the
NVECTOR vector array operations. Their names are obtained from those in those sections by appending the suf-
fix _Parallel (e.g. N_VDestroy_Parallel). The module NVECTOR_PARALLEL provides the following
additional user-callable routines:

N_Vector N_VNew_Parallel(MPI_Comm comm, sunindextype local_length, sunindextype global_length)
This function creates and allocates memory for a parallel vector having global length global_length, having
processor-local length local_length, and using the MPI communicator comm.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm, sunindextype local_length, sunindex-
type global_length)

This function creates a new parallel N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Parallel(MPI_Comm comm, sunindextype local_length, sunindex-
type global_length, realtype* v_data)

This function creates and allocates memory for a parallel vector with user-provided data array.

(This function does not allocate memory for v_data itself.)

N_Vector* N_VCloneVectorArray_Parallel(int count, N_Vector w)
This function creates (by cloning) an array of count parallel vectors.

N_Vector* N_VCloneVectorArrayEmpty_Parallel(int count, N_Vector w)
This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL) data array.

void N_VDestroyVectorArray_Parallel(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_Parallel() or with N_VCloneVectorArrayEmpty_Parallel().

sunindextype N_VGetLength_Parallel(N_Vector v)
This function returns the number of vector elements (global vector length).

sunindextype N_VGetLocalLength_Parallel(N_Vector v)
This function returns the local vector length.

void N_VPrint_Parallel(N_Vector v)
This function prints the local content of a parallel vector to stdout.

9.4. The NVECTOR_PARALLEL Module 227

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

void N_VPrintFile_Parallel(N_Vector v, FILE *outfile)
This function prints the local content of a parallel vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PARALLEL module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Parallel(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Parallel() will have the default settings for the NVECTOR_PARALLEL module.

void N_VEnableFusedOps_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parallel
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearCombination_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the par-
allel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleAddMulti_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

void N_VEnableDotProdMulti_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearSumVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parallel
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableConstVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parallel
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormMaskVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

void N_VEnableScaleAddMultiVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the parallel vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

void N_VEnableLinearCombinationVectorArray_Parallel(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the parallel vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

228 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• When looping over the components of an N_Vector v, it is more efficient to first obtain the local compo-
nent array via v_data = NV_DATA_P(v) and then access v_data[i] within the loop than it is to use
NV_Ith_P(v,i) within the loop.

• N_VNewEmpty_Parallel(), N_VMake_Parallel(), and N_VCloneVectorArrayEmpty_Parallel()
set the field own_data to SUNFALSE. The routines N_VDestroy_Parallel() and
N_VDestroyVectorArray_Parallel() will not attempt to free the pointer data for any N_Vector
with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_PARALLEL implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

For solvers that include a Fortran interface module, the NVECTOR_PARALLEL module also includes a
Fortran-callable function FNVINITP(COMM, code, NLOCAL, NGLOBAL, IER), to initialize this NVEC-
TOR_PARALLEL module. Here COMM is the MPI communicator, code is an input solver id (1 for CVODE, 2
for IDA, 3 for KINSOL, 4 for ARKode); NLOCAL and NGLOBAL are the local and global vector sizes, respectively
(declared so as to match C type long int); and IER is an error return flag equal 0 for success and -1 for failure.

Note: If the header file sundials_config.h defines SUNDIALS_MPI_COMM_F2C to be 1 (meaning the MPI
implementation used to build SUNDIALS includes the MPI_Comm_f2c function), then COMM can be any valid MPI
communicator. Otherwise, MPI_COMM_WORLD will be used, so just pass an integer value as a placeholder.

9.5 The NVECTOR_OPENMP Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

The OpenMP NVECTOR implementation provided with SUNDIALS, NVECTOR_OPENMP, defines the content
field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a contiguous
data array, a boolean flag own_data which specifies the ownership of data, and the number of threads. Operations on
the vector are threaded using OpenMP, the number of threads used is based on the supplied argument in the vector
constructor.

struct _N_VectorContent_OpenMP {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_openmp.h.

The following six macros are provided to access the content of an NVECTOR_OPENMP vector. The suffix _OMP in
the names denotes the OpenMP version.

NV_CONTENT_OMP(v)
This macro gives access to the contents of the OpenMP vector N_Vector v.

The assignment v_cont = NV_CONTENT_OMP(v) sets v_cont to be a pointer to the OpenMP N_Vector
content structure.

Implementation:

9.5. The NVECTOR_OPENMP Module 229

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

#define NV_CONTENT_OMP(v) ((N_VectorContent_OpenMP)(v->content))

NV_OWN_DATA_OMP(v)
Access the own_data component of the OpenMP N_Vector v.

Implementation:

#define NV_OWN_DATA_OMP(v) (NV_CONTENT_OMP(v)->own_data)

NV_DATA_OMP(v)
The assignment v_data = NV_DATA_OMP(v) sets v_data to be a pointer to the first component of the
data for the N_Vector v.

Similarly, the assignment NV_DATA_OMP(v) = v_data sets the component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA_OMP(v) (NV_CONTENT_OMP(v)->data)

NV_LENGTH_OMP(v)
Access the length component of the OpenMP N_Vector v.

The assignment v_len = NV_LENGTH_OMP(v) sets v_len to be the length of v. On the other hand, the
call NV_LENGTH_OMP(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_OMP(v) (NV_CONTENT_OMP(v)->length)

NV_NUM_THREADS_OMP(v)
Access the num_threads component of the OpenMP N_Vector v.

The assignment v_threads = NV_NUM_THREADS_OMP(v) sets v_threads to be the num_threads of
v. On the other hand, the call NV_NUM_THREADS_OMP(v) = num_threads_v sets the num_threads of
v to be num_threads_v.

Implementation:

#define NV_NUM_THREADS_OMP(v) (NV_CONTENT_OMP(v)->num_threads)

NV_Ith_OMP(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_OMP(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to 𝑛− 1 for a vector of length 𝑛.

Implementation:

#define NV_Ith_OMP(v,i) (NV_DATA_OMP(v)[i])

The NVECTOR_OPENMP module defines OpenMP implementations of all vector operations listed in the sections
Description of the NVECTOR operations, Description of the NVECTOR fused operations and Description of the
NVECTOR vector array operations. Their names are obtained from those in those sections by appending the suffix
_OpenMP (e.g. N_VDestroy_OpenMP). The module NVECTOR_OPENMP provides the following additional
user-callable routines:

230 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

N_Vector N_VNew_OpenMP(sunindextype vec_length, int num_threads)
This function creates and allocates memory for a OpenMP N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_OpenMP(sunindextype vec_length, int num_threads)
This function creates a new OpenMP N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMP(sunindextype vec_length, realtype* v_data, int num_threads)
This function creates and allocates memory for a OpenMP vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

N_Vector* N_VCloneVectorArray_OpenMP(int count, N_Vector w)
This function creates (by cloning) an array of count OpenMP vectors.

N_Vector* N_VCloneVectorArrayEmpty_OpenMP(int count, N_Vector w)
This function creates (by cloning) an array of count OpenMP vectors, each with an empty (‘NULL) data array.

void N_VDestroyVectorArray_OpenMP(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_OpenMP() or with N_VCloneVectorArrayEmpty_OpenMP().

sunindextype N_VGetLength_OpenMP(N_Vector v)
This function returns the number of vector elements.

void N_VPrint_OpenMP(N_Vector v)
This function prints the content of an OpenMP vector to stdout.

void N_VPrintFile_OpenMP(N_Vector v, FILE *outfile)
This function prints the content of an OpenMP vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_OpenMP(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_OpenMP() will have the default settings for the NVECTOR_OPENMP module.

void N_VEnableFusedOps_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the OpenMP
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearCombination_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleAddMulti_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

void N_VEnableDotProdMulti_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearSumVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

9.5. The NVECTOR_OPENMP Module 231

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

void N_VEnableScaleVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the OpenMP
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableConstVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the OpenMP
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormMaskVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

void N_VEnableScaleAddMultiVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

void N_VEnableLinearCombinationVectorArray_OpenMP(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the OpenMP vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component
array via v_data = NV_DATA_OMP(v) and then access v_data[i] within the loop than it is to use
NV_Ith_OMP(v,i) within the loop.

• N_VNewEmpty_OpenMP(), N_VMake_OpenMP(), and N_VCloneVectorArrayEmpty_OpenMP()
set the field own_data to SUNFALSE. The functions N_VDestroy_OpenMP() and
N_VDestroyVectorArray_OpenMP() will not attempt to free the pointer data for any N_Vector
with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_OPENMP implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

For solvers that include a Fortran interface module, the NVECTOR_OPENMP module also includes a Fortran-callable
function FNVINITOMP(code, NEQ, NUMTHREADS, IER), to initialize this NVECTOR_OPENMP module.
Here code is an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKode); NEQ is the problem size
(declared so as to match C type long int); NUMTHREADS is the number of threads; and IER is an error return flag
equal 0 for success and -1 for failure.

9.6 The NVECTOR_PTHREADS Module

In situations where a user has a multi-core processing unit capable of running multiple parallel threads with shared
memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVECTOR_OPENMP, and
an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown that vectors should be of length
at least 100, 000 before the overhead associated with creating and using the threads is made up by the parallelism in
the vector calculations.

232 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

The Pthreads NVECTOR implementation provided with SUNDIALS, denoted NVECTOR_PTHREADS, defines the
content field of N_Vector to be a structure containing the length of the vector, a pointer to the beginning of a
contiguous data array, a boolean flag own_data which specifies the ownership of data, and the number of threads.
Operations on the vector are threaded using POSIX threads (Pthreads), the number of threads used is based on the
supplied argument in the vector constructor.

struct _N_VectorContent_Pthreads {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to be included when using this module is nvector_pthreads.h.

The following six macros are provided to access the content of an NVECTOR_PTHREADS vector. The suffix _PT in
the names denotes the Pthreads version.

NV_CONTENT_PT(v)
This macro gives access to the contents of the Pthreads vector N_Vector v.

The assignment v_cont = NV_CONTENT_PT(v) sets v_cont to be a pointer to the Pthreads N_Vector
content structure.

Implementation:

#define NV_CONTENT_PT(v) ((N_VectorContent_Pthreads)(v->content))

NV_OWN_DATA_PT(v)
Access the own_data component of the Pthreads N_Vector v.

Implementation:

#define NV_OWN_DATA_PT(v) (NV_CONTENT_PT(v)->own_data)

NV_DATA_PT(v)
The assignment v_data = NV_DATA_PT(v) sets v_data to be a pointer to the first component of the data
for the N_Vector v.

Similarly, the assignment NV_DATA_PT(v) = v_data sets the component array of v to be v_data by
storing the pointer v_data.

Implementation:

#define NV_DATA_PT(v) (NV_CONTENT_PT(v)->data)

NV_LENGTH_PT(v)
Access the length component of the Pthreads N_Vector v.

The assignment v_len = NV_LENGTH_PT(v) sets v_len to be the length of v. On the other hand, the call
NV_LENGTH_PT(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_LENGTH_PT(v) (NV_CONTENT_PT(v)->length)

NV_NUM_THREADS_PT(v)
Access the num_threads component of the Pthreads N_Vector v.

The assignment v_threads = NV_NUM_THREADS_PT(v) sets v_threads to be the num_threads of v.
On the other hand, the call NV_NUM_THREADS_PT(v) = num_threads_v sets the num_threads of v to
be num_threads_v.

9.6. The NVECTOR_PTHREADS Module 233

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Implementation:

#define NV_NUM_THREADS_PT(v) (NV_CONTENT_PT(v)->num_threads)

NV_Ith_PT(v, i)
This macro gives access to the individual components of the data array of an N_Vector, using standard 0-based
C indexing.

The assignment r = NV_Ith_PT(v,i) sets r to be the value of the i-th component of v.

The assignment NV_Ith_PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to 𝑛− 1 for a vector of length 𝑛.

Implementation:

#define NV_Ith_PT(v,i) (NV_DATA_PT(v)[i])

The NVECTOR_PTHREADS module defines Pthreads implementations of all vector operations listed in the sections
Description of the NVECTOR operations, Description of the NVECTOR fused operations and Description of the
NVECTOR vector array operations. Their names are obtained from those in those sections by appending the suffix
_Pthreads (e.g. N_VDestroy_Pthreads). The module NVECTOR_PTHREADS provides the following additional
user-callable routines:

N_Vector N_VNew_Pthreads(sunindextype vec_length, int num_threads)
This function creates and allocates memory for a Pthreads N_Vector. Arguments are the vector length and
number of threads.

N_Vector N_VNewEmpty_Pthreads(sunindextype vec_length, int num_threads)
This function creates a new Pthreads N_Vector with an empty (NULL) data array.

N_Vector N_VMake_Pthreads(sunindextype vec_length, realtype* v_data, int num_threads)
This function creates and allocates memory for a Pthreads vector with user-provided data array, v_data.

(This function does not allocate memory for v_data itself.)

N_Vector* N_VCloneVectorArray_Pthreads(int count, N_Vector w)
This function creates (by cloning) an array of count Pthreads vectors.

N_Vector* N_VCloneVectorArrayEmpty_Pthreads(int count, N_Vector w)
This function creates (by cloning) an array of count Pthreads vectors, each with an empty (‘NULL) data array.

void N_VDestroyVectorArray_Pthreads(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_Pthreads() or with N_VCloneVectorArrayEmpty_Pthreads().

sunindextype N_VGetLength_Pthreads(N_Vector v)
This function returns the number of vector elements.

void N_VPrint_Pthreads(N_Vector v)
This function prints the content of a Pthreads vector to stdout.

void N_VPrintFile_Pthreads(N_Vector v, FILE *outfile)
This function prints the content of a Pthreads vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PTHREADS module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Pthreads(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Pthreads() will have the default settings for the NVECTOR_PTHREADS module.

234 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

void N_VEnableFusedOps_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the Pthreads
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearCombination_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the
Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleAddMulti_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

void N_VEnableDotProdMulti_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearSumVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the Pthreads
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableConstVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the Pthreads
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormMaskVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

void N_VEnableScaleAddMultiVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

void N_VEnableLinearCombinationVectorArray_Pthreads(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the Pthreads vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

• When looping over the components of an N_Vector v, it is more efficient to first obtain the component
array via v_data = NV_DATA_PT(v) and then access v_data[i] within the loop than it is to use
NV_Ith_S(v,i) within the loop.

• N_VNewEmpty_Pthreads(), N_VMake_Pthreads(), and N_VCloneVectorArrayEmpty_Pthreads()
set the field own_data to SUNFALSE. The functions N_VDestroy_Pthreads() and
N_VDestroyVectorArray_Pthreads() will not attempt to free the pointer data for any N_Vector
with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the NVECTOR_PTHREADS implementation that have more than
one N_Vector argument do not check for consistent internal representation of these vectors. It is the user’s

9.6. The NVECTOR_PTHREADS Module 235

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

For solvers that include a Fortran interface module, the NVECTOR_PTHREADS module slso includes a Fortran-
callable function FNVINITPTS(code, NEQ, NUMTHREADS, IER), to initialize this NVECTOR_PTHREADS
module. Here code is an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKode); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads; and IER is an
error return flag equal 0 for success and -1 for failure.

9.7 The NVECTOR_PARHYP Module

The NVECTOR_PARHYP implementation of the NVECTOR module provided with SUNDIALS is a wrapper around
HYPRE’s ParVector class. Most of the vector kernels simply call HYPRE vector operations. The implementation
defines the content field of N_Vector to be a structure containing the global and local lengths of the vector, a pointer
to an object of type hypre_ParVector, an MPI communicator, and a boolean flag own_parvector indicating
ownership of the HYPRE parallel vector object x.

struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
booleantype own_parvector;
realtype *data;
MPI_Comm comm;
hypre_ParVector *x;

};

The header file to be included when using this module is nvector_parhyp.h. Unlike native SUNDIALS vector
types, NVECTOR_PARHYP does not provide macros to access its member variables.

The NVECTOR_PARHYP module defines implementations of all vector operations listed in the sections Description
of the NVECTOR operations, Description of the NVECTOR fused operations and Description of the NVECTOR vec-
tor array operations, except for N_VSetArrayPointer and N_VGetArrayPointer, because accessing raw
vector data is handled by low-level HYPRE functions. As such, this vector is not available for use with SUNDI-
ALS Fortran interfaces. When access to raw vector data is needed, one should extract the HYPRE HYPRE vector
first, and then use HYPRE methods to access the data. Usage examples of NVECTOR_PARHYP are provided in the
cvAdvDiff_non_ph.c example programs for CVODE and the ark_diurnal_kry_ph.c example program
for ARKode.

The names of parhyp methods are obtained from those in the sections Description of the NVECTOR operations, De-
scription of the NVECTOR fused operations and Description of the NVECTOR vector array operations by appending
the suffix _ParHyp (e.g. N_VDestroy_ParHyp). The module NVECTOR_PARHYP provides the following ad-
ditional user-callable routines:

N_Vector N_VNewEmpty_ParHyp(MPI_Comm comm, sunindextype local_length, sunindex-
type global_length)

This function creates a new parhyp N_Vector with the pointer to the HYPRE vector set to NULL.

N_Vector N_VMake_ParHyp(hypre_ParVector *x)
This function creates an N_Vector wrapper around an existing HYPRE parallel vector. It does not allocate
memory for x itself.

hypre_ParVector *N_VGetVector_ParHyp(N_Vector v)
This function returns a pointer to the underlying HYPRE vector.

N_Vector* N_VCloneVectorArray_ParHyp(int count, N_Vector w)
This function creates (by cloning) an array of count parhyp vectors.

236 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

N_Vector* N_VCloneVectorArrayEmpty_ParHyp(int count, N_Vector w)
This function creates (by cloning) an array of count parhyp vectors, each with an empty (‘NULL) data array.

void N_VDestroyVectorArray_ParHyp(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_ParHyp() or with N_VCloneVectorArrayEmpty_ParHyp().

void N_VPrint_ParHyp(N_Vector v)
This function prints the local content of a parhyp vector to stdout.

void N_VPrintFile_ParHyp(N_Vector v, FILE *outfile)
This function prints the local content of a parhyp vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PARHYP module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VMake_ParHyp(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VMake_ParHyp() will have the default settings for the NVECTOR_PARHYP module.

void N_VEnableFusedOps_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the parhyp
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearCombination_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the parhyp
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleAddMulti_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

void N_VEnableDotProdMulti_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearSumVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the parhyp
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableConstVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the parhyp
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormMaskVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

void N_VEnableScaleAddMultiVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector

9.7. The NVECTOR_PARHYP Module 237

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

arrays operation in the parhyp vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

void N_VEnableLinearCombinationVectorArray_ParHyp(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the parhyp vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N_Vector_ParHyp v, it is recommended to extract the
HYPRE vector via x_vec = N_VGetVector_ParHyp(v) and then access components using appropriate
HYPRE functions.

• N_VNewEmpty_ParHyp(), N_VMake_ParHyp(), and N_VCloneVectorArrayEmpty_ParHyp()
set the field own_parvector to SUNFALSE. The functions N_VDestroy_ParHyp() and
N_VDestroyVectorArray_ParHyp() will not attempt to delete an underlying HYPRE vector for
any N_Vector with own_parvector set to SUNFALSE. In such a case, it is the user’s responsibility to delete
the underlying vector.

• To maximize efficiency, vector operations in the NVECTOR_PARHYP implementation that have more than
one N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

9.8 The NVECTOR_PETSC Module

The NVECTOR_PETSC module is an NVECTOR wrapper around the PETSc vector. It defines the content field of a
N_Vector to be a structure containing the global and local lengths of the vector, a pointer to the PETSc vector, an
MPI communicator, and a boolean flag own_data indicating ownership of the wrapped PETSc vector.

struct _N_VectorContent_Petsc {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
Vec *pvec;
MPI_Comm comm;

};

The header file to be included when using this module is nvector_petsc.h. Unlike native SUNDIALS vector
types, NVECTOR_PETSC does not provide macros to access its member variables. Note that NVECTOR_PETSC
requires SUNDIALS to be built with MPI support.

The NVECTOR_PETSC module defines implementations of all vector operations listed in the sections Description of
the NVECTOR operations, Description of the NVECTOR fused operations and Description of the NVECTOR vector
array operations, except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot
be used with SUNDIALS Fortran interfaces. When access to raw vector data is needed, it is recommended to extract
the PETSc vector first, and then use PETSc methods to access the data. Usage examples of NVECTOR_PETSC is
provided in example programs for IDA.

The names of vector operations are obtained from those in the sections Description of the NVECTOR operations,
Description of the NVECTOR fused operations and Description of the NVECTOR vector array operations by ap-
pending the suffice _Petsc (e.g. N_VDestroy_Petsc). The module NVECTOR_PETSC provides the following
additional user-callable routines:

N_Vector N_VNewEmpty_Petsc(MPI_Comm comm, sunindextype local_length, sunindex-
type global_length)

This function creates a new PETSC N_Vector with the pointer to the wrapped PETSc vector set to NULL. It

238 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

is used by the N_VMake_Petsc and N_VClone_Petsc implementations. It should be used only with great
caution.

N_Vector N_VMake_Petsc(Vec* pvec)
This function creates and allocates memory for an NVECTOR_PETSC wrapper with a user-provided PETSc
vector. It does not allocate memory for the vector pvec itself.

Vec *N_VGetVector_Petsc(N_Vector v)
This function returns a pointer to the underlying PETSc vector.

N_Vector* N_VCloneVectorArray_Petsc(int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_PETSC vectors.

N_Vector* N_VCloneVectorArrayEmpty_Petsc(int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_PETSC vectors, each with pointers to PETSc
vectors set to NULL.

void N_VDestroyVectorArray_Petsc(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_Petsc() or with N_VCloneVectorArrayEmpty_Petsc().

void N_VPrint_Petsc(N_Vector v)
This function prints the global content of a wrapped PETSc vector to stdout.

void N_VPrintFile_Petsc(N_Vector v, const char fname[])
This function prints the global content of a wrapped PETSc vector to fname.

By default all fused and vector array operations are disabled in the NVECTOR_PETSC module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific
vector. To ensure consistency across vectors it is recommended to first create a vector with N_VMake_Petsc(),
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VMake_Petsc() will have the default settings for the NVECTOR_PETSC module.

void N_VEnableFusedOps_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the PETSc
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearCombination_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the PETSc
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleAddMulti_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

void N_VEnableDotProdMulti_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearSumVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the PETSc
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

9.8. The NVECTOR_PETSC Module 239

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

void N_VEnableConstVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the PETSc
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormMaskVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

void N_VEnableScaleAddMultiVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the PETSc vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

void N_VEnableLinearCombinationVectorArray_Petsc(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the PETSc vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N_Vector_Petsc v, it is recommeded to extract the PETSc
vector via

x_vec = N_VGetVector_Petsc(v);

and then access components using appropriate PETSc functions.

• The functions N_VNewEmpty_Petsc(), N_VMake_Petsc(), and
N_VCloneVectorArrayEmpty_Petsc() set the field own_data to SUNFALSE. The routines
N_VDestroy_Petsc() and N_VDestroyVectorArray_Petsc() will not attempt to free the pointer
pvec for any N_Vector with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to
deallocate the pvec pointer.

• To maximize efficiency, vector operations in the NVECTOR_PETSC implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

9.9 The NVECTOR_CUDA Module

The NVECTOR_CUDA module is an experimental NVECTOR implementation in the CUDA language. This module
allows for SUNDIALS vector kernels to run on GPU devices. It is intended for users who are already familiar with
CUDA and GPU programming. Building this vector module requires a CUDA compiler and, by extension, C++
compiler. The class Vector in the namespace suncudavec manages the vector data layout.

template <class T, class I>
class Vector {

I size_;
I mem_size_;
I global_size_;
T* h_vec_;
T* d_vec_;
ThreadPartitioning<T, I>* partStream_;
ThreadPartitioning<T, I>* partReduce_;

240 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

bool ownPartitioning_;
bool ownData_;
bool managed_mem_;
SUNMPI_Comm comm_;
...

};

The class members are vector size (length), size of the vector data memory block, pointers to vector data on the host
and the device, pointers to classes StreamPartitioning and ReducePartitioning, which handle thread
partitioning for streaming and reduction vector kernels, respectively, a boolean flag that signals if the vector owns
the thread partitioning, a boolean flag that signals if the vector owns the data, a boolean flag that signals if managed
memory is used for the data arrays, and the MPI communicator. he class Vector inherits from empty structure

struct _N_VectorContent_Cuda {
};

to interface the C++ class with N_Vector C code. Due to rapid progress in of CUDA development, we expect that
suncudavec::Vector class will change frequently in the future SUNDIALS releases. The code is structured so
that it can tolerate significant changes in the suncudavec::Vector class without requiring changes to user API.

When instantiated, the class Vector will allocate memory on both, host and device by default. Optionally, man-
aged memory can be allocated instead (see N_VNewManaged_Cuda), or a user can provide data arrays (see
N_VMake_Cuda and N_VMakeManaged_Cuda).

The NVECTOR_CUDA module can be utilized for single-node parallelism or in a distributed context with MPI. The
header file to include when using this module for single-node parallelism is nvector_cuda.h. The header file to
include when using this module in the distributed case is nvector_mpicuda.h. The installed module libraries
to link to are libsundials_nveccuda.lib in the single-node case, or libsundials_nvecmpicuda.lib
in the distributed case. Only one one of these libraries may be linked to when creating an executable or library.
SUNDIALS must be built with MPI support if the distributed library is desired.

Unlike other native SUNDIALS vector types, the NVECTOR_CUDA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:

sunindextype N_VGetLength_Cuda(N_Vector v)
This function returns the global length of the vector.

sunindextype N_VGetLocalLength_Cuda(N_Vector v)
This function returns the local length of the vector.

Note: This function is for use in a distributed context and is defined in the header nvector_mpicuda.h and
the library to link to is libsundials_nvecmpicuda.lib.

realtype* N_VGetHostArrayPointer_Cuda(N_Vector v)
This function returns pointer to the vector data on the host.

realtype* N_VGetDeviceArrayPointer_Cuda(N_Vector v)
This function returns pointer to the vector data on the device.

MPI_Comm N_VGetMPIComm_Cuda(N_Vector v)
This function returns the MPI communicator for the vector.

Note: This function is for use in a distributed context and is defined in the header nvector_mpicuda.h and
the library to link to is libsundials_nvecmpicuda.lib.

booleantype N_VIsManagedMemory_Cuda(N_Vector v)
This function returns a boolean flag indiciating if the vector data array is in managed memory or not.

The NVECTOR_CUDA module defines implementations of all standard vector operations defined in the sections
Description of the NVECTOR operations, Description of the NVECTOR fused operations, and Description of the
NVECTOR vector array operations, except for N_VGetArrayPointer and N_VSetArrayPointer. As such,

9.9. The NVECTOR_CUDA Module 241

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

this vector cannot be used with SUNDIALS Fortran interfaces, nor with SUNDIALS direct solvers and precondition-
ers. This support will be added in subsequent SUNDIALS releases. The NVECTOR_CUDA module provides separate
functions to access data on the host and on the device. It also provides methods for copying from the host to the device
and vice versa. Usage examples of NVECTOR_CUDA are provided in example programs for CVODE [HSR2017].

The names of vector operations are obtained from those in the sections Description of the NVECTOR operations, De-
scription of the NVECTOR fused operations and Description of the NVECTOR vector array operations by appending
the suffix _Cuda (e.g. N_VDestroy_Cuda). The module NVECTOR_CUDA provides the following additional
user-callable routines:

N_Vector N_VNew_Cuda(sunindextype length)
N_Vector N_VNew_Cuda(MPI_Comm comm, sunindextype local_length, sunindextype global_length)

This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated on both
the host and device.

In the single-node setting, the only input is the vector length. This constructor is defined in the header
nvector_cuda.h and the library to link to is is libsundials_nveccuda.lib.

When used in a distributed context with MPI, the arguments are the MPI communicator, the local vector length,
and the global vector length. This constructor is defined in the header nvector_mpicuda.h and the library
to link to is libsundials_nvecmpicuda.lib.

N_Vector N_VNewManaged_Cuda(sunindextype vec_length)
N_Vector N_VNewManaged_Cuda(MPI_Comm comm, sunindextype local_length, sunindex-

type global_length)
This function creates and allocates memory for a CUDA N_Vector. The vector data array is allocated in
managed memory.

When used in the single-node setting, the only input is the vector length. this constructor is defined in the header
nvector_cuda.h and the library to link to is is libsundials_nveccuda.lib.

When used in a distributed context with MPI, the arguments are the MPI communicator, the local vector length,
and the global vector length. This constructor is defined in the header nvector_mpicuda.h and the library
to link to is libsundials_nvecmpicuda.lib.

N_Vector N_VNewEmpty_Cuda(sunindextype vec_length)
This function creates a new N_Vector wrapper with the pointer to the wrapped CUDA vector set to NULL. It
is used by N_VNew_Cuda(), N_VMake_Cuda(), and N_VClone_Cuda() implementations.

N_Vector N_VMake_Cuda(sunindextype vec_length, realtype *h_vdata, realtype *d_vdata)
N_Vector N_VMake_Cuda(MPI_Comm comm, sunindextype global_length, sunindextype local_length, real-

type *h_vdata, realtype *d_vdata)
This function creates a CUDA N_Vector with user-supplied vector data arrays for the host and the device.

When used in the single-node setting, the arguments are the the vector length, the host data array, and the
device data array. This constructor is defined in the header nvector_cuda.h and the library to link to is is
libsundials_nveccuda.lib.

When used in a distributed context with MPI, the arguments are the MPI communicator, the global vector
length, the local vector length, the host data array, the device data array. This constructor is defined in the
header nvector_mpicuda.h and the library to link to is libsundials_nvecmpicuda.lib.

N_Vector N_VMakeManaged_Cuda(sunindextype vec_length, realtype *vdata)
N_Vector N_VMakeManaged_Cuda(MPI_Comm comm, sunindextype global_length, sunindextype lo-

cal_length, realtype *vdata)
This function creates a CUDA N_Vector with a user-supplied managed memory data array.

When used in the single-node setting, the arguments are the the vector length, and the managed data
array. This constructor is defined in the header nvector_cuda.h and the library to link to is is
libsundials_nveccuda.lib.

242 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

When used in a distributed context with MPI, the arguments are the MPI communicator, the global vec-
tor length, the local vector length, the managed data array. This constructor is defined in the header
nvector_mpicuda.h and the library to link to is libsundials_nvecmpicuda.lib.

N_Vector* N_VCloneVectorArray_Cuda(int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_CUDA vectors.

N_Vector* N_VCloneVectorArrayEmpty_Cuda(int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_CUDA vectors, each with pointers to CUDA
vectors set to NULL.

void N_VDestroyVectorArray_Cuda(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_Cuda() or with N_VCloneVectorArrayEmpty_Cuda().

realtype* N_VCopyToDevice_Cuda(N_Vector v)
This function copies host vector data to the device.

realtype* N_VCopyFromDevice_Cuda(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Cuda(N_Vector v)
This function prints the content of a CUDA vector to stdout.

void N_VPrintFile_Cuda(N_Vector v, FILE *outfile)
This function prints the content of a CUDA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_CUDA module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Cuda(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors in-
herit the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Cuda()
will have the default settings for the NVECTOR_CUDA module.

void N_VEnableFusedOps_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the CUDA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearCombination_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the CUDA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleAddMulti_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

void N_VEnableDotProdMulti_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearSumVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the CUDA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

9.9. The NVECTOR_CUDA Module 243

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

void N_VEnableConstVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the CUDA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableWrmsNormMaskVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure are
NULL.

void N_VEnableScaleAddMultiVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the CUDA vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

void N_VEnableLinearCombinationVectorArray_Cuda(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the CUDA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N_Vector_Cuda, v, it is recommeded to use functions
N_VGetDeviceArrayPointer_Cuda() or N_VGetHostArrayPointer_Cuda().

• To maximize efficiency, vector operations in the NVECTOR_CUDA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

9.10 The NVECTOR_RAJA Module

The NVECTOR_RAJA module is an experimental implementation of N_Vector using the RAJA hardware abstrac-
tion layer https://software.llnl.gov/RAJA/. In this implementation, RAJA allows for SUNDIALS vector kernels to
run on GPU devices. The module is intended for users who are already familiar with RAJA and GPU programming.
Building this vector module requires a C++11 compliant compiler and a CUDA software development toolkit. Besides
the CUDA backend, RAJA has other backends such as serial, OpenMP and OpenAC. These backends are not used in
this SUNDIALS release. Class Vector in namespace sunrajavec manages the vector data layout:

template <class T, class I>
class Vector {

I size_;
I mem_size_;
I global_size_;
T* h_vec_;
T* d_vec_;
SUNMPI_Comm comm_;
...

};

The class members are: vector size (length), size of the vector data memory block, the global vector size (length),
pointers to vector data on the host and on the device, and the MPI communicator. The class Vector inherits from an
empty structure

244 Chapter 9. Vector Data Structures

https://software.llnl.gov/RAJA/

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

struct _N_VectorContent_Raja {
};

to interface the C++ class with the N_Vector C code. When instantiated, the class Vector will allocate
memory on both the host and the device. Due to the rapid progress of RAJA development, we expect that the
sunrajavec::Vector class will change frequently in the future SUNDIALS releases. The code is structured
so that it can tolerate significant changes in the sunrajavec::Vector class without requiring changes to the user
API.

The NVECTOR_RAJA module can be utilized for single-node parallelism or in a distributed context with
MPI. The header file to include when using this module for single-node parallelism is nvector_raja.h.
The header file to include when using this module in the distributed case is nvector_mpiraja.h. The
installed module libraries to link to are libsundials_nveccudaraja.lib in the single-node case, or
libsundials_nveccudampiraja.lib in the distributed case. Only one one of these libraries may be linked
to when creating an executable or library. SUNDIALS must be built with MPI support if the distributed library is
desired.

Unlike other native SUNDIALS vector types, the NVECTOR_RAJA module does not provide macros to access its
member variables. Instead, user should use the accessor functions:

sunindextype N_VGetLength_Raja(N_Vector v)
This function returns the global length of the vector.

sunindextype N_VGetLocalLength_Raja(N_Vector v)
This function returns the local length of the vector.

Note: This function is for use in a distributed context and is defined in the header nvector_mpicuda.h and
the library to link to is libsundials_nvecmpicuda.lib.

realtype* N_VGetHostArrayPointer_Raja(N_Vector v)
This function returns pointer to the vector data on the host.

realtype* N_VGetDeviceArrayPointer_Raja(N_Vector v)
This function returns pointer to the vector data on the device.

MPI_Comm N_VGetMPIComm_Raja(N_Vector v)
This function returns the MPI communicator for the vector.

Note: This function is for use in a distributed context and is defined in the header nvector_mpicuda.h and
the library to link to is libsundials_nvecmpicuda.lib.

booleantype N_VIsManagedMemory_Raja(N_Vector v)
This function returns a boolean flag indiciating if the vector data array is in managed memory or not.

The NVECTOR_RAJA module defines the implementations of all vector operations listed in the sections
Description of the NVECTOR operations, Description of the NVECTOR fused operations and Description
of the NVECTOR vector array operations, except for N_VDotProdMulti, N_VWrmsNormVectorArray,
N_VWrmsNormMaskVectorArray as support for arrays of reduction vectors is not yet supported in RAJA.
These functions will be added to the NVECTOR_RAJA implementation in the future. Additionally, the operations
N_VGetArrayPointer and N_VSetArrayPointer are not implemented by the RAJA vector. As such, this
vector cannot be used with SUNDIALS Fortran interfaces, nor with SUNDIALS direct solvers and preconditioners.
The NVECTOR_RAJA module provides separate functions to access data on the host and on the device. It also pro-
vides methods for copying from the host to the device and vice versa. Usage examples of NVECTOR_RAJA are
provided in some example programs for CVODE [HSR2017].

The names of vector operations are obtained from those in the sections Description of the NVECTOR operations, De-
scription of the NVECTOR fused operations and Description of the NVECTOR vector array operations by appending
the suffix _Raja (e.g. N_VDestroy_Raja). The module NVECTOR_RAJA provides the following additional
user-callable routines:

9.10. The NVECTOR_RAJA Module 245

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

N_Vector N_VNew_Raja(sunindextype vec_length)
This function creates and allocates memory for a RAJA N_Vector. The memory is allocated on both the host
and the device. Its only argument is the vector length.

N_Vector N_VNewEmpty_Raja(sunindextype vec_length)
This function creates a new N_Vector wrapper with the pointer to the wrapped RAJA vector set to NULL. It
is used by N_VNew_Raja(), N_VMake_Raja(), and N_VClone_Raja() implementations.

N_Vector N_VMake_Raja(N_VectorContent_Raja c)
This function creates and allocates memory for an NVECTOR_RAJA wrapper around a user-provided
sunrajavec::Vector class. Its only argument is of type N_VectorContent_Raja, which is the
pointer to the class.

N_Vector* N_VCloneVectorArray_Raja(int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_RAJA vectors.

N_Vector* N_VCloneVectorArrayEmpty_Raja(int count, N_Vector w)
This function creates (by cloning) an array of count NVECTOR_RAJA vectors, each with pointers to RAJA
vectors set to NULL.

void N_VDestroyVectorArray_Raja(N_Vector* vs, int count)
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_Raja() or with N_VCloneVectorArrayEmpty_Raja().

realtype* N_VCopyToDevice_Raja(N_Vector v)
This function copies host vector data to the device.

realtype* N_VCopyFromDevice_Raja(N_Vector v)
This function copies vector data from the device to the host.

void N_VPrint_Raja(N_Vector v)
This function prints the content of a RAJA vector to stdout.

void N_VPrintFile_Raja(N_Vector v, FILE *outfile)
This function prints the content of a RAJA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_RAJA module. The following addi-
tional user-callable routines are provided to enable or disable fused and vector array operations for a specific vector.
To ensure consistency across vectors it is recommended to first create a vector with N_VNew_Raja(), enable/disable
the desired operations for that vector with the functions below, and create any additional vectors from that vector using
N_VClone(). This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors in-
herit the same enable/disable options as the vector they are cloned from while vectors created with N_VNew_Raja()
will have the default settings for the NVECTOR_RAJA module.

void N_VEnableFusedOps_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the RAJA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableLinearCombination_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the RAJA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleAddMulti_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the RAJA vector. The return value is 0 for success and -1 if the input vector or its ops structure
are NULL.

void N_VEnableLinearSumVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the
RAJA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

246 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

void N_VEnableScaleVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the RAJA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableConstVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the RAJA
vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

void N_VEnableScaleAddMultiVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the RAJA vector. The return value is 0 for success and -1 if the input vector or its ops
structure are NULL.

void N_VEnableLinearCombinationVectorArray_Raja(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the RAJA vector. The return value is 0 for success and -1 if the input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N_Vector_Raja, v, it is recommeded to use functions
N_VGetDeviceArrayPointer_Raja() or N_VGetHostArrayPointer_Raja().

• To maximize efficiency, vector operations in the NVECTOR_RAJA implementation that have more than one
N_Vector argument do not check for consistent internal representations of these vectors. It is the user’s
responsibility to ensure that such routines are called with N_Vector arguments that were all created with the
same internal representations.

9.11 The NVECTOR_OPENMPDEV Module

In situations where a user has access to a device such as a GPU for offloading computation, SUNDIALS provides an
NVECTOR implementation using OpenMP device offloading, called NVECTOR_OPENMPDEV.

The NVECTOR_OPENMPDEV implementation defines the content field of the N_Vector to be a structure contain-
ing the length of the vector, a pointer to the beginning of a contiguousdata array on the host, a pointer to the beginning
of a contiguous data array on the device, and a boolean flag own_data which specifies the ownership of host and
device data arrays.

struct _N_VectorContent_OpenMPDEV {
sunindextype length;
booleantype own_data;
realtype *host_data;
realtype *dev_data;

};

The header file to include when using this module is nvector_openmpdev.h. The installed module library to link
to is libsundials_nvecopenmpdev.lib where .lib is typically .so for shared libraries and .a for static
libraries.

The following macros are provided to access the content of an NVECTOR_OPENMPDEV vector.

NV_CONTENT_OMPDEV(v)
This macro gives access to the contents of the NVECTOR_OPENMPDEV vector N_Vector.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the NVEC-
TOR_OPENMPDEV content structure.

Implementation:

9.11. The NVECTOR_OPENMPDEV Module 247

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

#define NV_CONTENT_OMPDEV(v) ((N_VectorContent_OpenMPDEV)(v->content))

NV_OWN_DATA_OMPDEV(v)
Access the own_data component of the OpenMPDEV N_Vector v.

The assignment v_data = NV_DATA_HOST_OMPDEV(v) sets v_data to be a pointer to the first compo-
nent of the data on the host for the N_Vector v.

Implementation:

#define NV_OWN_DATA_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->own_data)

NV_DATA_HOST_OMPDEV(v)
The assignment NV_DATA_HOST_OMPDEV(v) = v_data sets the host component array of v to be
v_data by storing the pointer v_data.

Implementation:

#define NV_DATA_HOST_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->host_data)

NV_DATA_DEV_OMPDEV(v)
The assignment v_dev_data = NV_DATA_DEV_OMPDEV(v) sets v_dev_data to be a pointer to the
first component of the data on the device for the N_Vector v. The assignment NV_DATA_DEV_OMPDEV(v)
= v_dev_data sets the device component array of v to be v_dev_data by storing the pointer
v_dev_data.

Implementation:

#define NV_DATA_DEV_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->dev_data)

NV_LENGTH_OMPDEV
Access the length component of the OpenMPDEV N_Vector v.

The assignment v_len = NV_LENGTH_OMPDEV(v) sets v_len to be the length of v. On the other hand,
the call NV_LENGTH_OMPDEV(v) = len_v sets the length of v to be len_v.

#define NV_LENGTH_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->length)

The NVECTOR_OPENMPDEV module defines OpenMP device offloading implementations of all vector operations
listed in Tables Description of the NVECTOR operations, Description of the NVECTOR fused operations, and Descrip-
tion of the NVECTOR vector array operations, except for N_VGetArrayPointer and N_VSetArrayPointer.
As such, this vector cannot be used with the SUNDIALS FORTRAN interfaces, nor with the SUNDIALS direct
solvers and preconditioners. It also provides methods for copying from the host to the device and vice versa.

The names of the vector operations are obtained from those in tables Description of the NVECTOR operations, De-
scription of the NVECTOR fused operations, and Description of the NVECTOR vector array operations by appending
the suffix _OpenMPDEV (e.g. N_VDestroy_OpenMPDEV). The module NVECTOR_OPENMPDEV provides the
following additional user-callable routines:

N_Vector N_VNew_OpenMPDEV(sunindextype vec_length);
This function creates and allocates memory for an NVECTOR_OPENMPDEV N_Vector.

N_Vector N_VNewEmpty_OpenMPDEV(sunindextype vec_length);
This function creates a new NVECTOR_OPENMPDEV N_Vector with an empty (NULL) data array.

N_Vector N_VMake_OpenMPDEV(sunindextype vec_length, realtype *h_vdata, realtype *d_vdata);
This function creates an NVECTOR_OPENMPDEV vector with user-supplied vector data arrays h_vdata}
and ‘‘d_vdata. This function does not allocate memory for data itself.

N_Vector *N_VCloneVectorArray_OpenMPDEV(int count, N_Vector w);
This function creates (by cloning) an array of count NVECTOR_OPENMPDEV vectors.

248 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

N_Vector *N_VCloneVectorArrayEmpty_OpenMPDEV(int count, N_Vector w);
This function creates (by cloning) an array of count NVECTOR_OPENMPDEV vectors, each with an empty
(NULL) data array.

void N_VDestroyVectorArray_OpenMPDEV(N_Vector *vs, int count);
This function frees memory allocated for the array of count variables of type N_Vector created with
N_VCloneVectorArray_OpenMPDEV or with N_VCloneVectorArrayEmpty_OpenMPDEV.

sunindextype N_VGetLength_OpenMPDEV(N_Vector v);
This function returns number of vector elements.

realtype *N_VGetHostArrayPointer_OpenMPDEV(N_Vector v);
This function returns a pointer to the host data array.

realtype *N_VGetDeviceArrayPointer_OpenMPDEV(N_Vector v);
This function returns a pointer to the device data array.

void N_VPrint_OpenMPDEV(N_Vector v);
This function prints the content of an NVECTOR_OPENMPDEV vector to stdout.

void N_VPrintFile_OpenMPDEV(N_Vector v, FILE *outfile);
This function prints the content of an NVECTOR_OPENMPDEV vector to outfile.

void N_VCopyToDevice_OpenMPDEV(N_Vector v);
This function copies the content of an NVECTOR_OPENMPDEV vector’s host data array to the device data
array.

void N_VCopyFromDevice_OpenMPDEV(N_Vector v);
This function copies the content of an NVECTOR_OPENMPDEV vector’s device data array to the host data
array.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMPDEV module. The following
additional user-callable routines are provided to enable or disable fused and vector array operations for a specific vec-
tor. To ensure consistency across vectors it is recommended to first create a vector with id{N_VNew_OpenMPDEV},
enable/disable the desired operations for that vector with the functions below, and create any additional vectors from
that vector using id{N_VClone}. This guarantees the new vectors will have the same operations enabled/disabled as
cloned vectors inherit the same enable/disable options as the vector they are cloned from while vectors created with
id{N_VNew_OpenMPDEV} will have the default settings for the NVECTOR_OPENMPDEV module.

int N_VEnableFusedOps_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array operations in the NVEC-
TOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or its id{ops}
structure are id{NULL}.

int N_VEnableLinearCombination_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused operation in the
NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or
its id{ops} structure are id{NULL}.

int N_VEnableScaleAddMulti_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to multiple vectors fused
operation in the NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input
vector or its id{ops} structure are id{NULL}.

int N_VEnableDotProdMulti_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused operation in the
NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or its
id{ops} structure are id{NULL}.

int N_VEnableLinearSumVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for vector arrays in the

9.11. The NVECTOR_OPENMPDEV Module 249

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or its
id{ops} structure are id{NULL}.

int N_VEnableScaleVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector arrays in the NVEC-
TOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or its id{ops}
structure are id{NULL}.

int N_VEnableConstVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector arrays in the NVEC-
TOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or its id{ops}
structure are id{NULL}.

int N_VEnableWrmsNormVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for vector arrays in the
NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or its
id{ops} structure are id{NULL}.

int N_VEnableWrmsNormMaskVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm operation for vector
arrays in the NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input
vector or its id{ops} structure are id{NULL}.

N_VEnableScaleAddMultiVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array to multiple vector
arrays operation in the NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if
the input vector or its id{ops} structure are id{NULL}.

N_VEnableLinearCombinationVectorArray_OpenMPDEV(N_Vector v, booleantype tf)
This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation for vector arrays
in the NVECTOR_OPENMPDEV vector. The return value is id{0} for success and id{-1} if the input vector or
its id{ops} structure are id{NULL}.

Notes

• When looping over the components of an N_Vector v, it is most efficient to first obtain the
component array via h_data = NV_DATA_HOST_OMPDEV(v) for the host arry or v_data =
NV_DATA_DEV_OMPDEV(v) for the device array and then access v_data[i] within the loop.

• When accessing individual components of an N_Vector v on the host remember to first copy the array back
from the device with N_VCopyFromDevice_OpenMPDEV(v) to ensure the array is up to date.

• N_VNewEmpty_OpenMPDEV(), N_VMake_OpenMPDEV(), and N_VCloneVectorArrayEmpty_OpenMPDEV()
set the field own_data to SUNFALSE. The functions N_VDestroy_OpenMPDEV() and
N_VDestroyVectorArray_OpenMPDEV() will not attempt to free the pointer data for any N_Vector
with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the data pointers.

• To maximize efficiency, vector operations in the NVECTOR_OPENMPDEV implementation that have more
than one N_Vector argument do not check for consistent internal representation of these vectors. It is the
user’s responsibility to ensure that such routines are called with N_Vector arguments that were all created
with the same length.

9.12 NVECTOR Examples

There are NVECTOR examples that may be installed for each implementation: serial, parallel, OpenMP, and Pthreads.
Each implementation makes use of the functions in test_nvector.c. These example functions show simple usage
of the NVECTOR family of functions. The input to the examples are the vector length, number of threads (if threaded
implementation), and a print timing flag.

250 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

The following is a list of the example functions in test_nvector.c:

• Test_N_VClone: Creates clone of vector and checks validity of clone.

• Test_N_VCloneEmpty: Creates clone of empty vector and checks validity of clone.

• Test_N_VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

• Test_N_VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned array.

• Test_N_VGetArrayPointer: Get array pointer.

• Test_N_VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check values.

• Test_N_VLinearSum Case 1a: Test y = x + y

• Test_N_VLinearSum Case 1b: Test y = -x + y

• Test_N_VLinearSum Case 1c: Test y = ax + y

• Test_N_VLinearSum Case 2a: Test x = x + y

• Test_N_VLinearSum Case 2b: Test x = x - y

• Test_N_VLinearSum Case 2c: Test x = x + by

• Test_N_VLinearSum Case 3: Test z = x + y

• Test_N_VLinearSum Case 4a: Test z = x - y

• Test_N_VLinearSum Case 4b: Test z = -x + y

• Test_N_VLinearSum Case 5a: Test z = x + by

• Test_N_VLinearSum Case 5b: Test z = ax + y

• Test_N_VLinearSum Case 6a: Test z = -x + by

• Test_N_VLinearSum Case 6b: Test z = ax - y

• Test_N_VLinearSum Case 7: Test z = a(x + y)

• Test_N_VLinearSum Case 8: Test z = a(x - y)

• Test_N_VLinearSum Case 9: Test z = ax + by

• Test_N_VConst: Fill vector with constant and check result.

• Test_N_VProd: Test vector multiply: z = x * y

• Test_N_VDiv: Test vector division: z = x / y

• Test_N_VScale: Case 1: scale: x = cx

• Test_N_VScale: Case 2: copy: z = x

• Test_N_VScale: Case 3: negate: z = -x

• Test_N_VScale: Case 4: combination: z = cx

• Test_N_VAbs: Create absolute value of vector.

• Test_N_VAddConst: add constant vector: z = c + x

• Test_N_VDotProd: Calculate dot product of two vectors.

• Test_N_VMaxNorm: Create vector with known values, find and validate the max norm.

• Test_N_VWrmsNorm: Create vector of known values, find and validate the weighted root mean square.

9.12. NVECTOR Examples 251

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• Test_N_VWrmsNormMask: Create vector of known values, find and validate the weighted root mean square
using all elements except one.

• Test_N_VMin: Create vector, find and validate the min.

• Test_N_VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

• Test_N_VL1Norm: Create vector, find and validate the L1 norm.

• Test_N_VCompare: Compare vector with constant returning and validating comparison vector.

• Test_N_VInvTest: Test z[i] = 1 / x[i]

• Test_N_VConstrMask: Test mask of vector x with vector c.

• Test_N_VMinQuotient: Fill two vectors with known values. Calculate and validate minimum quotient.

• Test_N_VLinearCombination: Case 1a: Test x = a x

• Test_N_VLinearCombination: Case 1b: Test z = a x

• Test_N_VLinearCombination: Case 2a: Test x = a x + b y

• Test_N_VLinearCombination: Case 2b: Test z = a x + b y

• Test_N_VLinearCombination: Case 3a: Test x = x + a y + b z

• Test_N_VLinearCombination: Case 3b: Test x = a x + b y + c z

• Test_N_VLinearCombination: Case 3c: Test w = a x + b y + c z

• Test_N_VScaleAddMulti: Case 1a: y = a x + y

• Test_N_VScaleAddMulti: Case 1b: z = a x + y

• Test_N_VScaleAddMulti: Case 2a: Y[i] = c[i] x + Y[i], i = 1,2,3

• Test_N_VScaleAddMulti: Case 2b: Z[i] = c[i] x + Y[i], i = 1,2,3

• Test_N_VDotProdMulti: Case 1: Calculate the dot product of two vectors

• Test_N_VDotProdMulti: Case 2: Calculate the dot product of one vector with three other vectors in a
vector array.

• Test_N_VLinearSumVectorArray: Case 1: z = a x + b y

• Test_N_VLinearSumVectorArray: Case 2a: Z[i] = a X[i] + b Y[i]

• Test_N_VLinearSumVectorArray: Case 2b: X[i] = a X[i] + b Y[i]

• Test_N_VLinearSumVectorArray: Case 2c: Y[i] = a X[i] + b Y[i]

• Test_N_VScaleVectorArray: Case 1a: y = c y

• Test_N_VScaleVectorArray: Case 1b: z = c y

• Test_N_VScaleVectorArray: Case 2a: Y[i] = c[i] Y[i]

• Test_N_VScaleVectorArray: Case 2b: Z[i] = c[i] Y[i]

• Test_N_VScaleVectorArray: Case 1a: z = c

• Test_N_VScaleVectorArray: Case 1b: Z[i] = c

• Test_N_VWrmsNormVectorArray: Case 1a: Create a vector of know values, find and validate the
weighted root mean square norm.

• Test_N_VWrmsNormVectorArray: Case 1b: Create a vector array of three vectors of know values, find
and validate the weighted root mean square norm of each.

252 Chapter 9. Vector Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• Test_N_VWrmsNormMaskVectorArray: Case 1a: Create a vector of know values, find and validate the
weighted root mean square norm using all elements except one.

• Test_N_VWrmsNormMaskVectorArray: Case 1b: Create a vector array of three vectors of know values,
find and validate the weighted root mean square norm of each using all elements except one.

• Test_N_VScaleAddMultiVectorArray: Case 1a: y = a x + y

• Test_N_VScaleAddMultiVectorArray: Case 1b: z = a x + y

• Test_N_VScaleAddMultiVectorArray: Case 2a: Y[j][0] = a[j] X[0] + Y[j][0]

• Test_N_VScaleAddMultiVectorArray: Case 2b: Z[j][0] = a[j] X[0] + Y[j][0]

• Test_N_VScaleAddMultiVectorArray: Case 3a: Y[0][i] = a[0] X[i] + Y[0][i]

• Test_N_VScaleAddMultiVectorArray: Case 3b: Z[0][i] = a[0] X[i] + Y[0][i]

• Test_N_VScaleAddMultiVectorArray: Case 4a: Y[j][i] = a[j] X[i] + Y[j][i]

• Test_N_VScaleAddMultiVectorArray: Case 4b: Z[j][i] = a[j] X[i] + Y[j][i]

• Test_N_VLinearCombinationVectorArray: Case 1a: x = a x

• Test_N_VLinearCombinationVectorArray: Case 1b: z = a x

• Test_N_VLinearCombinationVectorArray: Case 2a: x = a x + b y

• Test_N_VLinearCombinationVectorArray: Case 2b: z = a x + b y

• Test_N_VLinearCombinationVectorArray: Case 3a: x = a x + b y + c z

• Test_N_VLinearCombinationVectorArray: Case 3b: w = a x + b y + c z

• Test_N_VLinearCombinationVectorArray: Case 4a: X[0][i] = c[0] X[0][i]

• Test_N_VLinearCombinationVectorArray: Case 4b: Z[i] = c[0] X[0][i]

• Test_N_VLinearCombinationVectorArray: Case 5a: X[0][i] = c[0] X[0][i] + c[1] X[1][i]

• Test_N_VLinearCombinationVectorArray: Case 5b: Z[i] = c[0] X[0][i] + c[1] X[1][i]

• Test_N_VLinearCombinationVectorArray: Case 6a: X[0][i] = X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test_N_VLinearCombinationVectorArray: Case 6b: X[0][i] = c[0] X[0][i] + c[1] X[1][i] + c[2]
X[2][i]

• Test_N_VLinearCombinationVectorArray: Case 6c: Z[i] = c[0] X[0][i] + c[1] X[1][i] + c[2] X[2][i]

9.13 NVECTOR functions required by ARKode

In the table below, we list the vector functions in the N_Vector module that are called within the ARKode package.
The table also shows, for each function, which ARKode module uses the function. The ARKSTEP and ERKSTEP
columns show function usage within the main time-stepping modules and the shared ARKode infrastructure, while the
remaining columns show function usage within the ARKLS linear solver interface, the ARKBANDPRE and ARKBB-
DPRE preconditioner modules, and the FARKODE module.

Note that since FARKODE is built on top of ARKode, and therefore requires the same N_Vector routines, in the
FARKODE column we only list the routines that the FARKODE interface directly utilizes.

Note that for ARKLS we only list the N_Vector routines used directly by ARKLS, each SUNLinearSolver
module may have additional requirements that are not listed here. In addition, specific SUNNonlinearSolver
modules attached to ARKode may have additional N_Vector requirements. For additional requirements by specific

9.13. NVECTOR functions required by ARKode 253

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

SUNLinearSolver and SUNNonlinearSolver modules, please see the accompanying sections Description of
the SUNLinearSolver module and Nonlinear Solver Data Structures.

At this point, we should emphasize that the user does not need to know anything about ARKode’s usage of vector
functions in order to use ARKode. Instead, this information is provided primarily for users interested in constructing
a custom N_Vector module. We note that a number of N_Vector functions from the section Description of the
NVECTOR Modules are not listed in the above table. Therefore a user-supplied N_Vectormodule for ARKode could
safely omit these functions from their implementation.

Routine ARK-
STEP

ERK-
STEP

ARKLS ARKBAND-
PRE

ARKBBD-
PRE

FARKODE

N_VAbs X X
N_VAddConst X X
N_VClone X X X
N_VCloneEmpty X
N_VConst X X X X
N_VDestroy X X X X
N_VDiv X X
N_VDotProd X
N_VGetArrayPointer X1 X X X
N_VInv X X
N_VLinearSum X X X
N_VMaxNorm X X
N_VMin X X X
N_VScale X X X X X
N_VSetArrayPointer X1 X
N_VSpace2 X X X X X
N_VWrmsNorm X X X X X
N_VLinearCombination3 X X

1. This is only required with dense or band matrix-based linear solver modules, where the default difference-
quotient Jacobian approximation is used.

2. The N_VSpace() function is only informational, and will only be called if provided by the N_Vector im-
plementation.

3. The N_VLinearCombination() function is in fact optional; if it is not supplied then N_VLinearSum()
will be used instead.

254 Chapter 9. Vector Data Structures

CHAPTER

TEN

MATRIX DATA STRUCTURES

The SUNDIALS library comes packaged with a variety of SUNMatrix implementations, designed for simulations
requiring direct linear solvers for problems in serial or shared-memory parallel environments. SUNDIALS addition-
ally provides a simple interface for generic matrices (akin to a C++ abstract base class). All of the major SUNDIALS
packages (CVODE(s), IDA(s), KINSOL, ARKODE), are constructed to only depend on these generic matrix opera-
tions, making them immediately extensible to new user-defined matrix objects. For each of the SUNDIALS-provided
matrix types, SUNDIALS also provides at least two SUNLinearSolver implementations that factor these matrix
objects and use them in the solution of linear systems.

10.1 Description of the SUNMATRIX Modules

For problems that involve direct methods for solving linear systems, the SUNDIALS solvers not only operate on
generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations defined by the par-
ticular SUNMATRIX implementation. Users can provide their own specific implementation of the SUNMATRIX
module, particularly in cases where they provide their own N_Vector and/or linear solver modules, and require
matrices that are compatible with those implementations. Alternately, we provide three SUNMATRIX implementa-
tions: dense, banded, and sparse. The generic operations are described below, and descriptions of the implementations
provided with SUNDIALS follow.

The generic SUNMatrix type has been modeled after the object-oriented style of the generic N_Vector type.
Specifically, a generic SUNMatrix is a pointer to a structure that has an implementation-dependent content field
containing the description and actual data of the matrix, and an ops field pointing to a structure with generic matrix
operations. The type SUNMatrix is defined as:

typedef struct _generic_SUNMatrix *SUNMatrix;

struct _generic_SUNMatrix {
void *content;
struct _generic_SUNMatrix_Ops *ops;

};

Here, the _generic_SUNMatrix_Ops structure is essentially a list of function pointers to the various actual matrix
operations, and is defined as

struct _generic_SUNMatrix_Ops {
SUNMatrix_ID (*getid)(SUNMatrix);
SUNMatrix (*clone)(SUNMatrix);
void (*destroy)(SUNMatrix);
int (*zero)(SUNMatrix);
int (*copy)(SUNMatrix, SUNMatrix);
int (*scaleadd)(realtype, SUNMatrix, SUNMatrix);
int (*scaleaddi)(realtype, SUNMatrix);
int (*matvec)(SUNMatrix, N_Vector, N_Vector);

255

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int (*space)(SUNMatrix, long int*, long int*);
};

The generic SUNMATRIX module defines and implements the matrix operations acting on a SUNMatrix. These
routines are nothing but wrappers for the matrix operations defined by a particular SUNMATRIX implementation,
which are accessed through the ops field of the SUNMatrix structure. To illustrate this point we show below the
implementation of a typical matrix operation from the generic SUNMATRIX module, namely SUNMatZero, which
sets all values of a matrix A to zero, returning a flag denoting a successful/failed operation:

int SUNMatZero(SUNMatrix A)
{

return((int) A->ops->zero(A));
}

The subsection Description of the SUNMATRIX operations contains a complete list of all matrix operations defined
by the generic SUNMATRIX module. A particular implementation of the SUNMATRIX module must:

• Specify the content field of the SUNMatrix object.

• Define and implement a minimal subset of the matrix operations. See the documentation for each SUNDIALS
solver to determine which SUNMATRIX operations they require. The list of required operations for use with
ARKode is given in the section SUNMATRIX functions required by ARKode.

Note that the names of these routines should be unique to that implementation in order to permit using more than
one SUNMATRIX module (each with different SUNMatrix internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a SUNMatrix with
the new content field and with ops pointing to the new matrix operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined SUNMatrix
(e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to access different
parts in the content field of the newly defined SUNMatrix.

Each SUNMATRIX implementation included in SUNDIALS has a unique identifier specified in enumeration
and shown in the table below. It is recommended that a user-supplied SUNMATRIX implementation use the
SUNMATRIX_CUSTOM identifier.

10.1.1 Identifiers associated with matrix kernels supplied with SUNDIALS

Matrix ID Matrix type ID Value
SUNMATRIX_DENSE Dense 𝑀 ×𝑁 matrix 0
SUNMATRIX_BAND Band 𝑀 ×𝑀 matrix 1
SUNMATRIX_SPARSE Sparse (CSR or CSC) 𝑀 ×𝑁 matrix 2
SUNMATRIX_CUSTOM User-provided custom matrix 3

10.2 Description of the SUNMATRIX operations

For each of the SUNMatrix operations, we give the name, usage of the function, and a description of its mathematical
operations below.

SUNMatrix_ID SUNMatGetID(SUNMatrix A)
Returns the type identifier for the matrix A. It is used to determine the matrix implementation type (e.g.
dense, banded, sparse,...) from the abstract SUNMatrix interface. This is used to assess compatibility with

256 Chapter 10. Matrix Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

SUNDIALS-provided linear solver implementations. Returned values are given in the Table Identifiers associ-
ated with matrix kernels supplied with SUNDIALS

Usage:

id = SUNMatGetID(A);

SUNMatrix SUNMatClone(SUNMatrix A)
Creates a new SUNMatrix of the same type as an existing matrix A and sets the ops field. It does not copy the
matrix, but rather allocates storage for the new matrix.

Usage:

B = SUNMatClone(A);

void SUNMatDestroy(SUNMatrix A)
Destroys the SUNMatrix A and frees memory allocated for its internal data.

Usage:

SUNMatDestroy(A);

int SUNMatSpace(SUNMatrix A, long int *lrw, long int *liw)
Returns the storage requirements for the matrix A. lrw contains the number of realtype words and liw contains
the number of integer words. The return value denotes success/failure of the operation.

This function is advisory only, for use in determining a user’s total space requirements; it could be a dummy
function in a user-supplied SUNMatrix module if that information is not of interest.

Usage:

ier = SUNMatSpace(A, &lrw, &liw);

int SUNMatZero(SUNMatrix A)
Zeros all entries of the SUNMatrix A. The return value is an integer flag denoting success/failure of the oper-
ation:

𝐴𝑖,𝑗 = 0, 𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑛.

Usage:

ier = SUNMatZero(A);

int SUNMatCopy(SUNMatrix A, SUNMatrix B)
Performs the operation B = A for all entries of the matrices A and B. The return value is an integer flag denoting
success/failure of the operation:

𝐵𝑖,𝑗 = 𝐴𝑖,𝑗 , 𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑛.

Usage:

ier = SUNMatCopy(A,B);

SUNMatScaleAdd(realtype c, SUNMatrix A, SUNMatrix B)
Performs the operation A = cA + B. The return value is an integer flag denoting success/failure of the operation:

𝐴𝑖,𝑗 = 𝑐𝐴𝑖,𝑗 + 𝐵𝑖,𝑗 , 𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑛.

Usage:

10.2. Description of the SUNMATRIX operations 257

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

ier = SUNMatScaleAdd(c, A, B);

SUNMatScaleAddI(realtype c, SUNMatrix A)
Performs the operation A = cA + I. The return value is an integer flag denoting success/failure of the operation:

𝐴𝑖,𝑗 = 𝑐𝐴𝑖,𝑗 + 𝛿𝑖,𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑛.

Usage:

ier = SUNMatScaleAddI(c, A);

SUNMatMatvec(SUNMatrix A, N_Vector x, N_Vector y)
Performs the matrix-vector product y = Ax. It should only be called with vectors x and y that are compatible with
the matrix A – both in storage type and dimensions. The return value is an integer flag denoting success/failure
of the operation:

𝑦𝑖 =

𝑛∑︁
𝑗=1

𝐴𝑖,𝑗𝑥𝑗 , 𝑖 = 1, . . . ,𝑚.

Usage:

ier = SUNMatMatvec(A, x, y);

10.3 Compatibility of SUNMATRIX types

We note that not all SUNMatrix types are compatible with all N_Vector types provided with SUNDIALS.
This is primarily due to the need for compatibility within the SUNMatMatvec routine; however, compatibility
between SUNMatrix and N_Vector implementations is more crucial when considering their interaction within
SUNLinearSolver objects, as will be described in more detail in section Description of the SUNLinearSolver
module. More specifically, in the Table SUNDIALS matrix interfaces and vector implementations that can be used for
each we show the matrix interfaces available as SUNMatrix modules, and the compatible vector implementations.

10.3.1 SUNDIALS matrix interfaces and vector implementations that can be used
for each

Linear
Solver

Se-
rial

Parallel
(MPI)

OpenMP pThreads hypre
Vec.

PETSc
Vec.

CUDA RAJA User
Suppl.

Dense X X X X
Band X X X X
Sparse X X X X
User
supplied

X X X X X X X X X

10.4 The SUNMATRIX_DENSE Module

The dense implementation of the SUNMatrix module provided with SUNDIALS, SUNMATRIX_DENSE, defines
the content field of SUNMatrix to be the following structure:

258 Chapter 10. Matrix Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

struct _SUNMatrixContent_Dense {
sunindextype M;
sunindextype N;
realtype *data;
sunindextype ldata;
realtype **cols;

};

These entries of the content field contain the following information:

• M - number of rows

• N - number of columns

• data - pointer to a contiguous block of realtype variables. The elements of the dense matrix are stored
columnwise, i.e. the 𝐴𝑖,𝑗 element of a dense SUNMatrix A (with 0 ≤ 𝑖 < 𝑀 and 0 ≤ 𝑗 < 𝑁) may be
accessed via data[j*M+i].

• ldata - length of the data array (= 𝑀 ·𝑁).

• cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the array
data. The 𝐴𝑖,𝑗 element of a dense SUNMatrix A (with 0 ≤ 𝑖 < 𝑀 and 0 ≤ 𝑗 < 𝑁) may be accessed may
be accessed via cols[j][i].

The header file to be included when using this module is sunmatrix/sunmatrix_dense.h.

The following macros are provided to access the content of a SUNMATRIX_DENSE matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _D denotes that these are specific
to the dense version.

SM_CONTENT_D(A)
This macro gives access to the contents of the dense SUNMatrix A.

The assignment A_cont = SM_CONTENT_D(A) sets A_cont to be a pointer to the dense SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_D(A) ((SUNMatrixContent_Dense)(A->content))

SM_ROWS_D(A)
Access the number of rows in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows =
SM_ROWS_D(A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_ROWS_D(A) = A_rows sets the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_D(A) (SM_CONTENT_D(A)->M)

SM_COLUMNS_D(A)
Access the number of columns in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_columns =
SM_COLUMNS_D(A) sets A_columns to be the number of columns in the matrix A. Similarly, the assign-
ment SM_COLUMNS_D(A) = A_columns sets the number of columns in A to equal A_columns

Implementation:

#define SM_COLUMNS_D(A) (SM_CONTENT_D(A)->N)

10.4. The SUNMATRIX_DENSE Module 259

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

SM_LDATA_D(A)
Access the total data length in the dense SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_ldata =
SM_LDATA_D(A) sets A_ldata to be the length of the data array in the matrix A. Similarly, the assignment
SM_LDATA_D(A) = A_ldata sets the parameter for the length of the data array in A to equal A_ldata.

Implementation:

#define SM_LDATA_D(A) (SM_CONTENT_D(A)->ldata)

SM_DATA_D(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_D(A) sets A_data to be a pointer to the first component of the data
array for the dense SUNMatrix A. The assignment SM_DATA_D(A) = A_data sets the data array of A to
be A_data by storing the pointer A_data.

Implementation:

#define SM_DATA_D(A) (SM_CONTENT_D(A)->data)

SM_COLS_D(A)
This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_D(A) sets A_cols to be a pointer to the array of column pointers for
the dense SUNMatrix A. The assignment SM_COLS_D(A) = A_cols sets the column pointer array of A
to be A_cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_D(A) (SM_CONTENT_D(A)->cols)

SM_COLUMN_D(A)
This macros gives access to the individual columns of the data array of a dense SUNMatrix.

The assignment col_j = SM_COLUMN_D(A,j) sets col_j to be a pointer to the first entry of the j-th
column of the 𝑀 × 𝑁 dense matrix A (with 0 ≤ 𝑗 < 𝑁). The type of the expression SM_COLUMN_D(A,j)
is realtype *. The pointer returned by the call SM_COLUMN_D(A,j) can be treated as an array which is
indexed from 0 to M-1.

Implementation:

#define SM_COLUMN_D(A,j) ((SM_CONTENT_D(A)->cols)[j])

SM_ELEMENT_D(A)
This macro gives access to the individual entries of the data array of a dense SUNMatrix.

The assignments SM_ELEMENT_D(A,i,j) = a_ij and a_ij = SM_ELEMENT_D(A,i,j) reference
the 𝐴𝑖,𝑗 element of the 𝑀 ×𝑁 dense matrix A (with 0 ≤ 𝑖 < 𝑀 and 0 ≤ 𝑗 < 𝑁).

Implementation:

#define SM_ELEMENT_D(A,i,j) ((SM_CONTENT_D(A)->cols)[j][i])

The SUNMATRIX_DENSE module defines dense implementations of all matrix operations listed in the section De-
scription of the SUNMATRIX operations. Their names are obtained from those in that section by appending the suffix
_Dense (e.g. SUNMatCopy_Dense). The module SUNMATRIX_DENSE provides the following additional user-
callable routines:

SUNMatrix SUNDenseMatrix(sunindextype M, sunindextype N)
This constructor function creates and allocates memory for a dense SUNMatrix. Its arguments are the number
of rows, M, and columns, N, for the dense matrix.

260 Chapter 10. Matrix Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

void SUNDenseMatrix_Print(SUNMatrix A, FILE* outfile)
This function prints the content of a dense SUNMatrix to the output stream specified by outfile. Note:
stdout or stderr may be used as arguments for outfile to print directly to standard output or standard
error, respectively.

sunindextype SUNDenseMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the dense SUNMatrix.

sunindextype SUNDenseMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the dense SUNMatrix.

sunindextype SUNDenseMatrix_LData(SUNMatrix A)
This function returns the length of the data array for the dense SUNMatrix.

realtype* SUNDenseMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the dense SUNMatrix.

realtype** SUNDenseMatrix_Cols(SUNMatrix A)
This function returns a pointer to the cols array for the dense SUNMatrix.

realtype* SUNDenseMatrix_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the first entry of the jth column of the dense SUNMatrix. The resulting
pointer should be indexed over the range 0 to M-1.

Notes

• When looping over the components of a dense SUNMatrix A, the most efficient approaches are to:

– First obtain the component array via A_data = SM_DATA_D(A) or A_data =
SUNDenseMatrix_Data(A) and then access A_data[i] within the loop.

– First obtain the array of column pointers via A_cols = SM_COLS_D(A) or A_cols =
SUNDenseMatrix_Cols(A), and then access A_cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via A_colj =
SUNDenseMatrix_Column(A,j) and then to access the entries within that column using
A_colj[i] within the loop.

All three of these are more efficient than using SM_ELEMENT_D(A,i,j) within a double loop.

• Within the SUNMatMatvec_Dense routine, internal consistency checks are performed to ensure that the ma-
trix is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

For solvers that include a Fortran interface module, the SUNMATRIX_DENSE module also includes the Fortran-
callable function FSUNDenseMatInit() to initialize this SUNMATRIX_DENSE module for a given SUNDIALS
solver.

subroutine FSUNDenseMatInit(CODE, M, N, IER)
Initializes a dense SUNMatrix structure for use in a SUNDIALS solver.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• M (long int, input) – number of matrix rows.

• N (long int, input) – number of matrix columns.

• IER (int, output) – return flag (0 success, -1 for failure).

10.4. The SUNMATRIX_DENSE Module 261

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNDenseMassMatInit() initializes this SUNMATRIX_DENSE module for storing the mass matrix.

subroutine FSUNDenseMassMatInit(M, N, IER)
Initializes a dense SUNMatrix structure for use as a mass matrix in ARKode.

Arguments:

• M (long int, input) – number of matrix rows.

• N (long int, input) – number of matrix columns.

• IER (int, output) – return flag (0 success, -1 for failure).

10.5 The SUNMATRIX_BAND Module

The banded implementation of the SUNMatrix module provided with SUNDIALS, SUNMATRIX_BAND, defines
the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Band {
sunindextype M;
sunindextype N;
sunindextype mu;
sunindextype ml;
sunindextype smu;
sunindextype ldim;
realtype *data;
sunindextype ldata;
realtype **cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Figure SUNBandMatrix Diagram. A
more complete description of the parts of this content field is given below:

• M - number of rows

• N - number of columns (N = M)

• mu - upper half-bandwidth, 0 ≤ mu < 𝑁

• ml - lower half-bandwidth, 0 ≤ ml < 𝑁

• smu - storage upper bandwidth, mu ≤ smu < 𝑁 . The LU decomposition routines in the associated SUN-
LINSOL_BAND and SUNLINSOL_LAPACKBAND modules write the LU factors into the existing storage for
the band matrix. The upper triangular factor U, however, may have an upper bandwidth as big as min(N-1,
mu+ml) because of partial pivoting. The smu field holds the upper half-bandwidth allocated for the band
matrix.

• ldim - leading dimension (ldim ≥ 𝑠𝑚𝑢 + 𝑚𝑙 + 1)

• data - pointer to a contiguous block of realtype variables. The elements of the banded matrix are stored
columnwise (i.e. columns are stored one on top of the other in memory). Only elements within the specified
half-bandwidths are stored. data is a pointer to ldata contiguous locations which hold the elements within
the banded matrix.

• ldata - length of the data array (= ldim ·𝑁)

• cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th column.
This pointer may be treated as an array indexed from smu-mu (to access the uppermost element within the
band in the j-th column) to smu+ml (to access the lowest element within the band in the j-th column). Indices

262 Chapter 10. Matrix Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

from 0 to smu-mu-1 give access to extra storage elements required by the LU decomposition function. Finally,
cols[j][i-j+smu] is the (𝑖, 𝑗)-th element with 𝑗 −mu ≤ 𝑖 ≤ 𝑗 + ml.

The header file to be included when using this module is sunmatrix/sunmatrix_band.h.

The following macros are provided to access the content of a SUNMATRIX_BAND matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _B denotes that these are specific
to the banded version.

SM_CONTENT_B(A)
This macro gives access to the contents of the banded SUNMatrix A.

The assignment A_cont = SM_CONTENT_B(A) sets A_cont to be a pointer to the banded SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_B(A) ((SUNMatrixContent_Band)(A->content))

SM_ROWS_B(A)
Access the number of rows in the banded SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows =
SM_ROWS_B(A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_ROWS_B(A) = A_rows sets the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_B(A) (SM_CONTENT_B(A)->M)

SM_COLUMNS_B(A)
Access the number of columns in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_B(A) (SM_CONTENT_B(A)->N)

SM_UBAND_B(A)
Access the mu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_UBAND_B(A) (SM_CONTENT_B(A)->mu)

SM_LBAND_B(A)
Access the ml parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_LBAND_B(A) (SM_CONTENT_B(A)->ml)

SM_SUBAND_B(A)
Access the smu parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_SUBAND_B(A) (SM_CONTENT_B(A)->smu)

10.5. The SUNMATRIX_BAND Module 263

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 10.1: Diagram of the storage for the SUNMATRIX_BAND module. Here A is an 𝑁 ×𝑁 band matrix with upper
and lower half-bandwidths mu and ml, respectively. The rows and columns of A are numbered from 0 to N-1 and the
(𝑖, 𝑗)-th element of A is denoted A(i,j). The greyed out areas of the underlying component storage are used by the
associated SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND linear solver.

264 Chapter 10. Matrix Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

SM_LDIM_B(A)
Access the ldim parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_LDIM_B(A) (SM_CONTENT_B(A)->ldim)

SM_LDATA_B(A)
Access the ldata parameter in the banded SUNMatrix A. As with SM_ROWS_B, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_LDATA_B(A) (SM_CONTENT_B(A)->ldata)

SM_DATA_B(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_B(A) sets A_data to be a pointer to the first component of the data
array for the banded SUNMatrix A. The assignment SM_DATA_B(A) = A_data sets the data array of A
to be A_data by storing the pointer A_data.

Implementation:

#define SM_DATA_B(A) (SM_CONTENT_B(A)->data)

SM_COLS_B(A)
This macro gives access to the cols pointer for the matrix entries.

The assignment A_cols = SM_COLS_B(A) sets A_cols to be a pointer to the array of column pointers for
the banded SUNMatrix A. The assignment SM_COLS_B(A) = A_cols sets the column pointer array of A
to be A_cols by storing the pointer A_cols.

Implementation:

#define SM_COLS_B(A) (SM_CONTENT_B(A)->cols)

SM_COLUMN_B(A)
This macros gives access to the individual columns of the data array of a banded SUNMatrix.

The assignment col_j = SM_COLUMN_B(A,j) sets col_j to be a pointer to the diagonal element of the
j-th column of the 𝑁 ×𝑁 band matrix A, 0 ≤ 𝑗 ≤ 𝑁 − 1. The type of the expression SM_COLUMN_B(A,j)
is realtype *. The pointer returned by the call SM_COLUMN_B(A,j) can be treated as an array which is
indexed from -mu to ml.

Implementation:

#define SM_COLUMN_B(A,j) (((SM_CONTENT_B(A)->cols)[j])+SM_SUBAND_B(A))

SM_ELEMENT_B(A)
This macro gives access to the individual entries of the data array of a banded SUNMatrix.

The assignments SM_ELEMENT_B(A,i,j) = a_ij and a_ij = SM_ELEMENT_B(A,i,j) reference
the (𝑖, 𝑗)-th element of the 𝑁 × 𝑁 band matrix A, where 0 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1. The location (𝑖, 𝑗) should further
satisfy 𝑗 −mu ≤ 𝑖 ≤ 𝑗 + ml.

Implementation:

#define SM_ELEMENT_B(A,i,j) ((SM_CONTENT_B(A)->cols)[j][(i)-(j)+SM_SUBAND_B(A)])

SM_COLUMN_ELEMENT_B(A)
This macro gives access to the individual entries of the data array of a banded SUNMatrix.

10.5. The SUNMATRIX_BAND Module 265

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

The assignments SM_COLUMN_ELEMENT_B(col_j,i,j) = a_ij and a_ij =
SM_COLUMN_ELEMENT_B(col_j,i,j) reference the (𝑖, 𝑗)-th entry of the band matrix A when used
in conjunction with SM_COLUMN_B to reference the j-th column through col_j. The index (𝑖, 𝑗) should
satisfy 𝑗 −mu ≤ 𝑖 ≤ 𝑗 + ml.

Implementation:

#define SM_COLUMN_ELEMENT_B(col_j,i,j) (col_j[(i)-(j)])

The SUNMATRIX_BAND module defines banded implementations of all matrix operations listed in the section De-
scription of the SUNMATRIX operations. Their names are obtained from those in that section by appending the
suffix _Band (e.g. SUNMatCopy_Band). The module SUNMATRIX_BAND provides the following additional
user-callable routines:

SUNMatrix SUNBandMatrix(sunindextype N, sunindextype mu, sunindextype ml)
This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the
matrix size, N, and the upper and lower half-bandwidths of the matrix, mu and ml. The stored upper band-
width is set to mu+ml to accommodate subsequent factorization in the SUNLINSOL_BAND and SUNLIN-
SOL_LAPACKBAND modules.

SUNMatrix SUNBandMatrixStorage(sunindextype N, sunindextype mu, sunindextype ml, sunindex-
type smu)

This constructor function creates and allocates memory for a banded SUNMatrix. Its arguments are the matrix
size, N, the upper and lower half-bandwidths of the matrix, mu and ml, and the stored upper bandwidth, smu.
When creating a band SUNMatrix, this value should be

•at least min(N-1,mu+ml) if the matrix will be used by the SUNLinSol_Band module;

•exactly equal to mu+ml if the matrix will be used by the SUNLinSol_LapackBand module;

•at least mu if used in some other manner.

Note: it is strongly recommended that users call the default constructor, :c:func:‘SUNBandMatrix()‘, in all
standard use cases. This advanced constructor is used internally within SUNDIALS solvers, and is provided to
users who require banded matrices for non-default purposes.

void SUNBandMatrix_Print(SUNMatrix A, FILE* outfile)
This function prints the content of a banded SUNMatrix to the output stream specified by outfile. Note:
stdout or stderr may be used as arguments for outfile to print directly to standard output or standard
error, respectively.

sunindextype SUNBandMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the banded SUNMatrix.

sunindextype SUNBandMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the banded SUNMatrix.

sunindextype SUNBandMatrix_LowerBandwidth(SUNMatrix A)
This function returns the lower half-bandwidth for the banded SUNMatrix.

sunindextype SUNBandMatrix_UpperBandwidth(SUNMatrix A)
This function returns the upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_StoredUpperBandwidth(SUNMatrix A)
This function returns the stored upper half-bandwidth of the banded SUNMatrix.

sunindextype SUNBandMatrix_LDim(SUNMatrix A)
This function returns the length of the leading dimension of the banded SUNMatrix.

realtype* SUNBandMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the banded SUNMatrix.

266 Chapter 10. Matrix Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

realtype** SUNBandMatrix_Cols(SUNMatrix A)
This function returns a pointer to the cols array for the band SUNMatrix.

realtype* SUNBandMatrix_Column(SUNMatrix A, sunindextype j)
This function returns a pointer to the diagonal entry of the j-th column of the banded SUNMatrix. The resulting
pointer should be indexed over the range -mu to ml.

Notes

• When looping over the components of a banded SUNMatrix A, the most efficient approaches are to:

– First obtain the component array via A_data = SM_DATA_B(A) or A_data =
SUNBandMatrix_Data(A) and then access A_data[i] within the loop.

– First obtain the array of column pointers via A_cols = SM_COLS_B(A) or A_cols =
SUNBandMatrix_Cols(A), and then access A_cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via A_colj =
SUNBandMatrix_Column(A,j) and then to access the entries within that column using
SM_COLUMN_ELEMENT_B(A_colj,i,j).

All three of these are more efficient than using SM_ELEMENT_B(A,i,j) within a double loop.

• Within the SUNMatMatvec_Band routine, internal consistency checks are performed to ensure that the matrix
is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are
added to SUNDIALS, these will be included within this compatibility check.

For solvers that include a Fortran interface module, the SUNMATRIX_BAND module also includes the Fortran-
callable function FSUNBandMatInit() to initialize this SUNMATRIX_BAND module for a given SUNDIALS
solver.

subroutine FSUNBandMatInit(CODE, N, MU, ML, IER)
Initializes a band SUNMatrix structure for use in a SUNDIALS solver.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• N (long int, input) – number of matrix rows (and columns).

• MU (long int, input) – upper half-bandwidth.

• ML (long int, input) – lower half-bandwidth.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNBandMassMatInit() initializes this SUNMATRIX_BAND module for storing the mass matrix.

subroutine FSUNBandMassMatInit(N, MU, ML, IER)
Initializes a band SUNMatrix structure for use as a mass matrix in ARKode.

Arguments:

• N (long int, input) – number of matrix rows (and columns).

• MU (long int, input) – upper half-bandwidth.

• ML (long int, input) – lower half-bandwidth.

• IER (int, output) – return flag (0 success, -1 for failure).

10.5. The SUNMATRIX_BAND Module 267

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

10.6 The SUNMATRIX_SPARSE Module

The sparse implementation of the SUNMatrix module provided with SUNDIALS, SUNMATRIX_SPARSE, is de-
signed to work with either compressed-sparse-column (CSC) or compressed-sparse-row (CSR) sparse matrix formats.
To this end, it defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Sparse {
sunindextype M;
sunindextype N;
sunindextype NNZ;
sunindextype NP;
realtype *data;
int sparsetype;
sunindextype *indexvals;
sunindextype *indexptrs;
/* CSC indices */
sunindextype **rowvals;
sunindextype **colptrs;
/* CSR indices */
sunindextype **colvals;
sunindextype **rowptrs;

};

A diagram of the underlying data representation in a sparse matrix is shown in Figure SUNSparseMatrix Diagram. A
more complete description of the parts of this content field is given below:

• M - number of rows

• N - number of columns

• NNZ - maximum number of nonzero entries in the matrix (allocated length of data and indexvals arrays)

• NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC matrices NP=N,
and for CSR matrices NP=M. This value is set automatically at construction based the input choice for
sparsetype.

• data - pointer to a contiguous block of realtype variables (of length NNZ), containing the values of the
nonzero entries in the matrix

• sparsetype - type of the sparse matrix (CSC_MAT or CSR_MAT)

• indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices (if
CSC) or column indices (if CSR) of each nonzero matrix entry held in data

• indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each entry
provides the index of the first column entry into the data and indexvals arrays, e.g. if indexptr[3]=7,
then the first nonzero entry in the fourth column of the matrix is located in data[7], and is located in row
indexvals[7] of the matrix. The last entry contains the total number of nonzero values in the matrix and
hence points one past the end of the active data in the data and indexvals arrays. For CSR matrices, each
entry provides the index of the first row entry into the data and indexvals arrays.

The following pointers are added to the SUNMATRIX_SPARSE content structure for user convenience, to provide a
more intuitive interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating
a sparse SUNMatrix, based on the sparse matrix storage type.

• rowvals - pointer to indexvals when sparsetype is CSC_MAT, otherwise set to NULL.

• colptrs - pointer to indexptrs when sparsetype is CSC_MAT, otherwise set to NULL.

• colvals - pointer to indexvals when sparsetype is CSR_MAT, otherwise set to NULL.

• rowptrs - pointer to indexptrs when sparsetype is CSR_MAT, otherwise set to NULL.

268 Chapter 10. Matrix Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

For example, the 5× 4 matrix ⎡⎢⎢⎢⎢⎣
0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5

⎤⎥⎥⎥⎥⎦
could be stored as a CSC matrix in this structure as either

M = 5;
N = 4;
NNZ = 8;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};
sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4};
indexptrs = {0, 2, 4, 5, 8};

or

M = 5;
N = 4;
NNZ = 10;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};
sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};
indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with * may contain any
values). Note in both cases that the final value in indexptrs is 8, indicating the total number of nonzero entries in
the matrix.

Similarly, in CSR format, the same matrix could be stored as

M = 5;
N = 4;
NNZ = 8;
NP = N;
data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};
sparsetype = CSR_MAT;
indexvals = {1, 2, 0, 3, 1, 0, 3, 3};
indexptrs = {0, 2, 4, 5, 7, 8};

The header file to be included when using this module is sunmatrix/sunmatrix_sparse.h.

The following macros are provided to access the content of a SUNMATRIX_SPARSE matrix. The prefix SM_ in the
names denotes that these macros are for SUNMatrix implementations, and the suffix _S denotes that these are specific
to the sparse version.

SM_CONTENT_S(A)
This macro gives access to the contents of the sparse SUNMatrix A.

The assignment A_cont = SM_CONTENT_S(A) sets A_cont to be a pointer to the sparse SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_S(A) ((SUNMatrixContent_Sparse)(A->content))

10.6. The SUNMATRIX_SPARSE Module 269

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 10.2: Diagram of the storage for a compressed-sparse-column matrix of type SUNMATRIX_SPARSE: Here
A is an 𝑀 × 𝑁 sparse CSC matrix with storage for up to NNZ nonzero entries (the allocated length of both data
and indexvals). The entries in indexvals may assume values from 0 to M-1, corresponding to the row index
(zero-based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the row i,
column j entry of A (again, zero-based) denoted as A(i,j). The indexptrs array contains N+1 entries; the first
N denote the starting index of each column within the indexvals and data arrays, while the final entry points one
past the final nonzero entry. Here, although NNZ values are allocated, only nz are actually filled in; the greyed-out
portions of data and indexvals indicate extra allocated space.

270 Chapter 10. Matrix Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

SM_ROWS_S(A)
Access the number of rows in the sparse SUNMatrix A.

This may be used either to retrieve or to set the value. For example, the assignment A_rows =
SM_ROWS_S(A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_ROWS_S(A) = A_rows sets the number of columns in A to equal A_rows.

Implementation:

#define SM_ROWS_S(A) (SM_CONTENT_S(A)->M)

SM_COLUMNS_S(A)
Access the number of columns in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either to
retrieve or to set the value.

Implementation:

#define SM_COLUMNS_S(A) (SM_CONTENT_S(A)->N)

SM_NNZ_S(A)
Access the allocated number of nonzeros in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used
either to retrieve or to set the value.

Implementation:

#define SM_NNZ_S(A) (SM_CONTENT_S(A)->NNZ)

SM_NP_S(A)
Access the number of index pointers NP in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used
either to retrieve or to set the value.

Implementation:

#define SM_NP_S(A) (SM_CONTENT_S(A)->NP)

SM_SPARSETYPE_S(A)
Access the sparsity type parameter in the sparse SUNMatrix A. As with SM_ROWS_S, this may be used either
to retrieve or to set the value.

Implementation:

#define SM_SPARSETYPE_S(A) (SM_CONTENT_S(A)->sparsetype)

SM_DATA_S(A)
This macro gives access to the data pointer for the matrix entries.

The assignment A_data = SM_DATA_S(A) sets A_data to be a pointer to the first component of the data
array for the sparse SUNMatrix A. The assignment SM_DATA_S(A) = A_data sets the data array of A to
be A_data by storing the pointer A_data.

Implementation:

#define SM_DATA_S(A) (SM_CONTENT_S(A)->data)

SM_INDEXVALS_S(A)
This macro gives access to the indexvals pointer for the matrix entries.

The assignment A_indexvals = SM_INDEXVALS_S(A) sets A_indexvals to be a pointer to the ar-
ray of index values (i.e. row indices for a CSC matrix, or column indices for a CSR matrix) for the sparse
SUNMatrix A.

Implementation:

10.6. The SUNMATRIX_SPARSE Module 271

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

#define SM_INDEXVALS_S(A) (SM_CONTENT_S(A)->indexvals)

SM_INDEXPTRS_S(A)
This macro gives access to the indexptrs pointer for the matrix entries.

The assignment A_indexptrs = SM_INDEXPTRS_S(A) sets A_indexptrs to be a pointer to the array
of index pointers (i.e. the starting indices in the data/indexvals arrays for each row or column in CSR or CSC
formats, respectively).

Implementation:

#define SM_INDEXPTRS_S(A) (SM_CONTENT_S(A)->indexptrs)

The SUNMATRIX_SPARSE module defines sparse implementations of all matrix operations listed in the section De-
scription of the SUNMATRIX operations. Their names are obtained from those in that section by appending the suffix
_Sparse (e.g. SUNMatCopy_Sparse). The module SUNMATRIX_SPARSE provides the following additional
user-callable routines:

SUNMatrix SUNSparseMatrix(sunindextype M, sunindextype N, sunindextype NNZ, int sparsetype)
This constructor function creates and allocates memory for a sparse SUNMatrix. Its arguments are the number
of rows and columns of the matrix, M and N, the maximum number of nonzeros to be stored in the matrix, NNZ,
and a flag sparsetype indicating whether to use CSR or CSC format (valid choices are CSR_MAT or CSC_MAT).

SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, realtype droptol, int sparsetype)
This constructor function creates a new sparse matrix from an existing SUNMATRIX_DENSE object by copy-
ing all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

•A must have type SUNMATRIX_DENSE

•droptol must be non-negative

•sparsetype must be either CSC_MAT or CSR_MAT

The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

SUNMatrix SUNSparseFromBandMatrix(SUNMatrix A, realtype droptol, int sparsetype)
This constructor function creates a new sparse matrix from an existing SUNMATRIX_BAND object by copying
all values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

•A must have type SUNMATRIX_BAND

•droptol must be non-negative

•sparsetype must be either CSC_MAT or CSR_MAT.

The function returns NULL if any requirements are violated, or if the matrix storage request cannot be satisfied.

int SUNSparseMatrix_Realloc(SUNMatrix A)
This function reallocates internal storage arrays in a sparse matrix so that the resulting sparse matrix
has no wasted space (i.e. the space allocated for nonzero entries equals the actual number of nonzeros,
indexptrs[NP]). Returns 0 on success and 1 on failure (e.g. if the input matrix is not sparse).

void SUNSparseMatrix_Print(SUNMatrix A, FILE* outfile)
This function prints the content of a sparse SUNMatrix to the output stream specified by outfile. Note:
stdout or stderr may be used as arguments for outfile to print directly to standard output or standard
error, respectively.

sunindextype SUNSparseMatrix_Rows(SUNMatrix A)
This function returns the number of rows in the sparse SUNMatrix.

272 Chapter 10. Matrix Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

sunindextype SUNSparseMatrix_Columns(SUNMatrix A)
This function returns the number of columns in the sparse SUNMatrix.

sunindextype SUNSparseMatrix_NNZ(SUNMatrix A)
This function returns the number of entries allocated for nonzero storage for the sparse SUNMatrix.

sunindextype SUNSparseMatrix_NP(SUNMatrix A)
This function returns the number of index pointers for the sparse SUNMatrix (the indexptrs array has
NP+1 entries).

int SUNSparseMatrix_SparseType(SUNMatrix A)
This function returns the storage type (CSR_MAT or CSC_MAT) for the sparse SUNMatrix.

realtype* SUNSparseMatrix_Data(SUNMatrix A)
This function returns a pointer to the data array for the sparse SUNMatrix.

sunindextype* SUNSparseMatrix_IndexValues(SUNMatrix A)
This function returns a pointer to index value array for the sparse SUNMatrix: for CSR format this is the
column index for each nonzero entry, for CSC format this is the row index for each nonzero entry.

sunindextype* SUNSparseMatrix_IndexPointers(SUNMatrix A)
This function returns a pointer to the index pointer array for the sparse SUNMatrix: for CSR format this is
the location of the first entry of each row in the data and indexvalues arrays, for CSC format this is the
location of the first entry of each column.

Note: Within the SUNMatMatvec_Sparse routine, internal consistency checks are performed to ensure that the
matrix is called with consistent N_Vector implementations. These are currently limited to: NVECTOR_SERIAL,
NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible vector implementations are added to
SUNDIALS, these will be included within this compatibility check.

For solvers that include a Fortran interface module, the SUNMATRIX_SPARSE module also includes the Fortran-
callable function FSUNSparseMatInit() to initialize this SUNMATRIX_SPARSE module for a given SUNDI-
ALS solver.

subroutine FSUNSparseMatInit(CODE, M, N, NNZ, SPARSETYPE, IER)
Initializes a sparse SUNMatrix structure for use in a SUNDIALS solver.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• M (long int, input) – number of matrix rows.

• N (long int, input) – number of matrix columns.

• NNZ (long int, input) – amount of nonzero storage to allocate.

• SPARSETYPE (int, input) – matrix sparsity type (CSC_MAT or CSR_MAT)

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNSparseMassMatInit() initializes this SUNMATRIX_SPARSE module for storing the mass matrix.

subroutine FSUNSparseMassMatInit(M, N, NNZ, SPARSETYPE, IER)
Initializes a sparse SUNMatrix structure for use as a mass matrix in ARKode.

Arguments:

• M (long int, input) – number of matrix rows.

10.6. The SUNMATRIX_SPARSE Module 273

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• N (long int, input) – number of matrix columns.

• NNZ (long int, input) – amount of nonzero storage to allocate.

• SPARSETYPE (int, input) – matrix sparsity type (CSC_MAT or CSR_MAT)

• IER (int, output) – return flag (0 success, -1 for failure).

10.7 SUNMATRIX Examples

There are SUNMatrix examples that may be installed for each implementation: dense, banded, and sparse. Each
implementation makes use of the functions in test_sunmatrix.c. These example functions show simple usage
of the SUNMatrix family of functions. The inputs to the examples depend on the matrix type, and are output to
stdout if the example is run without the appropriate number of command-line arguments.

The following is a list of the example functions in test_sunmatrix.c:

• Test_SUNMatGetID: Verifies the returned matrix ID against the value that should be returned.

• Test_SUNMatClone: Creates clone of an existing matrix, copies the data, and checks that their values match.

• Test_SUNMatZero: Zeros out an existing matrix and checks that each entry equals 0.0.

• Test_SUNMatCopy: Clones an input matrix, copies its data to a clone, and verifies that all values match.

• Test_SUNMatScaleAdd: Given an input matrix 𝐴 and an input identity matrix 𝐼 , this test clones and copies
𝐴 to a new matrix 𝐵, computes 𝐵 = −𝐵+𝐵, and verifies that the resulting matrix entries equal 0. Additionally,
if the matrix is square, this test clones and copies 𝐴 to a new matrix 𝐷, clones and copies 𝐼 to a new matrix 𝐶,
computes 𝐷 = 𝐷 + 𝐼 and 𝐶 = 𝐶 + 𝐴 using SUNMatScaleAdd, and then verifies that 𝐶 = 𝐷.

• Test_SUNMatScaleAddI: Given an input matrix 𝐴 and an input identity matrix 𝐼 , this clones and copies 𝐼
to a new matrix 𝐵, computes 𝐵 = −𝐵 + 𝐼 using SUNMatScaleAddI, and verifies that the resulting matrix
entries equal 0.

• Test_SUNMatMatvec Given an input matrix 𝐴 and input vectors 𝑥 and 𝑦 such that 𝑦 = 𝐴𝑥, this test has
different behavior depending on whether 𝐴 is square. If it is square, it clones and copies 𝐴 to a new matrix 𝐵,
computes 𝐵 = 3𝐵 + 𝐼 using SUNMatScaleAddI, clones 𝑦 to new vectors 𝑤 and 𝑧, computes 𝑧 = 𝐵𝑥 using
SUNMatMatvec, computes 𝑤 = 3𝑦+𝑥 using N_VLinearSum, and verifies that 𝑤 == 𝑧. If 𝐴 is not square,
it just clones 𝑦 to a new vector 𝑧, computes :math:‘z=Ax using SUNMatMatvec, and verifies that 𝑦 = 𝑧.

• Test_SUNMatSpace: verifies that SUNMatSpace can be called, and outputs the results to stdout.

10.8 SUNMATRIX functions required by ARKode

In Table List of matrix functions usage by ARKode code modules, we list the matrix functions in the SUNMatrix
module used within the ARKode package. The table also shows, for each function, which of the code modules uses
the function. The main ARKode time step modules, ARKStep and ERKStep, do not call any SUNMatrix func-
tions directly, so the table columns are specific to the ARKLS interface and the ARKBANDPRE and ARKBBDPRE
preconditioner modules. We further note that the ARKLS interface only utilizes these routines when supplied with
a matrix-based linear solver, i.e. the SUNMatrix object (J or M) passed to ARKStepSetLinearSolver() or
ARKStepSetMassLinearSolver() was not NULL.

At this point, we should emphasize that the ARKode user does not need to know anything about the usage of matrix
functions by the ARKode code modules in order to use ARKode. The information is presented as an implementation
detail for the interested reader.

274 Chapter 10. Matrix Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

10.8.1 List of matrix functions usage by ARKode code modules

Routine ARKLS ARKBANDPRE ARKBBDPRE
SUNMatGetID X
SUNMatClone X
SUNMatDestroy X X X
SUNMatZero X X X
SUNMatCopy X X X
SUNMatScaleAddI X X X
SUNMatScaleAdd 1
SUNMatMatvec 1
SUNMatSpace 2 2 2

1. These matrix functions are only used for problems involving a non-identity mass matrix.

2. These matrix functions are optionally used, in that these are only called if they are implemented in the
SUNMatrix module that is being used (i.e. their function pointers are non-NULL). If not supplied, these
modules will assume that the matrix requires no storage.

We note that both the ARKBANDPRE and ARKBBDPRE preconditioner modules are hard-coded to use the
SUNDIALS-supplied band SUNMatrix type, so the most useful information above for user-supplied SUNMatrix
implementations is the column relating to ARKLS requirements.

10.8. SUNMATRIX functions required by ARKode 275

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

276 Chapter 10. Matrix Data Structures

CHAPTER

ELEVEN

DESCRIPTION OF THE SUNLINEARSOLVER MODULE

For problems that require the solution of linear systems of equations, the SUNDIALS packages operate using generic
linear solver modules defined through the SUNLinSol API. This allows SUNDIALS packages to utilize any valid
SUNLinSol implementation that provides a set of required functions. These functions can be divided into three cate-
gories. The first are the core linear solver functions. The second group consists of “set” routines to supply the linear
solver object with functions provided by the SUNDIALS package, or for modification of solver parameters. The last
group consists of “get” routines for retrieving artifacts (statistics, residual vectors, etc.) from the linear solver. All of
these functions are defined in the header file sundials/sundials_linearsolver.h.

The implementations provided with SUNDIALS work in coordination with the SUNDIALS generic N_Vector and
SUNMatrix modules to provide a set of compatible data structures and solvers for the solution of linear systems
using direct or iterative (matrix-based or matrix-free) methods. Moreover, advanced users can provide a customized
SUNLinearSolver implementation to any SUNDIALS package, particularly in cases where they provide their own
N_Vector and/or SUNMatrix modules.

Historically, the SUNDIALS packages have been designed to specifically leverage the use of either direct linear
solvers or matrix-free, scaled, preconditioned, iterative linear solvers. However, matrix-based iterative linear solvers
are also supported.

The iterative linear solvers packaged with SUNDIALS leverage scaling and preconditioning, as applicable, to balance
error between solution components and to accelerate convergence of the linear solver. To this end, instead of solving
the linear system 𝐴𝑥 = 𝑏 directly, these apply the underlying iterative algorithm to the transformed system

𝐴�̃� = �̃� (11.1)

where

𝐴 = 𝑆1𝑃
−1
1 𝐴𝑃−1

2 𝑆−1
2 ,

�̃� = 𝑆1𝑃
−1
1 𝑏,

�̃� = 𝑆2𝑃2𝑥,

(11.2)

and where

• 𝑃1 is the left preconditioner,

• 𝑃2 is the right preconditioner,

• 𝑆1 is a diagonal matrix of scale factors for 𝑃−1
1 𝑏,

• 𝑆2 is a diagonal matrix of scale factors for 𝑃2𝑥.

SUNDIALS solvers request that iterative linear solvers stop based on the 2-norm of the scaled preconditioned residual
meeting a prescribed tolerance ⃦⃦⃦

�̃�−𝐴�̃�
⃦⃦⃦
2
< tol.

277

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

When provided an iterative SUNLinSol implementation that does not support the scaling matrices 𝑆1 and 𝑆2, SUN-
DIALS’ packages will adjust the value of tol accordingly (see the section Iterative linear solver tolerance for more
details). In this case, they instead request that iterative linear solvers stop based on the criteria⃦⃦

𝑃−1
1 𝑏− 𝑃−1

1 𝐴𝑥
⃦⃦
2
< tol.

We note that the corresponding adjustments to tol in this case are non-optimal, in that they cannot balance error
between specific entries of the solution 𝑥, only the aggregate error in the overall solution vector.

We further note that not all of the SUNDIALS-provided iterative linear solvers support the full range of the above
options (e.g., separate left/right preconditioning), and that some of the SUNDIALS packages only utilize a subset of
these options. Further details on these exceptions are described in the documentation for each SUNLinearSolver
implementation, or for each SUNDIALS package.

For users interested in providing their own SUNLinSol module, the following section presents the SUNLinSol API
and its implementation beginning with the definition of SUNLinSol functions in sections SUNLinearSolver core func-
tions – SUNLinearSolver get functions. This is followed by the definition of functions supplied to a linear solver
implementation in section Functions provided by SUNDIALS packages. The linear solver return codes are described
in section SUNLinearSolver return codes. The SUNLinearSolver type and the generic SUNLinSol module are
defined in section The generic SUNLinearSolver module. The section Compatibility of SUNLinearSolver modules
discusses compatibility between the SUNDIALS-provided SUNLinSol modules and SUNMATRIX modules. Section
Implementing a custom SUNLinearSolver module lists the requirements for supplying a custom SUNLinSol module
and discusses some intended use cases. Users wishing to supply their own SUNLinSol module are encouraged to use
the SUNLinSol implementations provided with SUNDIALS as a template for supplying custom linear solver modules.
The SUNLinSol functions required by this SUNDIALS package as well as other package specific details are given in
section ARKode SUNLinearSolver interface. The remaining sections of this chapter present the SUNLinSol modules
provided with SUNDIALS.

11.1 The SUNLinearSolver API

The SUNLinSol API defines several linear solver operations that enable SUNDIALS packages to utilize any SUN-
LinSol implementation that provides the required functions. These functions can be divided into three categories.
The first are the core linear solver functions. The second group of functions consists of set routines to supply the
linear solver with functions provided by the SUNDIALS time integrators and to modify solver parameters. The final
group consists of get routines for retrieving linear solver statistics. All of these functions are defined in the header file
sundials/sundials_linearsolver.h.

11.1.1 SUNLinearSolver core functions

The core linear solver functions consist of four required routines to get the linear solver type
(SUNLinSolGetType()), initialize the linear solver object once all solver-specific options have been
set (SUNLinSolInitialize()), set up the linear solver object to utilize an updated matrix 𝐴
(SUNLinSolSetup()), and solve the linear system 𝐴𝑥 = 𝑏 (SUNLinSolSolve()). The remaining rou-
tine for destruction of the linear solver object (SUNLinSolFree()) is optional.

SUNLinearSolver_Type SUNLinSolGetType(SUNLinearSolver LS)
Returns the type identifier for the linear solver LS. It is used to determine the solver type (direct, iterative, or
matrix-iterative) from the abstract SUNLinearSolver interface. Returned values are one of the following:

•SUNLINEARSOLVER_DIRECT – 0, the SUNLinSol module requires a matrix, and computes an ‘exact’
solution to the linear system defined by that matrix.

•SUNLINEARSOLVER_ITERATIVE – 1, the SUNLinSol module does not require a matrix (though one
may be provided), and computes an inexact solution to the linear system using a matrix-free iterative

278 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

algorithm. That is it solves the linear system defined by the package-supplied ATimes routine (see
SUNLinSolSetATimes() below), even if that linear system differs from the one encoded in the matrix
object (if one is provided). As the solver computes the solution only inexactly (or may diverge), the linear
solver should check for solution convergence/accuracy as appropriate.

•SUNLINEARSOLVER_MATRIX_ITERATIVE – 2, the SUNLinSol module requires a matrix, and com-
putes an inexact solution to the linear system defined by that matrix using an iterative algorithm. That is it
solves the linear system defined by the matrix object even if that linear system differs from that encoded
by the package-supplied ATimes routine. As the solver computes the solution only inexactly (or may
diverge), the linear solver should check for solution convergence/accuracy as appropriate.

Usage:

type = SUNLinSolGetType(LS);

Notes: See section Intended use cases for more information on intended use cases corresponding to the linear
solver type.

int SUNLinSolInitialize(SUNLinearSolver LS)
Performs linear solver initialization (assuming that all solver-specific options have been set). This should return
zero for a successful call, and a negative value for a failure, ideally returning one of the generic error codes listed
in section SUNLinearSolver return codes.

Usage:

retval = SUNLinSolInitialize(LS);

int SUNLinSolSetup(SUNLinearSolver LS, SUNMatrix A)
Performs any linear solver setup needed, based on an updated system SUNMatrix A. This may be called
frequently (e.g., with a full Newton method) or infrequently (for a modified Newton method), based on the
type of integrator and/or nonlinear solver requesting the solves. This should return zero for a successful call, a
positive value for a recoverable failure and a negative value for an unrecoverable failure, ideally returning one
of the generic error codes listed in section SUNLinearSolver return codes.

Usage:

retval = SUNLinSolSetup(LS, A);

int SUNLinSolSolve(SUNLinearSolver LS, SUNMatrix A, N_Vector x, N_Vector b, realtype tol)
This required function Solves a linear system 𝐴𝑥 = 𝑏.

Arguments:

• LS – a SUNLinSol object.

• A – a SUNMatrix object.

• x – a N_Vector object containing the initial guess for the solution of the linear system, and the
solution to the linear system upon return.

• b – a N_Vector object containing the linear system right-hand side.

• tol – the desired linear solver tolerance.

Return value: This should return zero for a successful call, a positive value for a recoverable failure and a
negative value for an unrecoverable failure, ideally returning one of the generic error codes listed in section
SUNLinearSolver return codes.

Direct solvers: can ignore the tol argument.

Matrix-free solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE) can ignore the
SUNMatrix input A, and should rely on the matrix-vector product function supplied through the routine
SUNLinSolSetATimes().

11.1. The SUNLinearSolver API 279

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Iterative solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE or
SUNLINEARSOLVER_MATRIX_ITERATIVE) should attempt to solve to the specified tolerance tol in
a weighted 2-norm. If the solver does not support scaling then it should just use a 2-norm.

Usage:

retval = SUNLinSolSolve(LS, A, x, b, tol);

int SUNLinSolFree(SUNLinearSolver LS)
Frees memory allocated by the linear solver. This should return zero for a successful call, and a negative value
for a failure.

Usage:

retval = SUNLinSolFree(LS);

11.1.2 SUNLinearSolver set functions

The following set functions are used to supply linear solver modules with functions defined by the SUNDIALS pack-
ages and to modify solver parameters. Only the routine for setting the matrix-vector product routine is required, and
that is only for matrix-free linear solver modules. Otherwise, all other set functions are optional. SUNLinSol im-
plementations that do not provide the functionality for any optional routine should leave the corresponding function
pointer NULL instead of supplying a dummy routine.

int SUNLinSolSetATimes(SUNLinearSolver LS, void* A_data, ATimesFn ATimes)
This function is required for matrix-free linear solvers; otherwise it is optional.

Provides a ATimesFn function pointer, as well as a void* pointer to a data structure used by this routine,
to a linear solver object. SUNDIALS packages will call this function to set the matrix-vector product function
to either a solver-provided difference-quotient via vector operations or a user-supplied solver-specific routine.
This routine should return zero for a successful call, and a negative value for a failure, ideally returning one of
the generic error codes listed in section SUNLinearSolver return codes.

Usage:

retval = SUNLinSolSetATimes(LS, A_data, ATimes);

int SUNLinSolSetPreconditioner(SUNLinearSolver LS, void* P_data, PSetupFn Pset,
PSolveFn Psol)

This optional routine provides PSetupFn and PSolveFn function pointers that implement the preconditioner
solves 𝑃−1

1 and 𝑃−1
2 . This routine will be called by a SUNDIALS package, which will provide translation

between the generic Pset and Psol calls and the package- or user-supplied routines. This routine should return
zero for a successful call, and a negative value for a failure, ideally returning one of the generic error codes listed
in section SUNLinearSolver return codes.

Usage:

retval = SUNLinSolSetPreconditioner(LS, Pdata, Pset, Psol);

int SUNLinSolSetScalingVectors(SUNLinearSolver LS, N_Vector s1, N_Vector s2)
This optional routine provides left/right scaling vectors for the linear system solve. Here, s1 and s2 are
N_Vectors of positive scale factors containing the diagonal of the matrices 𝑆1 and 𝑆2, respectively. Neither
of these vectors need to be tested for positivity, and a NULL argument for either indicates that the corresponding
scaling matrix is the identity. This routine should return zero for a successful call, and a negative value for a
failure, ideally returning one of the generic error codes listed in section SUNLinearSolver return codes.

Usage:

280 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

retval = SUNLinSolSetScalingVectors(LS, s1, s2);

11.1.3 SUNLinearSolver get functions

The following get functions allow SUNDIALS packages to retrieve results from a linear solve. All routines are
optional.

int SUNLinSolNumIters(SUNLinearSolver LS)
This optional routine should return the number of linear iterations performed in the last “solve” call.

Usage:

its = SUNLinSolNumIters(LS);

realtype SUNLinSolResNorm(SUNLinearSolver LS)
This optional routine should return the final residual norm from the last “solve” call.

Usage:

rnorm = SUNLinSolResNorm(LS);

N_Vector SUNLinSolResid(SUNLinearSolver LS)
If an iterative method computes the preconditioned initial residual and returns with a successful solve without
performing any iterations (i.e., either the initial guess or the preconditioner is sufficiently accurate), then this op-
tional routine may be called by the SUNDIALS package. This routine should return the N_Vector containing
the preconditioned initial residual vector.

Usage:

rvec = SUNLinSolResid(LS);

Note: since N_Vector is actually a pointer, and the results are not modified, this routine should not require
additional memory allocation. If the SUNLinSol object does not retain a vector for this purpose, then this
function pointer should be set to NULL in the implementation.

long int SUNLinSolLastFlag(SUNLinearSolver LS)
This optional routine should return the last error flag encountered within the linear solver. This is not called by
the SUNDIALS packages directly; it allows the user to investigate linear solver issues after a failed solve.

Usage:

lflag = SUNLinLastFlag(LS);

int SUNLinSolSpace(SUNLinearSolver LS, long int *lenrwLS, long int *leniwLS)
This optional routine should return the storage requirements for the linear solver LS. lrw is a long int con-
taining the number of realtype words and liw is a long int containing the number of integer words. The
return value is an integer flag denoting success/failure of the operation.

This function is advisory only, for use by users to help determine their total space requirements.

Usage:

retval = SUNLinSolSpace(LS, &lrw, &liw);

11.1.4 Functions provided by SUNDIALS packages

To interface with SUNLinSol modules, the SUNDIALS packages supply a variety of routines for evaluating the matrix-
vector product, and setting up and applying the preconditioniner. These package-provided routines translate between

11.1. The SUNLinearSolver API 281

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

the user-supplied ODE, DAE, or nonlinear systems and the generic interfaces to the linear systems of equations that
result in their solution. The types for functions provided to a SUNLinSol module are defined in the header file
sundials/sundials_iterative.h, and are described below.

typedef int (*ATimesFn)(void *A_data, N_Vector v, N_Vector z)
These functions compute the action of a matrix on a vector, performing the operation 𝑧 = 𝐴𝑣. Memory for z
will already be allocated prior to calling this function. The parameter A_data is a pointer to any information
about 𝐴 which the function needs in order to do its job. The vector 𝑣 should be left unchanged. This routine
should return 0 if successful and a non-zero value if unsuccessful.

typedef int (*PSetupFn)(void *P_data)
These functions set up any requisite problem data in preparation for calls to the corresponding PSolveFn. This
routine should return 0 if successful and a non-zero value if unsuccessful.

typedef int (*PSolveFn)(void *P_data, N_Vector r, N_Vector z, realtype tol, int lr)
These functions solve the preconditioner equation 𝑃𝑧 = 𝑟 for the vector 𝑧. Memory for z will already be
allocated prior to calling this function. The parameter P_data is a pointer to any information about 𝑃 which
the function needs in order to do its job (set up by the corresponding PSetupFn). The parameter lr is input,
and indicates whether 𝑃 is to be taken as the left or right preconditioner: lr = 1 for left and lr = 2 for right. If
preconditioning is on one side only, lr can be ignored. If the preconditioner is iterative, then it should strive to
solve the preconditioner equation so that

‖𝑃𝑧 − 𝑟‖wrms < 𝑡𝑜𝑙

where the error weight vector for the WRMS norm may be accessed from the main package memory structure.
The vector r should not be modified by the PSolveFn. This routine should return 0 if successful and a non-
zero value if unsuccessful. On a failure, a negative return value indicates an unrecoverable condition, while a
positive value indicates a recoverable one, in which the calling routine may reattempt the solution after updating
preconditioner data.

11.1.5 SUNLinearSolver return codes

The functions provided to SUNLinSol modules by each SUNDIALS package, and functions within the SUNDIALS-
provided SUNLinSol implementations utilize a common set of return codes, listed below. These adhere to a common
pattern: 0 indicates success, a postitive value corresponds to a recoverable failure, and a negative value indicates a non-
recoverable failure. Aside from this pattern, the actual values of each error code are primarily to provide additional
information to the user in case of a linear solver failure.

• SUNLS_SUCCESS (0) – successful call or converged solve

• SUNLS_MEM_NULL (-1) – the memory argument to the function is NULL

• SUNLS_ILL_INPUT (-2) – an illegal input has been provided to the function

• SUNLS_MEM_FAIL (-3) – failed memory access or allocation

• SUNLS_ATIMES_FAIL_UNREC (-4) – an unrecoverable failure occurred in the ATimes routine

• SUNLS_PSET_FAIL_UNREC (-5) – an unrecoverable failure occurred in the Pset routine

• SUNLS_PSOLVE_FAIL_UNREC (-6) – an unrecoverable failure occurred in the Psolve routine

• SUNLS_PACKAGE_FAIL_UNREC (-7) – an unrecoverable failure occurred in an external linear solver package

• SUNLS_GS_FAIL (-8) – a failure occurred during Gram-Schmidt orthogonalization (SPGMR/SPFGMR)

• SUNLS_QRSOL_FAIL (-9) – a singular R matrix was encountered in a QR factorization (SPGMR/SPFGMR)

• SUNLS_RES_REDUCED (1) – an iterative solver reduced the residual, but did not converge to the desired
tolerance

282 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• SUNLS_CONV_FAIL (2) – an iterative solver did not converge (and the residual was not reduced)

• SUNLS_ATIMES_FAIL_REC (3) – a recoverable failure occurred in the ATimes routine

• SUNLS_PSET_FAIL_REC (4) – a recoverable failure occurred in the Pset routine

• SUNLS_PSOLVE_FAIL_REC (5) – a recoverable failure occurred in the Psolve routine

• SUNLS_PACKAGE_FAIL_REC (6) – a recoverable failure occurred in an external linear solver package

• SUNLS_QRFACT_FAIL (7) – a singular matrix was encountered during a QR factorization
(SPGMR/SPFGMR)

• SUNLS_LUFACT_FAIL (8) – a singular matrix was encountered during a LU factorization

11.1.6 The generic SUNLinearSolver module

SUNDIALS packages interact with specific SUNLinSol implementations through the generic SUNLinSol module
on which all other SUNLinSol iplementations are built. The SUNLinearSolver type is a pointer to a structure
containing an implementation-dependent content field, and an ops field. The type SUNLinearSolver is defined as

typedef struct _generic_SUNLinearSolver *SUNLinearSolver;

struct _generic_SUNLinearSolver {
void *content;
struct _generic_SUNLinearSolver_Ops *ops;

};

where the _generic_SUNLinearSolver_Ops structure is a list of pointers to the various actual linear solver
operations provided by a specific implementation. The _generic_SUNLinearSolver_Ops structure is defined
as

struct _generic_SUNLinearSolver_Ops {
SUNLinearSolver_Type (*gettype)(SUNLinearSolver);
int (*setatimes)(SUNLinearSolver, void*, ATimesFn);
int (*setpreconditioner)(SUNLinearSolver, void*,

PSetupFn, PSolveFn);
int (*setscalingvectors)(SUNLinearSolver,

N_Vector, N_Vector);
int (*initialize)(SUNLinearSolver);
int (*setup)(SUNLinearSolver, SUNMatrix);
int (*solve)(SUNLinearSolver, SUNMatrix, N_Vector,

N_Vector, realtype);
int (*numiters)(SUNLinearSolver);
realtype (*resnorm)(SUNLinearSolver);
long int (*lastflag)(SUNLinearSolver);
int (*space)(SUNLinearSolver, long int*, long int*);
N_Vector (*resid)(SUNLinearSolver);
int (*free)(SUNLinearSolver);

};

The generic SUNLinSol module defines and implements the linear solver operations defined in Sections SUNLinear-
Solver core functions through SUNLinearSolver get functions. These routines are in fact only wrappers to the linear
solver operations defined by a particular SUNLinSol implementation, which are accessed through the ops field of the
SUNLinearSolver structure. To illustrate this point we show below the implementation of a typical linear solver
operation from the generic SUNLinearSolver module, namely SUNLinSolInitialize, which initializes a
SUNLinearSolver object for use after it has been created and configured, and returns a flag denoting a successful
or failed operation:

11.1. The SUNLinearSolver API 283

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int SUNLinSolInitialize(SUNLinearSolver S)
{

return ((int) S->ops->initialize(S));
}

11.1.7 Compatibility of SUNLinearSolver modules

We note that not all SUNLinearSolver types are compatible with all SUNMatrix and N_Vector types provided
with SUNDIALS. In Table Compatible SUNLinearSolver and SUNMatrix implementations we show the matrix-based
linear solvers available as SUNLinearSolvermodules, and the compatible matrix implementations. Recall that Ta-
ble SUNDIALS linear solver interfaces and vector implementations that can be used for each shows the compatibility
between all SUNLinearSolver modules and vector implementations.

Compatible SUNLinearSolver and SUNMatrix implementations

Linear Solver Dense Banded Sparse User Supplied
Dense X X
LapackDense X X
Band X X
LapackBand X X
KLU X X
SuperLU_MT X X
User supplied X X X X

11.1.8 Implementing a custom SUNLinearSolver module

A particular implementation of the SUNLinearSolver module must:

• Specify the content field of the SUNLinSol module.

• Define and implement the required linear solver operations. See the section ARKode SUNLinearSolver interface
to determine which SUNLinSol operations are required for this SUNDIALS package.

Note that the names of these routines should be unique to that implementation in order to permit using more than
one SUNLinSol module (each with different SUNLinearSolver internal data representations) in the same
code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNLinearSolver with the new content field and with ops pointing to the new linear solver opera-
tions.

We note that the function pointers for all unsupported optional routines should be set to NULL in the ops structure.
This allows the SUNDIALS package that is using the SUNLinSol object to know that the associated functionality is
not supported.

Additionally, a SUNLinearSolver implementation may do the following:

• Define and implement additional user-callable “set” routines acting on the SUNLinearSolver, e.g., for set-
ting various configuration options to tune the linear solver to a particular problem.

• Provide additional user-callable “get” routines acting on the SUNLinearSolver object, e.g., for returning
various solve statistics.

284 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Intended use cases

The SUNLinSol (and SUNMATRIX) APIs are designed to require a minimal set of routines to ease interfacing with
custom or third-party linear solver libraries. External solvers provide similar routines with the necessary functionality
and thus will require minimal effort to wrap within custom SUNMATRIX and SUNLinSol implementations. Sections
SUNMATRIX functions required by ARKode and ARKode SUNLinearSolver interface include a list of the required set
of routines that compatible SUNMATRIX and SUNLinSol implementations must provide. As SUNDIALS packages
utilize generic SUNLinSol modules allowing for user-supplied SUNLinearSolver implementations, there exists a
wide range of possible linear solver combinations. Some intended use cases for both the SUNDIALS-provided and
user-supplied SUNLinSol modules are discussd in the following sections.

Direct linear solvers

Direct linear solver modules require a matrix and compute an ‘exact’ solution to the linear system defined by the
matrix. Multiple matrix formats and associated direct linear solvers are supplied with SUNDIALS through different
SUNMATRIX and SUNLinSol implementations. SUNDIALS packages strive to amortize the high cost of matrix
construction by reusing matrix information for multiple nonlinear iterations. As a result, each package’s linear solver
interface recomputes Jacobian information as infrequently as possible.

Alternative matrix storage formats and compatible linear solvers that are not currently provided by or interfaced with
SUNDIALS can leverage this infrastructure with minimal effort. To do so, a user must implement custom SUNMA-
TRIX and SUNLinSol wrappers for the desired matrix format and/or linear solver following the APIs described in
the sections Matrix Data Structures and Description of the SUNLinearSolver module. This user-supplied SUNLinSol
module must then self-identify as having SUNLINEARSOLVER_DIRECT type.

Matrix-free iterative linear solvers

Matrix-free iterative linear solver modules do not require a matrix and compute an inexact solution to the linear sys-
tem defined by the package-supplied ATimes routine. SUNDIALS supplies multiple scaled, preconditioned iterative
linear solver (spils) SUNLinSol modules that support scaling to allow users to handle non-dimensionalization (as best
as possible) within each SUNDIALS package and retain variables and define equations as desired in their applications.
For linear solvers that do not support left/right scaling, the tolerance supplied to the linear solver is adjusted to com-
pensate (see section Iterative linear solver tolerance for more details); however, this use case may be non-optimal and
cannot handle situations where the magnitudes of different solution components or equations vary dramatically within
a single problem.

To utilize alternative linear solvers that are not currently provided by or interfaced with SUNDIALS a user must
implement a custom SUNLinSol wrapper for the linear solver following the API described in the section De-
scription of the SUNLinearSolver module. This user-supplied SUNLinSol module must then self-identify as having
SUNLINEARSOLVER_ITERATIVE type.

Matrix-based iterative linear solvers (reusing 𝐴)

Matrix-based iterative linear solver modules require a matrix and compute an inexact solution to the linear system
defined by the matrix. This matrix will be updated infrequently and resued across multiple solves to amortize cost of
matrix construction. As in the direct linear solver case, only wrappers for the matrix and linear solver in SUNMATRIX
and SUNLinSol implementations need to be created to utilize a new linear solver. This user-supplied SUNLinSol
module must then self-identify as having SUNLINEARSOLVER_MATRIX_ITERATIVE type.

At present, SUNDIALS has one example problem that uses this approach for wrapping a structured-grid matrix, linear
solver, and preconditioner from the hypre library that may be used as a template for other customized implementations
(see examples/arkode/CXX_parhyp/ark_heat2D_hypre.cpp).

11.1. The SUNLinearSolver API 285

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Matrix-based iterative linear solvers (current 𝐴)

For users who wish to utilize a matrix-based iterative linear solver module where the matrix is purely for precondition-
ing and the linear system is defined by the package-supplied ATimes routine, we envision two current possibilities.

The preferred approach is for users to employ one of the SUNDIALS scaled, preconditioned iterative linear
solver (spils) implementations (SUNLinSol_SPGMR(), SUNLinSol_SPFGMR(), SUNLinSol_SPBCGS(),
SUNLinSol_SPTFQMR(), or SUNLinSol_PCG()) as the outer solver. The creation and storage of the precondi-
tioner matrix, and interfacing with the corresponding linear solver, can be handled through a package’s preconditioner
‘setup’ and ‘solve’ functionality (see the sections Preconditioner setup (iterative linear solvers) and Preconditioner
solve (iterative linear solvers), respectively) without creating SUNMATRIX and SUNLinSol implementations. This
usage mode is recommended primarily because the SUNDIALS-provided spils modules support the scaling as de-
scribed above.

A second approach supported by the linear solver APIs is as follows. If the SUNLinSol implementation is
matrix-based, self-identifies as having SUNLINEARSOLVER_ITERATIVE type, and also provides a non-NULL
:c:func:‘SUNLinSolSetATimes()‘ routine, then each SUNDIALS package will call that routine to attach its package-
specific matrix-vector product routine to the SUNLinSol object. The SUNDIALS package will then call the
SUNLinSol-provided SUNLinSolSetup() routine (infrequently) to update matrix information, but will provide
current matrix-vector products to the SUNLinSol implementation through the package-supplied ATimesFn routine.

11.2 ARKode SUNLinearSolver interface

In the table below, we list the SUNLinSol module linear solver functions used within the ARKLS interface. As with
the SUNMATRIX module, we emphasize that the ARKode user does not need to know detailed usage of linear solver
functions by the ARKode code modules in order to use ARKode. The information is presented as an implementation
detail for the interested reader.

The linear solver functions listed below are marked with “X” to indicate that they are required, or with “O” to indicate
that they are only called if they are non-NULL in the SUNLinearSolver implementation that is being used. Note:

1. SUNLinSolNumIters() is only used to accumulate overall iterative linear solver statistics. If it is not
implemented by the SUNLinearSolver module, then ARKLS will consider all solves as requiring zero
iterations.

2. Although SUNLinSolResNorm() is optional, if it is not implemented by the SUNLinearSolver then
ARKLS will consider all solves a being exact.

3. Although ARKLS does not call SUNLinSolLastFlag() directly, this routine is available for users to query
linear solver failure modes directly.

4. Although ARKLS does not call SUNLinSolFree() directly, this routine should be available for users to call
when cleaning up from a simulation.

286 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Routine DIRECT ITERATIVE MATRIX_ITERATIVE
SUNLinSolGetType X X X
SUNLinSolSetATimes O X O
SUNLinSolSetPreconditioner O O O
SUNLinSolSetScalingVectors O O O
SUNLinSolInitialize X X X
SUNLinSolSetup X X X
SUNLinSolSolve X X X
SUNLinSolNumIters1 O O
SUNLinSolResNorm2 O O
SUNLinSolLastFlag3

SUNLinSolFree4

SUNLinSolSpace O O O

Since there are a wide range of potential SUNLinSol use cases, the following subsections describe some details of the
ARKLS interface, in the case that interested users wish to develop custom SUNLinSol modules.

11.2.1 Lagged matrix information

If the SUNLinSol identifies as having type SUNLINEARSOLVER_DIRECT or
SUNLINEARSOLVER_MATRIX_ITERATIVE, then the SUNLinSol object solves a linear system defined by
a SUNMATRIX object. ARKLS will update the matrix information infrequently according to the strategies outlined
in the section Updating the linear solver. When solving a linear system

𝒜�̃� = 𝑏 ⇔ (𝑀 − 𝛾𝐽)�̃� = 𝑏

it is likely that the value 𝛾 used to construct 𝒜 differs from the current value of 𝛾 in the RK method, since 𝒜 is up-
dated infrequently. Therefore, after calling the SUNLinSol-provided SUNLinSolSolve() routine, we test whether
𝛾/𝛾 ̸= 1, and if this is the case we scale the solution �̃� to obtain the desired linear system solution 𝑥 via

𝑥 =
2

1 + 𝛾/𝛾
�̃�. (11.3)

For values of 𝛾/𝛾 that are “close” to 1, this rescaling approximately solves the original linear system, as discussed
below. We first note that the equation (11.3) is equivalent to

�̃� =
1

2
𝑥 +

𝛾

𝛾
𝑥.

Adding the two equations (𝑀 − 𝛾𝐽)𝑥 = 𝑏 and (𝑀 − 𝛾𝐽)�̃� = 𝑏, and inserting the above relationship, we have

2𝑏 = (𝑀 − 𝛾𝐽)𝑥 + (𝑀 − 𝛾𝐽)

= 𝑀𝑥− 𝛾𝐽𝑥 + 𝑀�̃�− 𝐽 (𝛾�̃�)

=
3

2
(𝑀 − 𝛾𝐽)𝑥 +

1

2

(︂
𝛾

𝛾
𝑀 − 𝛾𝐽

)︂
𝑥

=
3

2
𝑏 +

1

2

(︂
𝛾

𝛾
𝑀 − 𝛾𝐽

)︂
𝑥.

When 𝛾/𝛾 ≈ 1, this latter term is approximately equal to 1
2𝑏.

11.2.2 Iterative linear solver tolerance

If the SUNLinSol object self-identifies as having type SUNLINEARSOLVER_ITERATIVE or
SUNLINEARSOLVER_MATRIX_ITERATIVE, then ARKLS will set the input tolerance delta as described

11.2. ARKode SUNLinearSolver interface 287

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

in Linear iteration error control. However, if the iterative linear solver does not support scaling matrices (i.e., the
SUNLinSolSetScalingVectors() routine is NULL), then ARKLS will attempt to adjust the linear solver
tolerance to account for this lack of functionality. To this end, the following assumptions are made:

• The units of the IVP solution and linear residual are the same (i.e., the error and residual weight vectors in
section Error norms are the same); this is automatically satisfied with identity mass matrix, 𝑀 = 𝐼 , or similar.

• All solution components have similar magnitude; hence the error weight vector 𝑤 used in the WRMS norm (see
the section Error norms) should satisfy the assumption

𝑤𝑖 ≈ 𝑤𝑚𝑒𝑎𝑛, for 𝑖 = 0, . . . , 𝑛− 1.

• The SUNLinSol object uses a standard 2-norm to measure convergence.

Under these assumptions, ARKLS uses identical left and right scaling matrices, 𝑆1 = 𝑆2 = 𝑆 = diag(𝑤), so the
linear solver convergence requirement is converted as follows (using the notation from the beginning of this chapter):⃦⃦⃦

�̃�−𝐴�̃�
⃦⃦⃦
2
< tol

⇔
⃦⃦
𝑆𝑃−1

1 𝑏− 𝑆𝑃−1
1 𝐴𝑥

⃦⃦
2
< tol

⇔
𝑛−1∑︁
𝑖=0

[︀
𝑤𝑖

(︀
𝑃−1
1 (𝑏−𝐴𝑥)

)︀
𝑖

]︀2
< tol2

⇔ 𝑤2
𝑚𝑒𝑎𝑛

𝑛−1∑︁
𝑖=0

[︀(︀
𝑃−1
1 (𝑏−𝐴𝑥)

)︀
𝑖

]︀2
< tol2

⇔
𝑛−1∑︁
𝑖=0

[︀(︀
𝑃−1
1 (𝑏−𝐴𝑥)

)︀
𝑖

]︀2
<

(︂
tol

𝑤𝑚𝑒𝑎𝑛

)︂2

⇔
⃦⃦
𝑃−1
1 (𝑏−𝐴𝑥)

⃦⃦
2
<

tol
𝑤𝑚𝑒𝑎𝑛

Therefore the tolerance scaling factor

𝑤𝑚𝑒𝑎𝑛 = ‖𝑤‖2/
√
𝑛

is computed and the scaled tolerance delta = tol/𝑤𝑚𝑒𝑎𝑛 is supplied to the SUNLinSol object.

11.3 The SUNLinSol_Dense Module

The dense implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLinSol_Dense, is
designed to be used with the corresponding SUNMATRIX_DENSE matrix type, and one of the serial or shared-
memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).

11.3.1 SUNLinSol_Dense Usage

The header file to be included when using this module is sunlinsol/sunlinsol_dense.h.
The SUNLinSol_Dense module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsoldense module library.

The module SUNLinSol_Dense provides the following user-callable constructor routine:

SUNLinearSolver SUNLinSol_Dense(N_Vector y, SUNMatrix A)
This function creates and allocates memory for a dense SUNLinearSolver. Its arguments are an N_Vector

288 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

and SUNMatrix, that it uses to determine the linear system size and to assess compatibility with the linear
solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_DENSE matrix type and
the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

If either A or y are incompatible then this routine will return NULL.

For backwards compatibility, we also provide the wrapper function,

SUNLinearSolver SUNDenseLinearSolver(N_Vector y, SUNMatrix A)
Wrapper function for SUNLinSol_Dense(), with identical input and output arguments

For solvers that include a Fortran interface module, the SUNLinSol_Dense module also includes the Fortran-callable
function FSUNDenseLinSolInit() to initialize this SUNLinSol_Dense module for a given SUNDIALS solver.

subroutine FSUNDenseLinSolInit(CODE, IER)
Initializes a dense SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassDenseLinSolInit() initializes this SUNLinSol_Dense module for solving mass matrix linear
systems.

subroutine FSUNMassDenseLinSolInit(IER)
Initializes a dense SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• IER (int, output) – return flag (0 success, -1 for failure).

11.3.2 SUNLinSol_Dense Description

The SUNLinSol_Dense module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
long int last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

11.3. The SUNLinSol_Dense Module 289

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• The “setup” call performs a 𝐿𝑈 factorization with partial (row) pivoting (𝒪(𝑁3) cost), 𝑃𝐴 = 𝐿𝑈 , where 𝑃 is a
permutation matrix, 𝐿 is a lower triangular matrix with 1’s on the diagonal, and 𝑈 is an upper triangular matrix.
This factorization is stored in-place on the input SUNMATRIX_DENSE object 𝐴, with pivoting information
encoding 𝑃 stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and
the 𝐿𝑈 factors held in the SUNMATRIX_DENSE object (𝒪(𝑁2) cost).

The SUNLinSol_Dense module defines dense implementations of all “direct” linear solver operations listed in the
section The SUNLinearSolver API:

• SUNLinSolGetType_Dense

• SUNLinSolInitialize_Dense – this does nothing, since all consistency checks are performed at solver
creation.

• SUNLinSolSetup_Dense – this performs the 𝐿𝑈 factorization.

• SUNLinSolSolve_Dense – this uses the 𝐿𝑈 factors and pivots array to perform the solve.

• SUNLinSolLastFlag_Dense

• SUNLinSolSpace_Dense – this only returns information for the storage within the solver object, i.e. storage
for N, last_flag, and pivots.

• SUNLinSolFree_Dense

11.4 The SUNLinSol_Band Module

The band implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLinSol_Band, is
designed to be used with the corresponding SUNMATRIX_BAND matrix type, and one of the serial or shared-memory
N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS).

11.4.1 SUNLinSol_Band Usage

The header file to be included when using this module is sunlinsol/sunlinsol_band.h.
The SUNLinSol_Band module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolband module library.

The module SUNLinSol_Band provides the following user-callable constructor routine:

SUNLinearSolver SUNLinSol_Band(N_Vector y, SUNMatrix A)
This function creates and allocates memory for a band SUNLinearSolver. Its arguments are an N_Vector
and SUNMatrix, that it uses to determine the linear system size and to assess compatibility with the linear
solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional com-
patible matrix and vector implementations are added to SUNDIALS, these will be included within this compat-
ibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth
storage for the 𝐿𝑈 factorization.

If either A or y are incompatible then this routine will return NULL.

For backwards compatibility, we also provide the wrapper function,

290 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

SUNLinearSolver SUNBandLinearSolver(N_Vector y, SUNMatrix A)
Wrapper function for SUNLinSol_Band(), with identical input and output arguments.

For solvers that include a Fortran interface module, the SUNLinSol_Band module also includes the Fortran-callable
function FSUNBandLinSolInit() to initialize this SUNLinSol_Band module for a given SUNDIALS solver.

subroutine FSUNBandLinSolInit(CODE, IER)
Initializes a banded SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassBandLinSolInit() initializes this SUNLinSol_Band module for solving mass matrix linear
systems.

subroutine FSUNMassBandLinSolInit(IER)
Initializes a banded SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• IER (int, output) – return flag (0 success, -1 for failure).

11.4.2 SUNLinSol_Band Description

The SUNLinSol_Band module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
long int last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

This solver is constructed to perform the following operations:

• The “setup” call performs a 𝐿𝑈 factorization with partial (row) pivoting, 𝑃𝐴 = 𝐿𝑈 , where 𝑃 is a permutation
matrix, 𝐿 is a lower triangular matrix with 1’s on the diagonal, and 𝑈 is an upper triangular matrix. This
factorization is stored in-place on the input SUNMATRIX_BAND object 𝐴, with pivoting information encoding
𝑃 stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and
the 𝐿𝑈 factors held in the SUNMATRIX_BAND object.

• 𝐴 must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if 𝐴 is a band matrix with upper bandwidth mu and lower bandwidth ml, then the upper triangular
factor 𝑈 can have upper bandwidth as big as smu = MIN(N-1,mu+ml). The lower triangular factor 𝐿 has
lower bandwidth ml.

11.4. The SUNLinSol_Band Module 291

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

The SUNLinSol_Band module defines band implementations of all “direct” linear solver operations listed in the
section The SUNLinearSolver API:

• SUNLinSolGetType_Band

• SUNLinSolInitialize_Band – this does nothing, since all consistency checks are performed at solver
creation.

• SUNLinSolSetup_Band – this performs the 𝐿𝑈 factorization.

• SUNLinSolSolve_Band – this uses the 𝐿𝑈 factors and pivots array to perform the solve.

• SUNLinSolLastFlag_Band

• SUNLinSolSpace_Band – this only returns information for the storage within the solver object, i.e. storage
for N, last_flag, and pivots.

• SUNLinSolFree_Band

11.5 The SUNLinSol_LapackDense Module

The LAPACK dense implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLin-
Sol_LapackDense, is designed to be used with the corresponding SUNMATRIX_DENSE matrix type, and one of
the serial or shared-memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVEC-
TOR_PTHREADS).

11.5.1 SUNLinSol_LapackDense Usage

The header file to be included when using this module is sunlinsol/sunlinsol_lapackdense.h. The in-
stalled module library to link to is libsundials_sunlinsollapackdense .lib where .lib is typically .so for
shared libraries and .a for static libraries.

The module SUNLinSol_LapackDense provides the following additional user-callable constructor routine:

SUNLinearSolver SUNLinSol_LapackDense(N_Vector y, SUNMatrix A)
This function creates and allocates memory for a LAPACK dense SUNLinearSolver. Its arguments are an
N_Vector and SUNMatrix, that it uses to determine the linear system size and to assess compatibility with
the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_DENSE matrix type and
the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional
compatible matrix and vector implementations are added to SUNDIALS, these will be included within this
compatibility check.

If either A or y are incompatible then this routine will return NULL.

For backwards compatibility, we also provide the wrapper function,

SUNLinearSolver SUNLapackDense(N_Vector y, SUNMatrix A)
Wrapper function for SUNLinSol_LapackDense(), with identical input and output arguments.

For solvers that include a Fortran interface module, the SUNLinSol_LapackDense module also includes the Fortran-
callable function FSUNLapackDenseInit() to initialize this SUNLinSol_LapackDense module for a given SUN-
DIALS solver.

subroutine FSUNLapackDenseInit(CODE, IER)
Initializes a dense LAPACK SUNLinearSolver structure for use in a SUNDIALS package.

292 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassLapackDenseInit() initializes this SUNLinSol_LapackDense module for solving mass matrix
linear systems.

subroutine FSUNMassLapackDenseInit(IER)
Initializes a dense LAPACK SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• IER (int, output) – return flag (0 success, -1 for failure).

11.5.2 SUNLinSol_LapackDense Description

The SUNLinSol_LapackDense module defines the content field of a SUNLinearSolver to be the following struc-
ture:

struct _SUNLinearSolverContent_Dense {
sunindextype N;
sunindextype *pivots;
long int last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

The SUNLinSol_LapackDense module is a SUNLinearSolver wrapper for the LAPACK dense matrix factoriza-
tion and solve routines, *GETRF and *GETRS, where * is either D or S, depending on whether SUNDIALS was
configured to have realtype set to double or single, respectively (see section Data Types for details). In order
to use the SUNLinSol_LapackDense module it is assumed that LAPACK has been installed on the system prior to
installation of SUNDIALS, and that SUNDIALS has been configured appropriately to link with LAPACK (see section
Working with external Libraries for details). We note that since there do not exist 128-bit floating-point factorization
and solve routines in LAPACK, this interface cannot be compiled when using extended precision for realtype.
Similarly, since there do not exist 64-bit integer LAPACK routines, the SUNLinSol_LapackDense module also cannot
be compiled when using int64_t for the sunindextype.

This solver is constructed to perform the following operations:

• The “setup” call performs a 𝐿𝑈 factorization with partial (row) pivoting (𝒪(𝑁3) cost), 𝑃𝐴 = 𝐿𝑈 , where 𝑃 is a
permutation matrix, 𝐿 is a lower triangular matrix with 1’s on the diagonal, and 𝑈 is an upper triangular matrix.
This factorization is stored in-place on the input SUNMATRIX_DENSE object 𝐴, with pivoting information
encoding 𝑃 stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and
the 𝐿𝑈 factors held in the SUNMATRIX_DENSE object (𝒪(𝑁2) cost).

11.5. The SUNLinSol_LapackDense Module 293

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

The SUNLinSol_LapackDense module defines dense implementations of all “direct” linear solver operations listed in
the section The SUNLinearSolver API:

• SUNLinSolGetType_LapackDense

• SUNLinSolInitialize_LapackDense – this does nothing, since all consistency checks are performed
at solver creation.

• SUNLinSolSetup_LapackDense – this calls either DGETRF or SGETRF to perform the 𝐿𝑈 factorization.

• SUNLinSolSolve_LapackDense – this calls either DGETRS or SGETRS to use the 𝐿𝑈 factors and
pivots array to perform the solve.

• SUNLinSolLastFlag_LapackDense

• SUNLinSolSpace_LapackDense – this only returns information for the storage within the solver object,
i.e. storage for N, last_flag, and pivots.

• SUNLinSolFree_LapackDense

11.6 The SUNLinSol_LapackBand Module

The LAPACK band implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLin-
Sol_LapackBand, is designed to be used with the corresponding SUNMATRIX_BAND matrix type, and one of
the serial or shared-memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVEC-
TOR_PTHREADS). The

11.6.1 SUNLinSol_LapackBand Usage

The header file to be included when using this module is sunlinsol/sunlinsol_lapackband.h. The in-
stalled module library to link to is libsundials_sunlinsollapackband .lib where .lib is typically .so for
shared libraries and .a for static libraries.

The module SUNLinSol_LapackBand provides the following user-callable routine:

SUNLinearSolver SUNLinSol_LapackBand(N_Vector y, SUNMatrix A)
This function creates and allocates memory for a LAPACK band SUNLinearSolver. Its arguments are an
N_Vector and SUNMatrix, that it uses to determine the linear system size and to assess compatibility with
the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_BAND matrix type and the
NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS vector types. As additional com-
patible matrix and vector implementations are added to SUNDIALS, these will be included within this compat-
ibility check.

Additionally, this routine will verify that the input matrix A is allocated with appropriate upper bandwidth
storage for the 𝐿𝑈 factorization.

If either A or y are incompatible then this routine will return NULL.

For backwards compatibility, we also provide the wrapper function,

SUNLinearSolver SUNLapackBand(N_Vector y, SUNMatrix A)
Wrapper function for SUNLinSol_LapackBand(), with identical input and output arguments.

For solvers that include a Fortran interface module, the SUNLinSol_LapackBand module also includes the Fortran-
callable function FSUNLapackBandInit() to initialize this SUNLinSol_LapackBand module for a given SUN-
DIALS solver.

294 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

subroutine FSUNLapackBandInit(CODE, IER)
Initializes a banded LAPACK SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassLapackBandInit() initializes this SUNLinSol_LapackBand module for solving mass matrix
linear systems.

subroutine FSUNMassLapackBandInit(IER)
Initializes a banded LAPACK SUNLinearSolver structure for use in solving mass matrix systems in
ARKode.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• IER (int, output) – return flag (0 success, -1 for failure).

11.6.2 SUNLinSol_LapackBand Description

SUNLinSol_LapackBand module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_Band {
sunindextype N;
sunindextype *pivots;
long int last_flag;

};

These entries of the content field contain the following information:

• N - size of the linear system,

• pivots - index array for partial pivoting in LU factorization,

• last_flag - last error return flag from internal function evaluations.

The SUNLinSol_LapackBand module is a SUNLinearSolver wrapper for the LAPACK band matrix factorization
and solve routines, *GBTRF and *GBTRS, where * is either D or S, depending on whether SUNDIALS was configured
to have realtype set to double or single, respectively (see section Data Types for details). In order to use the
SUNLinSol_LapackBand module it is assumed that LAPACK has been installed on the system prior to installation
of SUNDIALS, and that SUNDIALS has been configured appropriately to link with LAPACK (see section Working
with external Libraries for details). We note that since there do not exist 128-bit floating-point factorization and
solve routines in LAPACK, this interface cannot be compiled when using extended precision for realtype.
Similarly, since there do not exist 64-bit integer LAPACK routines, the SUNLinSol_LapackBand module also cannot
be compiled when using int64_t for the sunindextype.

This solver is constructed to perform the following operations:

• The “setup” call performs a 𝐿𝑈 factorization with partial (row) pivoting, 𝑃𝐴 = 𝐿𝑈 , where 𝑃 is a permutation
matrix, 𝐿 is a lower triangular matrix with 1’s on the diagonal, and 𝑈 is an upper triangular matrix. This
factorization is stored in-place on the input SUNMATRIX_BAND object 𝐴, with pivoting information encoding
𝑃 stored in the pivots array.

11.6. The SUNLinSol_LapackBand Module 295

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• The “solve” call performs pivoting and forward and backward substitution using the stored pivots array and
the 𝐿𝑈 factors held in the SUNMATRIX_BAND object.

• 𝐴 must be allocated to accommodate the increase in upper bandwidth that occurs during factorization. More
precisely, if 𝐴 is a band matrix with upper bandwidth mu and lower bandwidth ml, then the upper triangular
factor 𝑈 can have upper bandwidth as big as smu = MIN(N-1,mu+ml). The lower triangular factor 𝐿 has
lower bandwidth ml.

The SUNLinSol_LapackBand module defines band implementations of all “direct” linear solver operations listed in
the section The SUNLinearSolver API:

• SUNLinSolGetType_LapackBand

• SUNLinSolInitialize_LapackBand – this does nothing, since all consistency checks are performed at
solver creation.

• SUNLinSolSetup_LapackBand – this calls either DGBTRF or SGBTRF to perform the 𝐿𝑈 factorization.

• SUNLinSolSolve_LapackBand – this calls either DGBTRS or SGBTRS to use the 𝐿𝑈 factors and pivots
array to perform the solve.

• SUNLinSolLastFlag_LapackBand

• SUNLinSolSpace_LapackBand – this only returns information for the storage within the solver object, i.e.
storage for N, last_flag, and pivots.

• SUNLinSolFree_LapackBand

11.7 The SUNLinSol_KLU Module

The KLU implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLinSol_KLU, is
designed to be used with the corresponding SUNMATRIX_SPARSE matrix type, and one of the serial or shared-
memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVECTOR_PTHREADS).

11.7.1 SUNLinSol_KLU Usage

The header file to be included when using this module is sunlinsol/sunlinsol_klu.h. The installed module
library to link to is libsundials_sunlinsolklu .lib where .lib is typically .so for shared libraries and .a for
static libraries.

The module SUNLinSol_KLU provides the following additional user-callable routines:

SUNLinearSolver SUNLinSol_KLU(N_Vector y, SUNMatrix A)
This constructor function creates and allocates memory for a SUNLinSol_KLU object. Its arguments are an
N_Vector and SUNMatrix, that it uses to determine the linear system size and to assess compatibility with
the linear solver implementation.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (us-
ing either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added to
SUNDIALS, these will be included within this compatibility check.

If either A or y are incompatible then this routine will return NULL.

int SUNLinSol_KLUReInit(SUNLinearSolver S, SUNMatrix A, sunindextype nnz, int reinit_type)
This function reinitializes memory and flags for a new factorization (symbolic and numeric) to be conducted at

296 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

the next solver setup call. This routine is useful in the cases where the number of nonzeroes has changed or if
the structure of the linear system has changed which would require a new symbolic (and numeric factorization).

The reinit_type argument governs the level of reinitialization. The allowed values are:

1.The Jacobian matrix will be destroyed and a new one will be allocated based on the nnz value passed to
this call. New symbolic and numeric factorizations will be completed at the next solver setup.

2.Only symbolic and numeric factorizations will be completed. It is assumed that the Jacobian size has not
exceeded the size of nnz given in the sparse matrix provided to the original constructor routine (or the
previous SUNKLUReInit call).

This routine assumes no other changes to solver use are necessary.

The return values from this function are SUNLS_MEM_NULL (either S or A are NULL), SUNLS_ILL_INPUT
(A does not have type SUNMATRIX_SPARSE or reinit_type is invalid), SUNLS_MEM_FAIL (reallocation
of the sparse matrix failed) or SUNLS_SUCCESS.

int SUNLinSol_KLUSetOrdering(SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by KLU for reducing fill in the linear solve. Options for
ordering_choice are:

0.AMD,

1.COLAMD, and

2.the natural ordering.

The default is 1 for COLAMD.

The return values from this function are SUNLS_MEM_NULL (S is NULL), SUNLS_ILL_INPUT (invalid
ordering_choice), or SUNLS_SUCCESS.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:

SUNLinearSolver SUNKLU(N_Vector y, SUNMatrix A)
Wrapper function for SUNLinSol_KLU()

int SUNKLUReInit(SUNLinearSolver S, SUNMatrix A, sunindextype nnz, int reinit_type)
Wrapper function for SUNLinSol_KLUReInit()

int SUNKLUSetOrdering(SUNLinearSolver S, int ordering_choice)
Wrapper function for SUNLinSol_KLUSetOrdering()

For solvers that include a Fortran interface module, the SUNLinSol_KLU module also includes the Fortran-callable
function FSUNKLUInit() to initialize this SUNLinSol_KLU module for a given SUNDIALS solver.

subroutine FSUNKLUInit(CODE, IER)
Initializes a KLU sparse SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassKLUInit() initializes this SUNLinSol_KLU module for solving mass matrix linear systems.

11.7. The SUNLinSol_KLU Module 297

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

subroutine FSUNMassKLUInit(IER)
Initializes a KLU sparse SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_KLUReInit() and SUNLinSol_KLUSetOrdering() routines also support Fortran inter-
faces for the system and mass matrix solvers:

subroutine FSUNKLUReInit(CODE, NNZ, REINIT_TYPE, IER)
Fortran interface to SUNLinSol_KLUReInit() for system linear solvers.

This routine must be called after FSUNKLUInit() has been called.

Arguments: NNZ should have type long int, all others should have type int; all arguments have meanings
identical to those listed above.

subroutine FSUNMassKLUReInit(NNZ, REINIT_TYPE, IER)
Fortran interface to SUNLinSol_KLUReInit() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassKLUInit() has been called.

Arguments: NNZ should have type long int, all others should have type int; all arguments have meanings
identical to those listed above.

subroutine FSUNKLUSetOrdering(CODE, ORDERING, IER)
Fortran interface to SUNLinSol_KLUSetOrdering() for system linear solvers.

This routine must be called after FSUNKLUInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassKLUSetOrdering(ORDERING, IER)
Fortran interface to SUNLinSol_KLUSetOrdering() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassKLUInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

11.7.2 SUNLinSol_KLU Description

The SUNLinSol_KLU module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_KLU {
long int last_flag;
int first_factorize;
sun_klu_symbolic *symbolic;
sun_klu_numeric *numeric;
sun_klu_common common;
sunindextype (*klu_solver)(sun_klu_symbolic*, sun_klu_numeric*,

sunindextype, sunindextype,
double*, sun_klu_common*);

};

These entries of the content field contain the following information:

• last_flag - last error return flag from internal function evaluations,

• first_factorize - flag indicating whether the factorization has ever been performed,

• Symbolic - KLU storage structure for symbolic factorization components,

298 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• Numeric - KLU storage structure for numeric factorization components,

• Common - storage structure for common KLU solver components,

• klu_solver – pointer to the appropriate KLU solver function (depending on whether it is using a CSR or
CSC sparse matrix).

The SUNLinSol_KLU module is a SUNLinearSolver wrapper for the KLU sparse matrix factorization and solver
library written by Tim Davis ([KLU], [DP2010]). In order to use the SUNLinSol_KLU interface to KLU, it is as-
sumed that KLU has been installed on the system prior to installation of SUNDIALS, and that SUNDIALS has been
configured appropriately to link with KLU (see section Working with external Libraries for details). Additionally, this
wrapper only supports double-precision calculations, and therefore cannot be compiled if SUNDIALS is configured
to have realtype set to either extended or single (see section Data Types for details). Since the KLU library
supports both 32-bit and 64-bit integers, this interface will be compiled for either of the available sunindextype
options.

The KLU library has a symbolic factorization routine that computes the permutation of the linear system matrix to
block triangular form and the permutations that will pre-order the diagonal blocks (the only ones that need to be
factored) to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural, or an ordering given by the user). Of these
ordering choices, the default value in the SUNLinSol_KLU module is the COLAMD ordering.

KLU breaks the factorization into two separate parts. The first is a symbolic factorization and the second is a numeric
factorization that returns the factored matrix along with final pivot information. KLU also has a refactor routine that
can be called instead of the numeric factorization. This routine will reuse the pivot information. This routine also
returns diagnostic information that a user can examine to determine if numerical stability is being lost and a full
numerical factorization should be done instead of the refactor.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_KLU module is constructed to perform the following operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.

• On subsequent calls to the “setup” routine, it calls the appropriate KLU “refactor” routine, followed by esti-
mates of the numerical conditioning using the relevant “rcond”, and if necessary “condest”, routine(s). If these
estimates of the condition number are larger than 𝜀−2/3 (where 𝜀 is the double-precision unit roundoff), then a
new factorization is performed.

• The module includes the routine SUNKLUReInit, that can be called by the user to force a full refactorization
at the next “setup” call.

• The “solve” call performs pivoting and forward and backward substitution using the stored KLU data structures.
We note that in this solve KLU operates on the native data arrays for the right-hand side and solution vectors,
without requiring costly data copies.

The SUNLinSol_KLU module defines implementations of all “direct” linear solver operations listed in the section The
SUNLinearSolver API:

• SUNLinSolGetType_KLU

• SUNLinSolInitialize_KLU – this sets the first_factorize flag to 1, forcing both symbolic and
numerical factorizations on the subsequent “setup” call.

• SUNLinSolSetup_KLU – this performs either a 𝐿𝑈 factorization or refactorization of the input matrix.

• SUNLinSolSolve_KLU – this calls the appropriate KLU solve routine to utilize the 𝐿𝑈 factors to solve the
linear system.

• SUNLinSolLastFlag_KLU

11.7. The SUNLinSol_KLU Module 299

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• SUNLinSolSpace_KLU – this only returns information for the storage within the solver interface, i.e. stor-
age for the integers last_flag and first_factorize. For additional space requirements, see the KLU
documentation.

• SUNLinSolFree_KLU

11.8 The SUNLinSol_SuperLUMT Module

The SuperLU_MT implementation of the SUNLinearSolver module provided with SUNDIALS, SUNLin-
Sol_SuperLUMT, is designed to be used with the corresponding SUNMATRIX_SPARSE matrix type, and one of
the serial or shared-memory N_Vector implementations (NVECTOR_SERIAL, NVECTOR_OPENMP, or NVEC-
TOR_PTHREADS). While these are compatible, it is not recommended to use a threaded vector module with SUNLin-
Sol_SuperLUMT unless it is the NVECTOR_OPENMP module and the SuperLU_MT library has also been compiled
with OpenMP.

11.8.1 SUNLinSol_SuperLUMT Usage

The header file to be included when using this module is sunlinsol/sunlinsol_superlumt.h. The installed
module library to link to is libsundials_sunlinsolsuperlumt .lib where .lib is typically .so for shared
libraries and .a for static libraries.

The module SUNLinSol_SuperLUMT provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SuperLUMT(N_Vector y, SUNMatrix A, int num_threads)
This constructor function creates and allocates memory for a SUNLinSol_SuperLUMT object. Its arguments
are an N_Vector, a SUNMatrix, and a desired number of threads (OpenMP or Pthreads, depending on how
SuperLU_MT was installed) to use during the factorization steps. This routine analyzes the input matrix and
vector to determine the linear system size and to assess compatibility with the SuperLU_MT library.

This routine will perform consistency checks to ensure that it is called with consistent N_Vector and
SUNMatrix implementations. These are currently limited to the SUNMATRIX_SPARSE matrix type (us-
ing either CSR or CSC storage formats) and the NVECTOR_SERIAL, NVECTOR_OPENMP, and NVEC-
TOR_PTHREADS vector types. As additional compatible matrix and vector implementations are added to
SUNDIALS, these will be included within this compatibility check.

If either A or y are incompatible then this routine will return NULL. The num_threads argument is not
checked and is passed directly to SuperLU_MT routines.

int SUNLinSol_SuperLUMTSetOrdering(SUNLinearSolver S, int ordering_choice)
This function sets the ordering used by SuperLU_MT for reducing fill in the linear solve. Options for
ordering_choice are:

0.natural ordering

1.minimal degree ordering on 𝐴𝑇𝐴

2.minimal degree ordering on 𝐴𝑇 + 𝐴

3.COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

The return values from this function are SUNLS_MEM_NULL (S is NULL), SUNLS_ILL_INPUT (invalid
ordering_choice), or SUNLS_SUCCESS.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:

300 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

SUNLinearSolver SUNSuperLUMT(N_Vector y, SUNMatrix A, int num_threads)
Wrapper for SUNLinSol_SuperLUMT().

and

int SUNSuperLUMTSetOrdering(SUNLinearSolver S, int ordering_choice)
Wrapper for SUNLinSol_SuperLUMTSetOrdering().

For solvers that include a Fortran interface module, the SUNLinSol_SuperLUMT module also includes the Fortran-
callable function FSUNSuperLUMTInit() to initialize this SUNLinSol_SuperLUMT module for a given SUNDI-
ALS solver.

subroutine FSUNSuperLUMTInit(CODE, NUM_THREADS, IER)
Initializes a SuperLU_MT sparse SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after both the N_Vector and SUNMatrix objects have been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• NUM_THREADS (int, input) – desired number of OpenMP/Pthreads threads to use in the factoriza-
tion.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSuperLUMTInit() initializes this SUNLinSol_SuperLUMT module for solving mass matrix
linear systems.

subroutine FSUNMassSuperLUMTInit(NUM_THREADS, IER)
Initializes a SuperLU_MT sparse SUNLinearSolver structure for use in solving mass matrix systems in
ARKode.

This routine must be called after both the N_Vector and the mass SUNMatrix objects have been initialized.

Arguments:

• NUM_THREADS (int, input) – desired number of OpenMP/Pthreads threads to use in the factoriza-
tion.

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_SuperLUMTSetOrdering() routine also supports Fortran interfaces for the system and mass
matrix solvers:

subroutine FSUNSuperLUMTSetOrdering(CODE, ORDERING, IER)
Fortran interface to SUNLinSol_SuperLUMTSetOrdering() for system linear solvers.

This routine must be called after FSUNSuperLUMTInit() has been called

Arguments: all should have type int and have meanings identical to those listed above

subroutine FSUNMassSuperLUMTSetOrdering(ORDERING, IER)
Fortran interface to SUNLinSol_SuperLUMTSetOrdering() for mass matrix linear solves in ARKode.

This routine must be called after FSUNMassSuperLUMTInit() has been called

Arguments: all should have type int and have meanings identical to those listed above

11.8. The SUNLinSol_SuperLUMT Module 301

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

11.8.2 SUNLinSol_SuperLUMT Description

The SUNLinSol_SuperLUMT module defines the content field of a SUNLinearSolver to be the following struc-
ture:

struct _SUNLinearSolverContent_SuperLUMT {
long int last_flag;
int first_factorize;
SuperMatrix *A, *AC, *L, *U, *B;
Gstat_t *Gstat;
sunindextype *perm_r, *perm_c;
sunindextype N;
int num_threads;
realtype diag_pivot_thresh;
int ordering;
superlumt_options_t *options;

};

These entries of the content field contain the following information:

• last_flag - last error return flag from internal function evaluations,

• first_factorize - flag indicating whether the factorization has ever been performed,

• A, AC, L, U, B - SuperMatrix pointers used in solve,

• Gstat - GStat_t object used in solve,

• perm_r, perm_c - permutation arrays used in solve,

• N - size of the linear system,

• num_threads - number of OpenMP/Pthreads threads to use,

• diag_pivot_thresh - threshold on diagonal pivoting,

• ordering - flag for which reordering algorithm to use,

• options - pointer to SuperLU_MT options structure.

The SUNLinSol_SuperLUMT module is a SUNLinearSolver wrapper for the SuperLU_MT sparse matrix fac-
torization and solver library written by X. Sherry Li ([SuperLUMT], [L2005], [DGL1999]). The package performs
matrix factorization using threads to enhance efficiency in shared memory parallel environments. It should be noted
that threads are only used in the factorization step. In order to use the SUNLinSol_SuperLUMT interface to Su-
perLU_MT, it is assumed that SuperLU_MT has been installed on the system prior to installation of SUNDIALS, and
that SUNDIALS has been configured appropriately to link with SuperLU_MT (see section Working with external Li-
braries for details). Additionally, this wrapper only supports single- and double-precision calculations, and therefore
cannot be compiled if SUNDIALS is configured to have realtype set to extended (see section Data Types for
details). Moreover, since the SuperLU_MT library may be installed to support either 32-bit or 64-bit integers, it is as-
sumed that the SuperLU_MT library is installed using the same integer precision as the SUNDIALS sunindextype
option.

The SuperLU_MT library has a symbolic factorization routine that computes the permutation of the linear system
matrix to reduce fill-in on subsequent 𝐿𝑈 factorizations (using COLAMD, minimal degree ordering on 𝐴𝑇 * 𝐴,
minimal degree ordering on 𝐴𝑇 + 𝐴, or natural ordering). Of these ordering choices, the default value in the SUN-
LinSol_SuperLUMT module is the COLAMD ordering.

Since the linear systems that arise within the context of SUNDIALS calculations will typically have identical sparsity
patterns, the SUNLinSol_SuperLUMT module is constructed to perform the following operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed by an initial
numerical factorization.

302 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors the input
matrix.

• The “solve” call performs pivoting and forward and backward substitution using the stored SuperLU_MT data
structures. We note that in this solve SuperLU_MT operates on the native data arrays for the right-hand side and
solution vectors, without requiring costly data copies.

The SUNLinSol_SuperLUMT module defines implementations of all “direct” linear solver operations listed in the
section The SUNLinearSolver API:

• SUNLinSolGetType_SuperLUMT

• SUNLinSolInitialize_SuperLUMT – this sets the first_factorize flag to 1 and resets the internal
SuperLU_MT statistics variables.

• SUNLinSolSetup_SuperLUMT – this performs either a 𝐿𝑈 factorization or refactorization of the input
matrix.

• SUNLinSolSolve_SuperLUMT – this calls the appropriate SuperLU_MT solve routine to utilize the 𝐿𝑈
factors to solve the linear system.

• SUNLinSolLastFlag_SuperLUMT

• SUNLinSolSpace_SuperLUMT – this only returns information for the storage within the solver interface,
i.e. storage for the integers last_flag and first_factorize. For additional space requirements, see the
SuperLU_MT documentation.

• SUNLinSolFree_SuperLUMT

11.9 The SUNLinSol_SPGMR Module

The SPGMR (Scaled, Preconditioned, Generalized Minimum Residual [SS1986]) implementation of the
SUNLinearSolver module provided with SUNDIALS, SUNLinSol_SPGMR, is an iterative linear solver that is
designed to be compatible with any N_Vector implementation (serial, threaded, parallel, and user-supplied) that
supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(), N_VLinearSum(),
N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()).

11.9.1 SUNLinSol_SPGMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spgmr.h.
The SUNinSol_SPGMR module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolspgmr module library.

The module SUNLinSol_SPGMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPGMR(N_Vector y, int pretype, int maxl)
This constructor function creates and allocates memory for a SPGMR SUNLinearSolver. Its arguments are
an N_Vector, the desired type of preconditioning, and the number of Krylov basis vectors to use.

This routine will perform consistency checks to ensure that it is called with a consistent N_Vector implemen-
tation (i.e. that it supplies the requisite vector operations). If y is incompatible, then this routine will return
NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Allowable inputs for pretype are PREC_NONE (0), PREC_LEFT (1), PREC_RIGHT (2) and PREC_BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some SUNDIALS solvers
are designed to only work with left preconditioning (IDA and IDAS) and others with only right preconditioning

11.9. The SUNLinSol_SPGMR Module 303

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

(KINSOL). While it is possible to configure a SUNLinSol_SPGMR object to use any of the preconditioning
options with these solvers, this use mode is not supported and may result in inferior performance.

int SUNLinSol_SPGMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the type of preconditioning to use. Supported values are PREC_NONE (0), PREC_LEFT
(1), PREC_RIGHT (2) and PREC_BOTH (3).

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype),
SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNLinSol_SPGMRSetGSType(SUNLinearSolver S, int gstype)
This function sets the type of Gram-Schmidt orthogonalization to use. Supported values are MODIFIED_GS
(1) and CLASSICAL_GS (2). Any other integer input will result in a failure, returning error code
SUNLS_ILL_INPUT.

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal gstype),
SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNLinSol_SPGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
This function sets the number of GMRES restarts to allow. A negative input will result in the default of 0.

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:

SUNLinearSolver SUNSPGMR(N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_SPGMR()

int SUNSPGMRSetPrecType(SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_SPGMRSetPrecType()

int SUNSPGMRSetGSType(SUNLinearSolver S, int gstype)
Wrapper function for SUNLinSol_SPGMRSetGSType()

int SUNSPGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
Wrapper function for SUNLinSol_SPGMRSetMaxRestarts()

For solvers that include a Fortran interface module, the SUNLinSol_SPGMR module also includes the Fortran-callable
function FSUNSPGMRInit() to initialize this SUNLinSol_SPGMR module for a given SUNDIALS solver.

subroutine FSUNSPGMRInit(CODE, PRETYPE, MAXL, IER)
Initializes a SPGMR SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• PRETYPE (int, input) – flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

• MAXL (int, input) – number of GMRES basis vectors to use.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSPGMRInit() initializes this SUNLinSol_SPGMR module for solving mass matrix linear systems.

subroutine FSUNMassSPGMRInit(PRETYPE, MAXL, IER)
Initializes a SPGMR SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.

304 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• PRETYPE (int, input) – flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

• MAXL (int, input) – number of GMRES basis vectors to use.

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_SPGMRSetGSType(), SUNLinSol_SPGMRSetPrecType() and
SUNLinSol_SPGMRSetMaxRestarts() routines also support Fortran interfaces for the system and mass
matrix solvers:

subroutine FSUNSPGMRSetGSType(CODE, GSTYPE, IER)
Fortran interface to SUNLinSol_SPGMRSetGSType() for system linear solvers.

This routine must be called after FSUNSPGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPGMRSetGSType(GSTYPE, IER)
Fortran interface to SUNLinSol_SPGMRSetGSType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPGMRSetPrecType(CODE, PRETYPE, IER)
Fortran interface to SUNLinSol_SPGMRSetPrecType() for system linear solvers.

This routine must be called after FSUNSPGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPGMRSetPrecType(PRETYPE, IER)
Fortran interface to SUNLinSol_SPGMRSetPrecType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPGMRSetMaxRS(CODE, MAXRS, IER)
Fortran interface to SUNLinSol_SPGMRSetMaxRS() for system linear solvers.

This routine must be called after FSUNSPGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPGMRSetMaxRS(MAXRS, IER)
Fortran interface to SUNLinSol_SPGMRSetMaxRS() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

11.9.2 SUNLinSol_SPGMR Description

The SUNLinSol_SPGMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
int numiters;

11.9. The SUNLinSol_SPGMR Module 305

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
realtype **Hes;
realtype *givens;
N_Vector xcor;
realtype *yg;
N_Vector vtemp;

};

These entries of the content field contain the following information:

• maxl - number of GMRES basis vectors to use (default is 5),

• pretype - flag for type of preconditioning to employ (default is none),

• gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

• max_restarts - number of GMRES restarts to allow (default is 0),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform 𝐴𝑣 product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• V - the array of Krylov basis vectors 𝑣1, . . . , 𝑣maxl+1, stored in V[0], ... V[maxl]. Each 𝑣𝑖 is a vector
of type N_Vector,

• Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[i][j],

• givens - a length 2 maxl array which represents the Givens rotation matrices that arise in the GMRES algo-
rithm. These matrices are 𝐹0, 𝐹1, . . . , 𝐹𝑗 , where

𝐹𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
𝑐𝑖 −𝑠𝑖
𝑠𝑖 𝑐𝑖

1
. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

306 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

are represented in the givens vector as givens[0] = 𝑐0, givens[1] = 𝑠0, givens[2] = 𝑐1,
givens[3] = 𝑠1, . . ., givens[2j] = 𝑐𝑗 , givens[2j+1] = 𝑠𝑗 ,

• xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

• yg - a length (maxl + 1) array of realtype values used to hold “short” vectors (e.g. 𝑦 and 𝑔),

• vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and
default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPGMR to sup-
ply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg)

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDI-
ALS solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

• In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning, and restarts
if those options have been supplied.

The SUNLinSol_SPGMR module defines implementations of all “iterative” linear solver operations listed in the sec-
tion The SUNLinearSolver API:

• SUNLinSolGetType_SPGMR

• SUNLinSolInitialize_SPGMR

• SUNLinSolSetATimes_SPGMR

• SUNLinSolSetPreconditioner_SPGMR

• SUNLinSolSetScalingVectors_SPGMR

• SUNLinSolSetup_SPGMR

• SUNLinSolSolve_SPGMR

• SUNLinSolNumIters_SPGMR

• SUNLinSolResNorm_SPGMR

• SUNLinSolResid_SPGMR

• SUNLinSolLastFlag_SPGMR

• SUNLinSolSpace_SPGMR

• SUNLinSolFree_SPGMR

11.10 The SUNLinSol_SPFGMR Module

The SPFGMR (Scaled, Preconditioned, Flexible, Generalized Minimum Residual [S1993]) implementation of the
SUNLinearSolver module provided with SUNDIALS, SUNLinSol_SPFGMR, is an iterative linear solver that is
designed to be compatible with any N_Vector implementation (serial, threaded, parallel, and user-supplied) that
supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(), N_VLinearSum(),
N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()). Unlike the other Krylov iterative linear solvers

11.10. The SUNLinSol_SPFGMR Module 307

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

supplied with SUNDIALS, FGMRES is specifically designed to work with a changing preconditioner (e.g. from an
iterative method).

11.10.1 SUNLinSol_SPFGMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spfgmr.h.
The SUNLinSol_SPFGMR module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolspfgmr module library.

The module SUNLinSol_SPFGMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPFGMR(N_Vector y, int pretype, int maxl)
This constructor function creates and allocates memory for a SPFGMR SUNLinearSolver. Its arguments
are an N_Vector, a flag indicating to use preconditioning, and the number of Krylov basis vectors to use.

This routine will perform consistency checks to ensure that it is called with a consistent N_Vector implemen-
tation (i.e. that it supplies the requisite vector operations). If y is incompatible, then this routine will return
NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Since the FGMRES algorithm is designed to only support right preconditioning, then any of the pretype
inputs PREC_LEFT (1), PREC_RIGHT (2), or PREC_BOTH (3) will result in use of PREC_RIGHT; any other
integer input will result in the default (no preconditioning). We note that some SUNDIALS solvers are designed
to only work with left preconditioning (IDA and IDAS). While it is possible to use a right-preconditioned
SUNLinSol_SPFGMR object for these packages, this use mode is not supported and may result in inferior
performance.

int SUNLinSol_SPFGMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning. Since the FGMRES algorithm is designed
to only support right preconditioning, then any of the pretype inputs PREC_LEFT (1), PREC_RIGHT (2),
or PREC_BOTH (3) will result in use of PREC_RIGHT; any other integer input will result in the default (no
preconditioning).

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

int SUNLinSol_SPFGMRSetGSType(SUNLinearSolver S, int gstype)
This function sets the type of Gram-Schmidt orthogonalization to use. Supported values are MODIFIED_GS
(1) and CLASSICAL_GS (2). Any other integer input will result in a failure, returning error code
SUNLS_ILL_INPUT.

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal gstype),
SUNLS_MEM_NULL (S is NULL), or SUNLS_SUCCESS.

int SUNLinSol_SPFGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
This function sets the number of FGMRES restarts to allow. A negative input will result in the default of 0.

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:

SUNLinearSolver SUNSPFGMR(N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_SPFGMR()

int SUNSPFGMRSetPrecType(SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_SPFGMRSetPrecType()

int SUNSPFGMRSetGSType(SUNLinearSolver S, int gstype)
Wrapper function for SUNLinSol_SPFGMRSetGSType()

308 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int SUNSPFGMRSetMaxRestarts(SUNLinearSolver S, int maxrs)
Wrapper function for SUNLinSol_SPFGMRSetMaxRestarts()

For solvers that include a Fortran interface module, the SUNLinSol_SPFGMR module also includes the Fortran-
callable function FSUNSPFGMRInit() to initialize this SUNLinSol_SPFGMR module for a given SUNDIALS
solver.

subroutine FSUNSPFGMRInit(CODE, PRETYPE, MAXL, IER)
Initializes a SPFGMR SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• PRETYPE (int, input) – flag denoting whether to use preconditioning: no=0, yes=1.

• MAXL (int, input) – number of FGMRES basis vectors to use.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSPFGMRInit() initializes this SUNLinSol_SPFGMR module for solving mass matrix linear sys-
tems.

subroutine FSUNMassSPFGMRInit(PRETYPE, MAXL, IER)
Initializes a SPFGMR SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• PRETYPE (int, input) – flag denoting whether to use preconditioning: no=0, yes=1.

• MAXL (int, input) – number of FGMRES basis vectors to use.

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_SPFGMRSetGSType(), SUNLinSol_SPFGMRSetPrecType() and
SUNLinSol_SPFGMRSetMaxRestarts() routines also support Fortran interfaces for the system and mass
matrix solvers:

subroutine FSUNSPFGMRSetGSType(CODE, GSTYPE, IER)
Fortran interface to SUNLinSol_SPFGMRSetGSType() for system linear solvers.

This routine must be called after FSUNSPFGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPFGMRSetGSType(GSTYPE, IER)
Fortran interface to SUNLinSol_SPFGMRSetGSType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPFGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPFGMRSetPrecType(CODE, PRETYPE, IER)
Fortran interface to SUNLinSol_SPFGMRSetPrecType() for system linear solvers.

This routine must be called after FSUNSPFGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

11.10. The SUNLinSol_SPFGMR Module 309

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

subroutine FSUNMassSPFGMRSetPrecType(PRETYPE, IER)
Fortran interface to SUNLinSol_SPFGMRSetPrecType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPFGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPFGMRSetMaxRS(CODE, MAXRS, IER)
Fortran interface to SUNLinSol_SPFGMRSetMaxRS() for system linear solvers.

This routine must be called after FSUNSPFGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPFGMRSetMaxRS(MAXRS, IER)
Fortran interface to SUNLinSol_SPFGMRSetMaxRS() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPFGMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

11.10.2 SUNLinSol_SPFGMR Description

The SUNLinSol_SPFGMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPFGMR {
int maxl;
int pretype;
int gstype;
int max_restarts;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector *V;
N_Vector *Z;
realtype **Hes;
realtype *givens;
N_Vector xcor;
realtype *yg;
N_Vector vtemp;

};

These entries of the content field contain the following information:

• maxl - number of FGMRES basis vectors to use (default is 5),

• pretype - flag for use of preconditioning (default is none),

• gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

• max_restarts - number of FGMRES restarts to allow (default is 0),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

310 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform 𝐴𝑣 product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• V - the array of Krylov basis vectors 𝑣1, . . . , 𝑣maxl+1, stored in V[0], ..., V[maxl]. Each 𝑣𝑖 is a vector
of type N_Vector,

• Z - the array of preconditioned Krylov basis vectors 𝑧1, . . . , 𝑧maxl+1, stored in Z[0], ..., Z[maxl]. Each
𝑧𝑖 is a vector of type N_Vector,

• Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th element is given by
Hes[i][j],

• givens - a length 2 maxl array which represents the Givens rotation matrices that arise in the FGMRES algo-
rithm. These matrices are 𝐹0, 𝐹1, . . . , 𝐹𝑗 , where

𝐹𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
𝑐𝑖 −𝑠𝑖
𝑠𝑖 𝑐𝑖

1
. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

are represented in the givens vector as givens[0] = 𝑐0, givens[1] = 𝑠0, givens[2] = 𝑐1,
givens[3] = 𝑠1, . . ., givens[2j] = 𝑐𝑗 , givens[2j+1] = 𝑠𝑗 ,

• xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

• yg - a length (maxl + 1) array of realtype values used to hold “short” vectors (e.g. 𝑦 and 𝑔),

• vtemp - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template N_Vector that is input, and
default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPFGMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg)

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDI-
ALS solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

• In the “solve” call, the FGMRES iteration is performed. This will include scaling, preconditioning, and restarts
if those options have been supplied.

11.10. The SUNLinSol_SPFGMR Module 311

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

The SUNLinSol_SPFGMR module defines implementations of all “iterative” linear solver operations listed in the
section The SUNLinearSolver API:

• SUNLinSolGetType_SPFGMR

• SUNLinSolInitialize_SPFGMR

• SUNLinSolSetATimes_SPFGMR

• SUNLinSolSetPreconditioner_SPFGMR

• SUNLinSolSetScalingVectors_SPFGMR

• SUNLinSolSetup_SPFGMR

• SUNLinSolSolve_SPFGMR

• SUNLinSolNumIters_SPFGMR

• SUNLinSolResNorm_SPFGMR

• SUNLinSolResid_SPFGMR

• SUNLinSolLastFlag_SPFGMR

• SUNLinSolSpace_SPFGMR

• SUNLinSolFree_SPFGMR

11.11 The SUNLinSol_SPBCGS Module

The SPBCGS (Scaled, Preconditioned, Bi-Conjugate Gradient, Stabilized [V1992]) implementation of the
SUNLinearSolver module provided with SUNDIALS, SUNLinSol_SPBCGS, is an iterative linear solver that
is designed to be compatible with any N_Vector implementation (serial, threaded, parallel, and user-supplied) that
supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(), N_VLinearSum(),
N_VProd(), N_VDiv(), and N_VDestroy()). Unlike the SPGMR and SPFGMR algorithms, SPBCGS requires
a fixed amount of memory that does not increase with the number of allowed iterations.

11.11.1 SUNLinSol_SPBCGS Usage

The header file to be included when using this module is sunlinsol/sunlinsol_spbcgs.h.
The SUNLinSol_SPBCGS module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolspbcgs module library.

The module SUNLinSol_SPBCGS provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPBCGS(N_Vector y, int pretype, int maxl)
This constructor function creates and allocates memory for a SPBCGS SUNLinearSolver. Its arguments
are an N_Vector, the desired type of preconditioning, and the number of linear iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent N_Vector implemen-
tation (i.e. that it supplies the requisite vector operations). If y is incompatible, then this routine will return
NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Allowable inputs for pretype are PREC_NONE (0), PREC_LEFT (1), PREC_RIGHT (2) and PREC_BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some SUNDIALS solvers
are designed to only work with left preconditioning (IDA and IDAS) and others with only right preconditioning

312 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

(KINSOL). While it is possible to configure a SUNLinSol_SPBCGS object to use any of the preconditioning
options with these solvers, this use mode is not supported and may result in inferior performance.

int SUNLinSol_SPBCGSSetPrecType(SUNLinearSolver S, int pretype)
This function updates the type of preconditioning to use. Supported values are PREC_NONE (0), PREC_LEFT
(1), PREC_RIGHT (2), and PREC_BOTH (3).

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype),
SUNLS_MEM_NULL (S is NULL), or SUNLS_SUCCESS.

int SUNLinSol_SPBCGSSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

A maxl argument that is ≤ 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:

SUNLinearSolver SUNSPBCGS(N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_SPBCGS()

int SUNSPBCGSSetPrecType(SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_SPBCGSSetPrecType()

int SUNSPBCGSSetMaxl(SUNLinearSolver S, int maxl)
Wrapper function for SUNLinSol_SPBCGSSetMaxl()

For solvers that include a Fortran interface module, the SUNLinSol_SPBCGS module also includes the Fortran-
callable function FSUNSPBCGSInit() to initialize this SUNLinSol_SPBCGS module for a given SUNDIALS
solver.

subroutine FSUNSPBCGSInit(CODE, PRETYPE, MAXL, IER)
Initializes a SPBCGS SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• PRETYPE (int, input) – flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

• MAXL (int, input) – number of SPBCGS iterations to allow.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSPBCGSInit() initializes this SUNLinSol_SPBCGS module for solving mass matrix linear sys-
tems.

subroutine FSUNMassSPBCGSInit(PRETYPE, MAXL, IER)
Initializes a SPBCGS SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• PRETYPE (int, input) – flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

• MAXL (int, input) – number of SPBCGS iterations to allow.

11.11. The SUNLinSol_SPBCGS Module 313

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_SPBCGSSetPrecType() and SUNLinSol_SPBCGSSetMaxl() routines also support For-
tran interfaces for the system and mass matrix solvers:

subroutine FSUNSPBCGSSetPrecType(CODE, PRETYPE, IER)
Fortran interface to SUNLinSol_SPBCGSSetPrecType() for system linear solvers.

This routine must be called after FSUNSPBCGSInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPBCGSSetPrecType(PRETYPE, IER)
Fortran interface to SUNLinSol_SPBCGSSetPrecType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPBCGSInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPBCGSSetMaxl(CODE, MAXL, IER)
Fortran interface to SUNLinSol_SPBCGSSetMaxl() for system linear solvers.

This routine must be called after FSUNSPBCGSInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPBCGSSetMaxl(MAXL, IER)
Fortran interface to SUNLinSol_SPBCGSSetMaxl() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPBCGSInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

11.11.2 SUNLinSol_SPBCGS Description

The SUNLinSol_SPBCGS module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPBCGS {
int maxl;
int pretype;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector r;
N_Vector r_star;
N_Vector p;
N_Vector q;
N_Vector u;
N_Vector Ap;
N_Vector vtemp;

};

These entries of the content field contain the following information:

• maxl - number of SPBCGS iterations to allow (default is 5),

314 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• pretype - flag for type of preconditioning to employ (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform 𝐴𝑣 product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• r - a N_Vector which holds the current scaled, preconditioned linear system residual,

• r_star - a N_Vector which holds the initial scaled, preconditioned linear system residual,

• p, q, u, Ap, vtemp - N_Vector used for workspace by the SPBCGS algorithm.

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector
that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPBCGS to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDI-
ALS solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

• In the “solve” call the SPBCGS iteration is performed. This will include scaling and preconditioning if those
options have been supplied.

The SUNLinSol_SPBCGS module defines implementations of all “iterative” linear solver operations listed in the
section The SUNLinearSolver API:

• SUNLinSolGetType_SPBCGS

• SUNLinSolInitialize_SPBCGS

• SUNLinSolSetATimes_SPBCGS

• SUNLinSolSetPreconditioner_SPBCGS

• SUNLinSolSetScalingVectors_SPBCGS

• SUNLinSolSetup_SPBCGS

• SUNLinSolSolve_SPBCGS

• SUNLinSolNumIters_SPBCGS

• SUNLinSolResNorm_SPBCGS

• SUNLinSolResid_SPBCGS

• SUNLinSolLastFlag_SPBCGS

11.11. The SUNLinSol_SPBCGS Module 315

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• SUNLinSolSpace_SPBCGS

• SUNLinSolFree_SPBCGS

11.12 The SUNLinSol_SPTFQMR Module

The SPTFQMR (Scaled, Preconditioned, Transpose-Free Quasi-Minimum Residual [F1993]) implementation of the
SUNLinearSolver module provided with SUNDIALS, SUNLinSol_SPTFQMR, is an iterative linear solver that
is designed to be compatible with any N_Vector implementation (serial, threaded, parallel, and user-supplied) that
supports a minimal subset of operations (N_VClone(), N_VDotProd(), N_VScale(), N_VLinearSum(),
N_VProd(), N_VConst(), N_VDiv(), and N_VDestroy()). Unlike the SPGMR and SPFGMR algorithms,
SPTFQMR requires a fixed amount of memory that does not increase with the number of allowed iterations.

11.12.1 SUNLinSol_SPTFQMR Usage

The header file to be included when using this module is sunlinsol/sunlinsol_sptfqmr.h.
The SUNLinSol_SPTFQMR module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunlinsolsptfqmr module library.

The module SUNLinSol_SPTFQMR provides the following user-callable routines:

SUNLinearSolver SUNLinSol_SPTFQMR(N_Vector y, int pretype, int maxl)
This constructor function creates and allocates memory for a SPTFQMR SUNLinearSolver. Its arguments
are an N_Vector, the desired type of preconditioning, and the number of linear iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent N_Vector implemen-
tation (i.e. that it supplies the requisite vector operations). If y is incompatible, then this routine will return
NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Allowable inputs for pretype are PREC_NONE (0), PREC_LEFT (1), PREC_RIGHT (2) and PREC_BOTH
(3); any other integer input will result in the default (no preconditioning). We note that some SUNDIALS solvers
are designed to only work with left preconditioning (IDA and IDAS) and others with only right preconditioning
(KINSOL). While it is possible to configure a SUNLinSol_SPTFQMR object to use any of the preconditioning
options with these solvers, this use mode is not supported and may result in inferior performance.

int SUNLinSol_SPTFQMRSetPrecType(SUNLinearSolver S, int pretype)
This function updates the type of preconditioning to use. Supported values are PREC_NONE (0), PREC_LEFT
(1), PREC_RIGHT (2), and PREC_BOTH (3).

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype),
SUNLS_MEM_NULL (S is NULL), or SUNLS_SUCCESS.

int SUNLinSol_SPTFQMRSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

A maxl argument that is ≤ 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:

SUNLinearSolver SUNSPTFQMR(N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_SPTFQMR()

316 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int SUNSPTFQMRSetPrecType(SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_SPTFQMRSetPrecType()

int SUNSPTFQMRSetMaxl(SUNLinearSolver S, int maxl)
Wrapper function for SUNLinSol_SPTFQMRSetMaxl()

For solvers that include a Fortran interface module, the SUNLinSol_SPTFQMR module also includes the Fortran-
callable function FSUNSPTFQMRInit() to initialize this SUNLinSol_SPTFQMR module for a given SUNDIALS
solver.

subroutine FSUNSPTFQMRInit(CODE, PRETYPE, MAXL, IER)
Initializes a SPTFQMR SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• PRETYPE (int, input) – flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

• MAXL (int, input) – number of SPTFQMR iterations to allow.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassSPTFQMRInit() initializes this SUNLinSol_SPTFQMR module for solving mass matrix linear
systems.

subroutine FSUNMassSPTFQMRInit(PRETYPE, MAXL, IER)
Initializes a SPTFQMR SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• PRETYPE (int, input) – flag denoting type of preconditioning to use: none=0, left=1, right=2,
both=3.

• MAXL (int, input) – number of SPTFQMR iterations to allow.

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_SPTFQMRSetPrecType() and SUNLinSol_SPTFQMRSetMaxl() routines also support
Fortran interfaces for the system and mass matrix solvers:

subroutine FSUNSPTFQMRSetPrecType(CODE, PRETYPE, IER)
Fortran interface to SUNLinSol_SPTFQMRSetPrecType() for system linear solvers.

This routine must be called after FSUNSPTFQMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPTFQMRSetPrecType(PRETYPE, IER)
Fortran interface to SUNLinSol_SPTFQMRSetPrecType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPTFQMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNSPTFQMRSetMaxl(CODE, MAXL, IER)
Fortran interface to SUNLinSol_SPTFQMRSetMaxl() for system linear solvers.

This routine must be called after FSUNSPTFQMRInit() has been called.

11.12. The SUNLinSol_SPTFQMR Module 317

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassSPTFQMRSetMaxl(MAXL, IER)
Fortran interface to SUNLinSol_SPTFQMRSetMaxl() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassSPTFQMRInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

11.12.2 SUNLinSol_SPTFQMR Description

The SUNLinSol_SPTFQMR module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_SPTFQMR {
int maxl;
int pretype;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s1;
N_Vector s2;
N_Vector r_star;
N_Vector q;
N_Vector d;
N_Vector v;
N_Vector p;
N_Vector *r;
N_Vector u;
N_Vector vtemp1;
N_Vector vtemp2;
N_Vector vtemp3;

};

These entries of the content field contain the following information:

• maxl - number of TFQMR iterations to allow (default is 5),

• pretype - flag for type of preconditioning to employ (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform 𝐴𝑣 product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

• r_star - a N_Vector which holds the initial scaled, preconditioned linear system residual,

318 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• q, d, v, p, u - N_Vector used for workspace by the SPTFQMR algorithm,

• r - array of two N_Vector used for workspace within the SPTFQMR algorithm,

• vtemp1, vtemp2, vtemp3 - temporary vector storage.

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector
that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_SPTFQMR to
supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDI-
ALS solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

• In the “solve” call the TFQMR iteration is performed. This will include scaling and preconditioning if those
options have been supplied.

The SUNLinSol_SPTFQMR module defines implementations of all “iterative” linear solver operations listed in the
section The SUNLinearSolver API:

• SUNLinSolGetType_SPTFQMR

• SUNLinSolInitialize_SPTFQMR

• SUNLinSolSetATimes_SPTFQMR

• SUNLinSolSetPreconditioner_SPTFQMR

• SUNLinSolSetScalingVectors_SPTFQMR

• SUNLinSolSetup_SPTFQMR

• SUNLinSolSolve_SPTFQMR

• SUNLinSolNumIters_SPTFQMR

• SUNLinSolResNorm_SPTFQMR

• SUNLinSolResid_SPTFQMR

• SUNLinSolLastFlag_SPTFQMR

• SUNLinSolSpace_SPTFQMR

• SUNLinSolFree_SPTFQMR

11.13 The SUNLinSol_PCG Module

The PCG (Preconditioned Conjugate Gradient [HS1952] implementation of the SUNLinearSolver module pro-
vided with SUNDIALS, SUNLinSol_PCG, is an iterative linear solver that is designed to be compatible with any
N_Vector implementation (serial, threaded, parallel, and user-supplied) that supports a minimal subset of operations
(N_VClone(), N_VDotProd(), N_VScale(), N_VLinearSum(), N_VProd(), and N_VDestroy()). Un-
like the SPGMR and SPFGMR algorithms, PCG requires a fixed amount of memory that does not increase with the
number of allowed iterations.

11.13. The SUNLinSol_PCG Module 319

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Unlike all of the other iterative linear solvers supplied with SUNDIALS, PCG should only be used on symmetric linear
systems (e.g. mass matrix linear systems encountered in ARKode). As a result, the explanation of the role of scaling
and preconditioning matrices given in general must be modified in this scenario. The PCG algorithm solves a linear
system 𝐴𝑥 = 𝑏 where 𝐴 is a symmetric (𝐴𝑇 = 𝐴), real-valued matrix. Preconditioning is allowed, and is applied in
a symmetric fashion on both the right and left. Scaling is also allowed and is applied symmetrically. We denote the
preconditioner and scaling matrices as follows:

• 𝑃 is the preconditioner (assumed symmetric),

• 𝑆 is a diagonal matrix of scale factors.

The matrices 𝐴 and 𝑃 are not required explicitly; only routines that provide 𝐴 and 𝑃−1 as operators are required. The
diagonal of the matrix 𝑆 is held in a single N_Vector, supplied by the user.

In this notation, PCG applies the underlying CG algorithm to the equivalent transformed system

𝐴�̃� = �̃� (11.4)

where

𝐴 = 𝑆𝑃−1𝐴𝑃−1𝑆,

�̃� = 𝑆𝑃−1𝑏,

�̃� = 𝑆−1𝑃𝑥.

(11.5)

The scaling matrix must be chosen so that the vectors 𝑆𝑃−1𝑏 and 𝑆−1𝑃𝑥 have dimensionless components.

The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

‖�̃�−𝐴�̃�‖2 < 𝛿

⇔
‖𝑆𝑃−1𝑏− 𝑆𝑃−1𝐴𝑥‖2 < 𝛿

⇔
‖𝑃−1𝑏− 𝑃−1𝐴𝑥‖𝑆 < 𝛿

where ‖𝑣‖𝑆 =
√
𝑣𝑇𝑆𝑇𝑆𝑣, with an input tolerance 𝛿.

11.13.1 SUNLinSol_PCG Usage

The header file to be included when using this module is sunlinsol/sunlinsol_pcg.h. The SUNLinSol_PCG
module is accessible from all SUNDIALS solvers without linking to the libsundials_sunlinsolpcg module
library.

The module SUNLinSol_PCG provides the following user-callable routines:

SUNLinearSolver SUNLinSol_PCG(N_Vector y, int pretype, int maxl)
This constructor function creates and allocates memory for a PCG SUNLinearSolver. Its arguments are an
N_Vector, a flag indicating to use preconditioning, and the number of linear iterations to allow.

This routine will perform consistency checks to ensure that it is called with a consistent N_Vector implemen-
tation (i.e. that it supplies the requisite vector operations). If y is incompatible then this routine will return
NULL.

A maxl argument that is ≤ 0 will result in the default value (5).

Since the PCG algorithm is designed to only support symmetric preconditioning, then any of the pretype
inputs PREC_LEFT (1), PREC_RIGHT (2), or PREC_BOTH (3) will result in use of the symmetric precon-
ditioner; any other integer input will result in the default (no preconditioning). Although some SUNDIALS

320 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

solvers are designed to only work with left preconditioning (IDA and IDAS) and others with only right precon-
ditioning (KINSOL), PCG should only be used with these packages when the linear systems are known to be
symmetric. Since the scaling of matrix rows and columns must be identical in a symmetric matrix, symmetric
preconditioning should work appropriately even for packages designed with one-sided preconditioning in mind.

int SUNLinSol_PCGSetPrecType(SUNLinearSolver S, int pretype)
This function updates the flag indicating use of preconditioning. As above, any one of the input values,
PREC_LEFT (1), PREC_RIGHT (2), or PREC_BOTH (3) will enable preconditioning; PREC_NONE (0) dis-
ables preconditioning.

This routine will return with one of the error codes SUNLS_ILL_INPUT (illegal pretype),
SUNLS_MEM_NULL (S is NULL), or SUNLS_SUCCESS.

int SUNLinSol_PCGSetMaxl(SUNLinearSolver S, int maxl)
This function updates the number of linear solver iterations to allow.

A maxl argument that is ≤ 0 will result in the default value (5).

This routine will return with one of the error codes SUNLS_MEM_NULL (S is NULL) or SUNLS_SUCCESS.

For backwards compatibility, we also provide the wrapper functions, each with identical input and output arguments
to the routines that they wrap:

SUNLinearSolver SUNPCG(N_Vector y, int pretype, int maxl)
Wrapper function for SUNLinSol_PCG()

int SUNPCGSetPrecType(SUNLinearSolver S, int pretype)
Wrapper function for SUNLinSol_PCGSetPrecType()

int SUNPCGSetMaxl(SUNLinearSolver S, int maxl)
Wrapper function for SUNLinSol_PCGSetMaxl()

For solvers that include a Fortran interface module, the SUNLinSol_PCG module also includes the Fortran-callable
function FSUNPCGInit() to initialize this SUNLinSol_PCG module for a given SUNDIALS solver.

subroutine FSUNPCGInit(CODE, PRETYPE, MAXL, IER)
Initializes a PCG SUNLinearSolver structure for use in a SUNDIALS package.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, KINSOL=3, ARKode=4.

• PRETYPE (int, input) – flag denoting whether to use symmetric preconditioning: no=0, yes=1.

• MAXL (int, input) – number of PCG iterations to allow.

• IER (int, output) – return flag (0 success, -1 for failure).

Additionally, when using ARKode with a non-identity mass matrix, the Fortran-callable function
FSUNMassPCGInit() initializes this SUNLinSol_PCG module for solving mass matrix linear systems.

subroutine FSUNMassPCGInit(PRETYPE, MAXL, IER)
Initializes a PCG SUNLinearSolver structure for use in solving mass matrix systems in ARKode.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• PRETYPE (int, input) – flag denoting whether to use symmetric preconditioning: no=0, yes=1.

• MAXL (int, input) – number of PCG iterations to allow.

11.13. The SUNLinSol_PCG Module 321

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• IER (int, output) – return flag (0 success, -1 for failure).

The SUNLinSol_PCGSetPrecType() and SUNLinSol_PCGSetMaxl() routines also support Fortran inter-
faces for the system and mass matrix solvers:

subroutine FSUNPCGSetPrecType(CODE, PRETYPE, IER)
Fortran interface to SUNLinSol_PCGSetPrecType() for system linear solvers.

This routine must be called after FSUNPCGInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassPCGSetPrecType(PRETYPE, IER)
Fortran interface to SUNLinSol_PCGSetPrecType() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassPCGInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNPCGSetMaxl(CODE, MAXL, IER)
Fortran interface to SUNLinSol_PCGSetMaxl() for system linear solvers.

This routine must be called after FSUNPCGInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

subroutine FSUNMassPCGSetMaxl(MAXL, IER)
Fortran interface to SUNLinSol_PCGSetMaxl() for mass matrix linear solvers in ARKode.

This routine must be called after FSUNMassPCGInit() has been called.

Arguments: all should have type int, and have meanings identical to those listed above.

11.13.2 SUNLinSol_PCG Description

The SUNLinSol_PCG module defines the content field of a SUNLinearSolver to be the following structure:

struct _SUNLinearSolverContent_PCG {
int maxl;
int pretype;
int numiters;
realtype resnorm;
long int last_flag;
ATimesFn ATimes;
void* ATData;
PSetupFn Psetup;
PSolveFn Psolve;
void* PData;
N_Vector s;
N_Vector r;
N_Vector p;
N_Vector z;
N_Vector Ap;

};

These entries of the content field contain the following information:

• maxl - number of PCG iterations to allow (default is 5),

• pretype - flag for use of preconditioning (default is none),

• numiters - number of iterations from the most-recent solve,

• resnorm - final linear residual norm from the most-recent solve,

322 Chapter 11. Description of the SUNLinearSolver module

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• last_flag - last error return flag from an internal function,

• ATimes - function pointer to perform 𝐴𝑣 product,

• ATData - pointer to structure for ATimes,

• Psetup - function pointer to preconditioner setup routine,

• Psolve - function pointer to preconditioner solve routine,

• PData - pointer to structure for Psetup and Psolve,

• s - vector pointer for supplied scaling matrix (default is NULL),

• r - a N_Vector which holds the preconditioned linear system residual,

• p, z, Ap - N_Vector used for workspace by the PCG algorithm.

This solver is constructed to perform the following operations:

• During construction all N_Vector solver data is allocated, with vectors cloned from a template N_Vector
that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the SUNDIALS solver that interfaces with SUNLinSol_PCG to supply
the ATimes, PSetup, and Psolve function pointers and s scaling vector.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the SUNDI-
ALS solver itself, that translates between the generic PSetup function and the solver-specific routine (solver-
supplied or user-supplied).

• In the “solve” call the PCG iteration is performed. This will include scaling and preconditioning if those options
have been supplied.

The SUNLinSol_PCG module defines implementations of all “iterative” linear solver operations listed in the section
The SUNLinearSolver API:

• SUNLinSolGetType_PCG

• SUNLinSolInitialize_PCG

• SUNLinSolSetATimes_PCG

• SUNLinSolSetPreconditioner_PCG

• SUNLinSolSetScalingVectors_PCG – since PCG only supports symmetric scaling, the second
N_Vector argument to this function is ignored

• SUNLinSolSetup_PCG

• SUNLinSolSolve_PCG

• SUNLinSolNumIters_PCG

• SUNLinSolResNorm_PCG

• SUNLinSolResid_PCG

• SUNLinSolLastFlag_PCG

• SUNLinSolSpace_PCG

• SUNLinSolFree_PCG

11.13. The SUNLinSol_PCG Module 323

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

11.14 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make use of the
functions in test_sunlinsol.c. These example functions show simple usage of the SUNLinearSolver family
of modules. The inputs to the examples depend on the linear solver type, and are output to stdout if the example is
run without the appropriate number of command-line arguments.

The following is a list of the example functions in test_sunlinsol.c:

• Test_SUNLinSolGetType: Verifies the returned solver type against the value that should be returned.

• Test_SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns suc-
cessfully.

• Test_SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

• Test_SUNLinSolSolve: Given a SUNMatrix object 𝐴, N_Vector objects 𝑥 and 𝑏 (where 𝐴𝑥 = 𝑏) and
a desired solution tolerance tol, this routine clones 𝑥 into a new vector 𝑦, calls SUNLinSolSolve to fill 𝑦
as the solution to 𝐴𝑦 = 𝑏 (to the input tolerance), verifies that each entry in 𝑥 and 𝑦 match to within 10*tol,
and overwrites 𝑥 with 𝑦 prior to returning (in case the calling routine would like to investigate further).

• Test_SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be called
and returns successfully.

• Test_SUNLinSolSetPreconditioner (iterative solvers only): Verifies that
SUNLinSolSetPreconditioner can be called and returns successfully.

• Test_SUNLinSolSetScalingVectors (iterative solvers only): Verifies that
SUNLinSolSetScalingVectors can be called and returns successfully.

• Test_SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the result to
stdout.

• Test_SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be called,
and outputs the result to stdout.

• Test_SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called, and
that the result is non-negative.

• Test_SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.

• Test_SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to stdout.

We’ll note that these tests should be performed in a particular order. For either direct or iterative linear solvers,
Test_SUNLinSolInitialize must be called before Test_SUNLinSolSetup, which must be called be-
fore Test_SUNLinSolSolve. Additionally, for iterative linear solvers Test_SUNLinSolSetATimes,
Test_SUNLinSolSetPreconditioner and Test_SUNLinSolSetScalingVectors should
be called before Test_SUNLinSolInitialize; similarly Test_SUNLinSolNumIters,
Test_SUNLinSolResNorm and Test_SUNLinSolResid should be called after Test_SUNLinSolSolve.
These are called in the appropriate order in all of the example problems.

324 Chapter 11. Description of the SUNLinearSolver module

CHAPTER

TWELVE

NONLINEAR SOLVER DATA STRUCTURES

12.1 Description of the SUNNonlinearSolver Module

SUNDIALS time integration packages are written in terms of generic nonlinear solver operations defined by the SUN-
NonlinSol API and implemented by a particular SUNNonlinSol module of type SUNNonlinearSolver. Users can
supply their own SUNNonlinSol module, or use one of the modules provided with SUNDIALS.

The time integrators in SUNDIALS specify a default nonlinear solver module and as such this chapter is intended
for users that wish to use a non-default nonlinear solver module or would like to provide their own nonlinear solver
implementation. Users interested in using a non-default solver module may skip the description of the SUNNonlinSol
API in section The SUNNonlinearSolver API and proceeded to the subsequent sections in this chapter that describe
the SUNNonlinSol modules provided with SUNDIALS.

For users interested in providing their own SUNNonlinSol module, the following section presents the SUNNonlinSol
API and its implementation beginning with the definition of SUNNonlinSol functions in the sections SUNNonlinear-
Solver core functions, SUNNonlinearSolver set functions and SUNNonlinearSolver get functions. This is followed
by the definition of functions supplied to a nonlinear solver implementation in the section Functions provided by
SUNDIALS integrators. The nonlinear solver return codes are given in the section SUNNonlinearSolver return codes.
The SUNNonlinearSolver type and the generic SUNNonlinSol module are defined in the section The generic
SUNNonlinearSolver module. Finally, the section Implementing a Custom SUNNonlinearSolver Module lists the re-
quirements for supplying a custom SUNNonlinSol module. Users wishing to supply their own SUNNonlinSol module
are encouraged to use the SUNNonlinSol implementations provided with SUNDIALS as a template for supplying
custom nonlinear solver modules.

12.1.1 The SUNNonlinearSolver API

The SUNNonlinSol API defines several nonlinear solver operations that enable SUNDIALS integrators to utilize
any SUNNonlinSol implementation that provides the required functions. These functions can be divided into three
categories. The first are the core nonlinear solver functions. The second group of functions consists of set routines
to supply the nonlinear solver with functions provided by the SUNDIALS time integrators and to modify solver
parameters. The final group consists of get routines for retrieving nonlinear solver statistics. All of these functions are
defined in the header file sundials/sundials_nonlinearsolver.h.

SUNNonlinearSolver core functions

The core nonlinear solver functions consist of two required functions to get the nonlinear solver type
(SUNNonlinsSolGetType) and solve the nonlinear system (SUNNonlinSolSolve). The remaining three func-
tions for nonlinear solver initialization (SUNNonlinSolInitialization), setup (SUNNonlinSolSetup),
and destruction (SUNNonlinSolFree) are optional.

325

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

SUNNonlinearSolver_Type SUNNonlinSolGetType(SUNNonlinearSolver NLS)
The required function SUNNonlinSolGetType() returns the nonlinear solver type.

Arguments:

• NLS – a SUNNonlinSol object

Return value: the SUNNonlinSol type identifier (of type int) will be one of the following:

•SUNNONLINEARSOLVER_ROOTFIND – 0, the SUNNonlinSol module solves 𝐹 (𝑦) = 0.

•SUNNONLINEARSOLVER_FIXEDPOINT – 1, the SUNNonlinSol module solves 𝐺(𝑦) = 𝑦.

int SUNNonlinSolInitialize(SUNNonlinearSolver NLS)
The optional function SUNNonlinSolInitialize() performs nonlinear solver initialization and may per-
form any necessary memory allocations.

Arguments:

• NLS – a SUNNonlinSol object

Return value: the return value is zero for a successful call and a negative value for a failure.

Notes: It is assumed all solver-specific options have been set prior to calling
SUNNonlinSolInitialize(). SUNNonlinSol implementations that do not require initialization
may set this operation to NULL.

int SUNNonlinSolSetup(SUNNonlinearSolver NLS, N_Vector y, void* mem)
The optional function SUNNonlinSolSetup() performs any solver setup needed for a nonlinear solve.

Arguments:

• NLS – a SUNNonlinSol object

• y – the initial iteration passed to the nonlinear solver.

• mem – the SUNDIALS integrator memory structure.

Return value: the return value is zero for a successful call and a negative value for a failure.

Notes: SUNDIALS integrators call SUNonlinSolSetup() before each step attempt. SUNNonlinSol im-
plementations that do not require setup may set this operation to NULL.

int SUNNonlinSolSolve(SUNNonlinearSolver NLS, N_Vector y0, N_Vector y, N_Vector w, realtype tol,
booleantype callLSetup, void *mem)

The required function SUNNonlinSolSolve() solves the nonlinear system 𝐹 (𝑦) = 0 or 𝐺(𝑦) = 𝑦.

Arguments:

• NLS – a SUNNonlinSol object

• y0 – the initial iterate for the nonlinear solve. This must remain unchanged throughout the solution
process.

• y – the solution to the nonlinear system.

• w – the solution error weight vector used for computing weighted error norms.

• tol – the requested solution tolerance in the weighted root-mean-squared norm.

• callLSetup – a flag indicating that the integrator recommends for the linear solver setup function to be
called.

• mem – the SUNDIALS integrator memory structure.

Return value: the return value is zero for a successul solve, a positive value for a recoverable error, and a
negative value for an unrecoverable error.

326 Chapter 12. Nonlinear Solver Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

int SUNNonlinSolFree(SUNNonlinearSolver NLS)
The optional function SUNNonlinSolFree() frees any memory allocated by the nonlinear solver.

Arguments:

• NLS – a SUNNonlinSol object

Return value: the return value should be zero for a successful call, and a negative value for a failure. SUNNon-
linSol implementations that do not allocate data may set this operation to NULL.

SUNNonlinearSolver set functions

The following set functions are used to supply nonlinear solver modules with functions defined by the SUNDIALS
integrators and to modify solver parameters. Only the routine for setting the nonlinear system defining function
(SUNNonlinSolSetSysFn) is required. All other set functions are optional.

int SUNNonlinSolSetSysFn(SUNNonlinearSolver NLS, SUNNonlinSolSysFn SysFn)
The required function SUNNonlinSolSetSysFn() is used to provide the nonlinear
solver with the function defining the nonlinear system. This is the function 𝐹 (𝑦) in
𝐹 (𝑦) = 0 for SUNNONLINEARSOLVER_ROOTFIND modules or 𝐺(𝑦) in 𝐺(𝑦) = 𝑦 for
SUNNONLINEARSOLVER_FIXEDPOINT modules.

Arguments:

• NLS – a SUNNonlinSol object

• SysFn – the function defining the nonlinear system. See the section Functions provided by SUNDIALS
integrators for the definition of SUNNonlinSolSysFn().

Return value: the return value should be zero for a successful call, and a negative value for a failure.

int SUNNonlinSolSetLSetupFn(SUNNonlinearSolver NLS, SUNNonlinSolLSetupFn SetupFn)
The optional function SUNNonlinSolLSetupFn() is called by SUNDIALS integrators to provide the non-
linear solver with access to its linear solver setup function.

Arguments:

• NLS – a SUNNonlinSol object

• SetupFn – a wrapper function to the SUNDIALS integrator’s linear solver setup function. See the sec-
tion Functions provided by SUNDIALS integrators for the definition of SUNNonlinLSetupFn().

Return value: the return value should be zero for a successful call, and a negative value for a failure.

Notes: The SUNNonlinLSetupFn() function sets up the linear system 𝐴𝑥 = 𝑏 where 𝐴 = 𝜕𝐹
𝜕𝑦 is the lin-

earization of the nonlinear residual function 𝐹 (𝑦) = 0 (when using SUNLinSol direct linear solvers) or calls
the user-defined preconditioner setup function (when using SUNLinSol iterative linear solvers). SUNNonlin-
Sol implementations that do not require solving this system, do not utilize SUNLinSol linear solvers, or use
SUNLinSol linear solvers that do not require setup may set this operation to NULL.

int SUNNonlinSolSetLSolveFn(SUNNonlinearSolver NLS, SUNNonlinSolLSolveFn SolveFn)
The optional function SUNNonlinSolSetLSolveFn() is called by SUNDIALS integrators to provide the
nonlinear solver with access to its linear solver solve function.

Arguments:

• NLS – a SUNNonlinSol object

• SolveFn – a wrapper function to the SUNDIALS integrator’s linear solver solve func-
tion. See the section Functions provided by SUNDIALS integrators for the definition of
SUNNonlinSolLSolveFn().

12.1. Description of the SUNNonlinearSolver Module 327

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Return value: the return value should be zero for a successful call, and a negative value for a failure.

Notes: The SUNNonlinLSolveFn() function solves the linear system 𝐴𝑥 = 𝑏 where 𝐴 = 𝜕𝐹
𝜕𝑦 is the

linearization of the nonlinear residual function 𝐹 (𝑦) = 0. SUNNonlinSol implementations that do not require
solving this system or do not use SUNLinSol linear solvers may set this operation to NULL.

int SUNNonlinSolSetConvTestFn(SUNNonlinearSolver NLS, SUNNonlinSolConvTestFn CTestFn)
The optional function SUNNonlinSolSetConvTestFn() is used to provide the nonlinear solver with a
function for determining if the nonlinear solver iteration has converged. This is typically called by SUNDIALS
integrators to define their nonlinear convergence criteria, but may be replaced by the user.

Arguments:

• NLS – a SUNNonlinSol object

• CTestFn – a SUNDIALS integrator’s nonlinear solver convergence test function. See the section Func-
tions provided by SUNDIALS integrators for the definition of SUNNonlinSolConvTestFn().

Return value: the return value should be zero for a successful call, and a negative value for a failure.

Notes: SUNNonlinSol implementations utilizing their own convergence test criteria may set this function to
NULL.

int SUNNonlinSolSetMaxIters(SUNNonlinearSolver NLS, int maxiters)
The optional function SUNNonlinSolSetMaxIters() sets the maximum number of nonlinear solver it-
erations. This is typically called by SUNDIALS integrators to define their default iteration limit, but may be
adjusted by the user.

Arguments:

• NLS – a SUNNonlinSol object

• maxiters – the maximum number of nonlinear iterations.

Return value: the return value should be zero for a successful call, and a negative value for a failure (e.g.,
𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑠 < 1).

SUNNonlinearSolver get functions

The following get functions allow SUNDIALS integrators to retrieve nonlinear solver statistics. The routines to get
the current total number of iterations (SUNNonlinSolGetNumIters) and number of convergence failures are
optional. The routine to get the current nonlinear solver iteration (SUNNonlinSolGetCurIter) is required when
using the convergence test provided by the SUNDIALS integrator or when using a SUNLinSol spils linear solver
otherwise, SUNNonlinSolGetCurIter is optional.

int SUNNonlinSolGetNumIters(SUNNonlinearSolver NLS, long int *niters)
The optional function SUNNonlinSolGetNumIters() returns the total number of nonlinear solver itera-
tions. This is typically called by the SUNDIALS integrator to store the nonlinear solver statistics, but may also
be called by the user.

Arguments:

• NLS – a SUNNonlinSol object

• niters – the total number of nonlinear solver iterations.

Return value: the return value should be zero for a successful call, and a negative value for a failure.

int SUNNonlinSolGetCurIter(SUNNonlinearSolver NLS, int *iter)

The function SUNNonlinSolGetCurIter() returns the iteration index of the current nonlinear
solve. This function is required when using SUNDIALS integrator-provided convergence tests or
when using a SUNLinSol spils linear solver; otherwise it is optional.

328 Chapter 12. Nonlinear Solver Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Arguments:

• NLS – a SUNNonlinSol object

• iter – the nonlinear solver iteration in the current solve starting from zero.

Return value: the return value should be zero for a successful call, and a negative value for a failure.

int SUNNonlinSolGetNumConvFails(SUNNonlinearSolver NLS, long int *nconvfails)
The optional function SUNNonlinSolGetNumConvFails() returns the total number of nonlinear
solver convergence failures. This may be called by the SUNDIALS integrator to store the nonlinear solver
statistics, but may also be called by the user.

Arguments:

• NLS – a SUNNonlinSol object

• nconvfails – the total number of nonlinear solver convergence failures.

Return value: the return value should be zero for a successful call, and a negative value for a failure.

Functions provided by SUNDIALS integrators

To interface with SUNNonlinSol modules, the SUNDIALS integrators supply a variety of routines for evaluating the
nonlinear system, calling the SUNLinSol setup and solve functions, and testing the nonlinear iteration for convergence.
These integrator-provided routines translate between the user-supplied ODE or DAE systems and the generic interfaces
to the nonlinear or linear systems of equations that result in their solution. The types for functions provided to a
SUNNonlinSol module are defined in the header file sundials/sundials_nonlinearsolver.h, and are
described below.

typedef int (*SUNNonlinSolSysFn)(N_Vector y, N_Vector F, void* mem)
These functions evaluate the nonlinear system 𝐹 (𝑦) for SUNNONLINEARSOLVER_ROOTFIND type modules
or 𝐺(𝑦) for SUNNONLINEARSOLVER_FIXEDPOINT type modules. Memory for F must by be allocated prior
to calling this function. The vector y must be left unchanged.

Arguments:

• y – is the state vector at which the nonlinear system should be evaluated.

• F – is the output vector containing 𝐹 (𝑦) or 𝐺(𝑦), depending on the solver type.

• mem – is the SUNDIALS integrator memory structure.

Return value: The return value is zero for a successul solve, a positive value for a recoverable error, and a
negative value for an unrecoverable error.

typedef int (*SUNNonlinSolLSetupFn)(N_Vector y, N_Vector F, booleantype jbad, booleantype* jcur,
void* mem)

These functions are wrappers to the SUNDIALS integrator’s function for setting up linear solves with SUNLin-
Sol modules.

Arguments:

• y – is the state vector at which the linear system should be setup.

• F – is the value of the nonlinear system function at y.

• jbad – is an input indicating whether the nonlinear solver believes that 𝐴 has gone stale (SUNTRUE)
or not (SUNFALSE).

• jcur – is an output indicating whether the routine has updated the Jacobian 𝐴 (SUNTRUE) or not
(SUNFALSE).

• mem – is the SUNDIALS integrator memory structure.

12.1. Description of the SUNNonlinearSolver Module 329

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Return value: The return value is zero for a successul solve, a positive value for a recoverable error, and a
negative value for an unrecoverable error.

Notes: The SUNNonlinLSetupFn() function sets up the linear system 𝐴𝑥 = 𝑏 where 𝐴 = 𝜕𝐹
𝜕𝑦 is the lin-

earization of the nonlinear residual function 𝐹 (𝑦) = 0 (when using SUNLinSol direct linear solvers) or calls
the user-defined preconditioner setup function (when using SUNLinSol iterative linear solvers). SUNNonlin-
Sol implementations that do not require solving this system, do not utilize SUNLinSol linear solvers, or use
SUNLinSol linear solvers that do not require setup may ignore these functions.

typedef int (*SUNNonlinSolLSolveFn)(N_Vector y, N_Vector b, void* mem)
These functions are wrappers to the SUNDIALS integrator’s function for solving linear systems with SUNLin-
Sol modules.

Arguments:

• y – is the input vector containing the current nonlinear iteration.

• b – contains the right-hand side vector for the linear solve on input and the solution to the linear
system on output.

• mem – is the SUNDIALS integrator memory structure.

Return value: The return value is zero for a successul solve, a positive value for a recoverable error, and a
negative value for an unrecoverable error.

Notes: The SUNNonlinLSolveFn() function solves the linear system 𝐴𝑥 = 𝑏 where 𝐴 = 𝜕𝐹
𝜕𝑦 is the

linearization of the nonlinear residual function 𝐹 (𝑦) = 0. SUNNonlinSol implementations that do not require
solving this system or do not use SUNLinSol linear solvers may ignore these functions.

int (*SUNNonlinSolConvTestFn)(SUNNonlinearSolver NLS, N_Vector y, N_Vector del, realtype tol,
N_Vector ewt, void* mem)

These functions are SUNDIALS integrator-specific convergence tests for nonlinear solvers and are typically
supplied by each SUNDIALS integrator, but users may supply custom problem-specific versions as desired.

Arguments:

• NLS – is the SUNNonlinSol object.

• y – is the current nonlinear iterate.

• del – is the difference between the current and prior nonlinear iterates.

• tol – is the nonlinear solver tolerance.

• ewt – is the weight vector used in computing weighted norms.

• mem – is the SUNDIALS integrator memory structure.

Return value: The return value of this routine will be a negative value if an unrecoverable error occurred or
one of the following:

•SUN_NLS_SUCCESS – the iteration is converged.

•SUN_NLS_CONTINUE – the iteration has not converged, keep iterating.

•SUN_NLS_CONV_RECVR – the iteration appears to be diverging, try to recover.

Notes: The tolerance passed to this routine by SUNDIALS integrators is the tolerance in a weighted root-mean-
squared norm with error weight vector ewt. SUNNonlinSol modules utilizing their own convergence criteria
may ignore these functions.

330 Chapter 12. Nonlinear Solver Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

SUNNonlinearSolver return codes

The functions provided to SUNNonlinSol modules by each SUNDIALS integrator, and functions within the
SUNDIALS-provided SUNNonlinSol implementations utilize a common set of return codes, shown in the table be-
low. Here, negative values correspond to non-recoverable failures, positive values to recoverable failures, and zero to
a successful call.

Description of the SUNNonlinearSolver return codes:

Name Value Description
SUN_NLS_SUCCESS 0 successful call or converged solve
SUN_NLS_CONTINUE 1 the nonlinear solver is not converged, keep iterating
SUN_NLS_CONV_RECVR 2 the nonlinear solver appears to be diverging, try to recover
SUN_NLS_MEM_NULL -1 a memory argument is NULL
SUN_NLS_MEM_FAIL -2 a memory access or allocation failed
SUN_NLS_ILL_INPUT -3 an illegal input option was provided

The generic SUNNonlinearSolver module

SUNDIALS integrators interact with specific SUNNonlinSol implementations through the generic SUNNonlin-
Sol module on which all other SUNNonlinSol implementations are built. The SUNNonlinearSolver type
is a pointer to a structure containing an implementation-dependent content field and an ops field. The type
SUNNonlinearSolver is defined as follows:

typedef struct _generic_SUNNonlinearSolver *SUNNonlinearSolver;

struct _generic_SUNNonlinearSolver {
void *content;
struct _generic_SUNNonlinearSolver_Ops *ops;

};

where the _generic_SUNNonlinearSolver_Ops structure is a list of pointers to the various actual nonlinear
solver operations provided by a specific implementation. The _generic_SUNNonlinearSolver_Ops structure
is defined as

struct _generic_SUNNonlinearSolver_Ops {
SUNNonlinearSolver_Type (*gettype)(SUNNonlinearSolver);
int (*initialize)(SUNNonlinearSolver);
int (*setup)(SUNNonlinearSolver, N_Vector, void*);
int (*solve)(SUNNonlinearSolver, N_Vector, N_Vector,

N_Vector, realtype, booleantype, void*);
int (*free)(SUNNonlinearSolver);
int (*setsysfn)(SUNNonlinearSolver, SUNNonlinSolSysFn);
int (*setlsetupfn)(SUNNonlinearSolver, SUNNonlinSolLSetupFn);
int (*setlsolvefn)(SUNNonlinearSolver, SUNNonlinSolLSolveFn);
int (*setctestfn)(SUNNonlinearSolver, SUNNonlinSolConvTestFn);
int (*setmaxiters)(SUNNonlinearSolver, int);
int (*getnumiters)(SUNNonlinearSolver, long int*);
int (*getcuriter)(SUNNonlinearSolver, int*);
int (*getnumconvfails)(SUNNonlinearSolver, long int*);

};

The generic SUNNonlinSol module defines and implements the nonlinear solver operations defined in Sections SUN-
NonlinearSolver core functions through SUNNonlinearSolver get functions. These routines are in fact only wrappers
to the nonlinear solver operations provided by a particular SUNNonlinSol implementation, which are accessed through
the ops field of the SUNNonlinearSolver structure. To illustrate this point we show below the implementation

12.1. Description of the SUNNonlinearSolver Module 331

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

of a typical nonlinear solver operation from the generic SUNNonlinSol module, namely SUNNonlinSolSolve,
which solves the nonlinear system and returns a flag denoting a successful or failed solve:

int SUNNonlinSolSolve(SUNNonlinearSolver NLS,
N_Vector y0, N_Vector y,
N_Vector w, realtype tol,
booleantype callLSetup, void* mem)

{
return((int) NLS->ops->solve(NLS, y0, y, w, tol, callLSetup, mem));

}

Implementing a Custom SUNNonlinearSolver Module

A SUNNonlinSol implementation must do the following:

• Specify the content of the SUNNonlinSol module.

• Define and implement the required nonlinear solver operations defined in Sections SUNNonlinearSolver core
functions through SUNNonlinearSolver get functions. Note that the names of the module routines should be
unique to that implementation in order to permit using more than one SUNNonlinSol module (each with different
SUNNonlinearSolver internal data representations) in the same code.

• Define and implement a user-callable constructor to create a SUNNonlinearSolver object.

Additionally, a SUNNonlinearSolver implementation may do the following:

• Define and implement additional user-callable “set” routines acting on the SUNNonlinearSolver object,
e.g., for setting various configuration options to tune the performance of the nonlinear solve algorithm.

• Provide additional user-callable “get” routines acting on the SUNNonlinearSolver object, e.g., for return-
ing various solve statistics.

12.1.2 The SUNNonlinearSolver_Newton implementation

This section describes the SUNNonlinSol implementation of Newton’s method. To access the SUNNonlin-
Sol_Newton module, include the header file sunnonlinsol/sunnonlinsol_newton.h. We note that
the SUNNonlinSol_Newton module is accessible from SUNDIALS integrators without separately linking to the
libsundials_sunnonlinsolnewton module library.

SUNNonlinearSolver_Newton description

To find the solution to

𝐹 (𝑦) = 0 (12.1)

given an initial guess 𝑦(0), Newton’s method computes a series of approximate solutions

𝑦(𝑚+1) = 𝑦(𝑚) + 𝛿(𝑚+1)

where 𝑚 is the Newton iteration index, and the Newton update 𝛿(𝑚+1) is the solution of the linear system

𝐴(𝑦(𝑚))𝛿(𝑚+1) = −𝐹 (𝑦(𝑚)) , (12.2)

in which 𝐴 is the Jacobian matrix

𝐴 ≡ 𝜕𝐹/𝜕𝑦 . (12.3)

332 Chapter 12. Nonlinear Solver Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Depending on the linear solver used, the SUNNonlinSol_Newton module will employ either a Modified Newton
method, or an Inexact Newton method [B1987], [BS1990], [DES1982], [DS1996], [K1995]. When used with a direct
linear solver, the Jacobian matrix 𝐴 is held constant during the Newton iteration, resulting in a Modified Newton
method. With a matrix-free iterative linear solver, the iteration is an Inexact Newton method.

In both cases, calls to the integrator-supplied SUNNonlinSolLSetupFn() function are made infrequently to
amortize the increased cost of matrix operations (updating 𝐴 and its factorization within direct linear solvers,
or updating the preconditioner within iterative linear solvers). Specifically, SUNNonlinSol_Newton will call the
SUNNonlinSolLSetupFn() function in two instances:

1. when requested by the integrator (the input callLSetSetup is SUNTRUE) before attempting the Newton
iteration, or

2. when reattempting the nonlinear solve after a recoverable failure occurs in the Newton iteration with stale
Jacobian information (jcur is SUNFALSE). In this case, SUNNonlinSol_Newton will set jbad to SUNTRUE
before calling the SUNNonlinSolLSetupFn() function.

Whether the Jacobian matrix 𝐴 is fully or partially updated depends on logic unique to each integrator-supplied
SUNNonlinSolSetupFn() routine. We refer to the discussion of nonlinear solver strategies provided in Chapter
Mathematical Considerations for details on this decision.

The default maximum number of iterations and the stopping criteria for the Newton iteration are supplied by the
SUNDIALS integrator when SUNNonlinSol_Newton is attached to it. Both the maximum number of iterations and
the convergence test function may be modified by the user by calling the SUNNonlinSolSetMaxIters() and/or
SUNNonlinSolSetConvTestFn() functions after attaching the SUNNonlinSol_Newton object to the integrator.

SUNNonlinearSolver_Newton functions

The SUNNonlinSol_Newton module provides the following constructor for creating the SUNNonlinearSolver
object.

SUNNonlinearSolver SUNNonlinSol_Newton(N_Vector y)
The function SUNNonlinSol_Newton() creates a SUNNonlinearSolver object for use with SUNDI-
ALS integrators to solve nonlinear systems of the form 𝐹 (𝑦) = 0 using Newton’s method.

Arguments:

• y – a template for cloning vectors needed within the solver.

Return value: a SUNNonlinSol object if the constructor exits successfully, otherwise it will be NULL.

The SUNNonlinSol_Newton module implements all of the functions defined in sections SUNNonlinearSolver core
functions through SUNNonlinearSolver get functions except for the SUNNonlinSolSetup() function. The SUN-
NonlinSol_Newton functions have the same names as those defined by the generic SUNNonlinSol API with _Newton
appended to the function name. Unless using the SUNNonlinSol_Newton module as a standalone nonlinear solver the
generic functions defined in sections SUNNonlinearSolver core functions through SUNNonlinearSolver get functions
should be called in favor of the SUNNonlinSol_Newton-specific implementations.

The SUNNonlinSol_Newton module also defines the following additional user-callable function.

int SUNNonlinSolGetSysFn_Newton(SUNNonlinearSolver NLS, SUNNonlinSolSysFn *SysFn)
The function SUNNonlinSolGetSysFn_Newton() returns the residual function that defines the nonlinear
system.

Arguments:

• NLS – a SUNNonlinSol object

• SysFn – the function defining the nonlinear system.

12.1. Description of the SUNNonlinearSolver Module 333

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Return value: the return value should be zero for a successful call, and a negative value for a failure.

Notes: This function is intended for users that wish to evaluate the nonlinear residual in a custom convergence
test function for the SUNNonlinSol_Newton module. We note that SUNNonlinSol_Newton will not leverage
the results from any user calls to SysFn.

SUNNonlinearSolver_Newton content

The content field of the SUNNonlinSol_Newton module is the following structure.

struct _SUNNonlinearSolverContent_Newton {

SUNNonlinSolSysFn Sys;
SUNNonlinSolLSetupFn LSetup;
SUNNonlinSolLSolveFn LSolve;
SUNNonlinSolConvTestFn CTest;

N_Vector delta;
booleantype jcur;
int curiter;
int maxiters;
long int niters;
long int nconvfails;

};

These entries of the content field contain the following information:

• Sys – the function for evaluating the nonlinear system,

• LSetup – the package-supplied function for setting up the linear solver,

• LSolve – the package-supplied function for performing a linear solve,

• CTest – the function for checking convergence of the Newton iteration,

• delta – the Newton iteration update vector,

• jcur – the Jacobian status (SUNTRUE = current, SUNFALSE = stale),

• curiter – the current number of iterations in the solve attempt,

• maxiters – the maximum number of Newton iterations allowed in a solve, and

• niters – the total number of nonlinear iterations across all solves.

• nconvfails – the total number of nonlinear convergence failures across all solves.

SUNNonlinearSolver_Newton Fortran interface

For SUNDIALS integrators that include a Fortran interface, the SUNNonlinSol_Newton module also includes a
Fortran-callable function for creating a SUNNonlinearSolver object.

subroutine FSUNNewtonInit(CODE, IER)
The function FSUNNewtonInit() can be called for Fortran programs to create a SUNNonlinearSolver
object for use with SUNDIALS integrators to solve nonlinear systems of the form 𝐹 (𝑦) = 0 with Newton’s
method.

This routine must be called after the N_Vector object has been initialized.

Arguments:

334 Chapter 12. Nonlinear Solver Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, ARKode=4.

• IER (int, output) – return flag (0 success, -1 for failure). See printed message for details in case of
failure.

12.1.3 The SUNNonlinearSolver_FixedPoint implementation

This section describes the SUNNonlinSol implementation of a fixed point (functional) iteration
with optional Anderson acceleration. To access the SUNNonlinSol_FixedPoint module, include the
header file sunnonlinsol/sunnonlinsol_fixedpoint.h. We note that the SUNNonlin-
Sol_FixedPoint module is accessible from SUNDIALS integrators without separately linking to the
libsundials_sunnonlinsolfixedpoint module library.

SUNNonlinearSolver_FixedPoint description

To find the solution to

𝐺(𝑦) = 𝑦 (12.4)

given an initial guess 𝑦(0), the fixed point iteration computes a series of approximate solutions

𝑦(𝑛+1) = 𝐺(𝑦(𝑛)) (12.5)

where 𝑛 is the iteration index. The convergence of this iteration may be accelerated using Anderson’s method [A1965],
[WN2011], [FS2009], [LWWY2012]. With Anderson acceleration using subspace size 𝑚, the series of approximate
solutions can be formulated as the linear combination

𝑦(𝑛+1) =

𝑚𝑛∑︁
𝑖=0

𝛼
(𝑛)
𝑖 𝐺(𝑦(𝑛−𝑚𝑛+𝑖)) (12.6)

where 𝑚𝑛 = min {𝑚,𝑛} and the factors

𝛼(𝑛) = (𝛼
(𝑛)
0 , . . . , 𝛼(𝑛)

𝑚𝑛
)

solve the minimization problem min𝛼 ‖𝐹𝑛𝛼
𝑇 ‖2 under the constraint that

∑︀𝑚𝑛

𝑖=0 𝛼𝑖 = 1 where

𝐹𝑛 = (𝑓𝑛−𝑚𝑛 , . . . , 𝑓𝑛)

with 𝑓𝑖 = 𝐺(𝑦(𝑖)) − 𝑦(𝑖). Due to this constraint, in the limit of 𝑚 = 0 the accelerated fixed point iteration formula
(12.6) simplifies to the standard fixed point iteration (12.5).

Following the recommendations made in [WN2011], the SUNNonlinSol_FixedPoint implementation computes the
series of approximate solutions as

𝑦(𝑛+1) = 𝐺(𝑦(𝑛))−
𝑚𝑛−1∑︁
𝑖=0

𝛾
(𝑛)
𝑖 ∆𝑔𝑛−𝑚𝑛+𝑖 (12.7)

with ∆𝑔𝑖 = 𝐺(𝑦(𝑖+1))−𝐺(𝑦(𝑖)) and where the factors

𝛾(𝑛) = (𝛾
(𝑛)
0 , . . . , 𝛾

(𝑛)
𝑚𝑛−1)

solve the unconstrained minimization problem min𝛾 ‖𝑓𝑛 −∆𝐹𝑛𝛾
𝑇 ‖2 where

∆𝐹𝑛 = (∆𝑓𝑛−𝑚𝑛
, . . . ,∆𝑓𝑛−1),

12.1. Description of the SUNNonlinearSolver Module 335

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

with ∆𝑓𝑖 = 𝑓𝑖+1 − 𝑓𝑖. The least-squares problem is solved by applying a QR factorization to ∆𝐹𝑛 = 𝑄𝑛𝑅𝑛 and
solving 𝑅𝑛𝛾 = 𝑄𝑇

𝑛𝑓𝑛.

The acceleration subspace size 𝑚 is required when constructing the SUNNonlinSol_FixedPoint object. The default
maximum number of iterations and the stopping criteria for the fixed point iteration are supplied by the SUNDI-
ALS integrator when SUNNonlinSol_FixedPoint is attached to it. Both the maximum number of iterations and
the convergence test function may be modified by the user by calling SUNNonlinSolSetMaxIters() and
SUNNonlinSolSetConvTestFn() functions after attaching the SUNNonlinSol_FixedPoint object to the inte-
grator.

SUNNonlinearSolver_FixedPoint functions

The SUNNonlinSol_FixedPoint module provides the following constructor for creating the SUNNonlinearSolver
object.

SUNNonlinearSolver SUNNonlinSol_FixedPoint(N_Vector y, int m)
The function SUNNonlinSol_FixedPoint() creates a SUNNonlinearSolver object for use with
SUNDIALS integrators to solve nonlinear systems of the form 𝐺(𝑦) = 𝑦.

Arguments:

• y – a template for cloning vectors needed within the solver.

• m – the number of acceleration vectors to use.

Return value: a SUNNonlinSol object if the constructor exits successfully, otherwise it will be NULL.

Since the accelerated fixed point iteration (12.5) does not require the setup or solution of any linear sys-
tems, the SUNNonlinSol_FixedPoint module implements all of the functions defined in sections SUNNonlin-
earSolver core functions through SUNNonlinearSolver get functions except for the SUNNonlinSolSetup(),
SUNNonlinSolSetLSetupFn(), and SUNNonlinSolSetLSolveFn() functions, that are set to NULL. The
SUNNonlinSol_FixedPoint functions have the same names as those defined by the generic SUNNonlinSol API with
_FixedPoint appended to the function name. Unless using the SUNNonlinSol_FixedPoint module as a standalone
nonlinear solver the generic functions defined in sections SUNNonlinearSolver core functions through SUNNonlinear-
Solver get functions should be called in favor of the SUNNonlinSol_FixedPoint-specific implementations.

The SUNNonlinSol_FixedPoint module also defines the following additional user-callable function.

int SUNNonlinSolGetSysFn_FixedPoint(SUNNonlinearSolver NLS, SUNNonlinSolSysFn *SysFn)
The function SUNNonlinSolGetSysFn_FixedPoint() returns the fixed-point function that defines the
nonlinear system.

Arguments:

• NLS – a SUNNonlinSol object

• SysFn – the function defining the nonlinear system.

Return value: the return value should be zero for a successful call, and a negative value for a failure.

Notes: This function is intended for users that wish to evaluate the fixed-point function in a custom conver-
gence test function for the SUNNonlinSol_FixedPoint module. We note that SUNNonlinSol_FixedPoint will
not leverage the results from any user calls to SysFn.

SUNNonlinearSolver_FixedPoint content

The content field of the SUNNonlinSol_FixedPoint module is the following structure.

336 Chapter 12. Nonlinear Solver Data Structures

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

struct _SUNNonlinearSolverContent_FixedPoint {

SUNNonlinSolSysFn Sys;
SUNNonlinSolConvTestFn CTest;

int m;
int *imap;
realtype *R;
realtype *gamma;
realtype *cvals;
N_Vector *df;
N_Vector *dg;
N_Vector *q;
N_Vector *Xvecs;
N_Vector yprev;
N_Vector gy;
N_Vector fold;
N_Vector gold;
N_Vector delta;
int curiter;
int maxiters;
long int niters;
long int nconvfails;

};

The following entries of the content field are always allocated:

• Sys – function for evaluating the nonlinear system,

• CTest – function for checking convergence of the fixed point iteration,

• yprev – N_Vector used to store previous fixed-point iterate,

• gy – N_Vector used to store 𝐺(𝑦) in fixed-point algorithm,

• delta – N_Vector used to store difference between successive fixed-point iterates,

• curiter – the current number of iterations in the solve attempt,

• maxiters – the maximum number of fixed-point iterations allowed in a solve, and

• niters – the total number of nonlinear iterations across all solves.

• nconvfails – the total number of nonlinear convergence failures across all solves.

• m – number of acceleration vectors,

If Anderson acceleration is requested (i.e., 𝑚 > 0 in the call to SUNNonlinSol_FixedPoint()), then the
following items are also allocated within the content field:

• imap – index array used in acceleration algorithm (length m)

• R – small matrix used in acceleration algorithm (length m*m)

• gamma – small vector used in acceleration algorithm (length m)

• cvals – small vector used in acceleration algorithm (length m+1)

• df – array of N_Vectors used in acceleration algorithm (length m)

• dg – array of N_Vectors used in acceleration algorithm (length m)

• q – array of N_Vectors used in acceleration algorithm (length m)

• Xvecs – N_Vector pointer array used in acceleration algorithm (length m+1)

12.1. Description of the SUNNonlinearSolver Module 337

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

• fold – N_Vector used in acceleration algorithm

• gold – N_Vector used in acceleration algorithm

SUNNonlinearSolver_FixedPoint Fortran interface

For SUNDIALS integrators that include a Fortran interface, the SUNNonlinSol_FixedPoint module also includes a
Fortran-callable function for creating a SUNNonlinearSolver object.

subroutine FSUNFixedPointInit(CODE, M, IER)
The function FSUNFixedPointInit() can be called for Fortran programs to create a
SUNNonlinearSolver object for use with SUNDIALS integrators to solve nonlinear systems of the
form 𝐺(𝑦) = 𝑦.

This routine must be called after the N_Vector object has been initialized.

Arguments:

• CODE (int, input) – flag denoting the SUNDIALS solver this matrix will be used for: CVODE=1,
IDA=2, ARKode=4.

• M (int, input) – the number of acceleration vectors.

• IER (int, output) – return flag (0 success, -1 for failure). See printed message for details in case of
failure.

338 Chapter 12. Nonlinear Solver Data Structures

CHAPTER

THIRTEEN

ARKODE INSTALLATION PROCEDURE

The installation of any SUNDIALS package is accomplished by installing the SUNDIALS suite as a whole, according
to the instructions that follow. The same procedure applies whether or not the downloaded file contains one or all
solvers in SUNDIALS.

The SUNDIALS suite (or individual solvers) are distributed as compressed archives (.tar.gz). The name of the dis-
tribution archive is of the form SOLVER-X.Y.Z.tar.gz, where SOLVER is one of: sundials, cvode, cvodes,
arkode, ida, idas, or kinsol, and X.Y.Z represents the version number (of the SUNDIALS suite or of the in-
dividual solver). To begin the installation, first uncompress and expand the sources, by issuing

% tar -zxf SOLVER-X.Y.Z.tar.gz

This will extract source files under a directory SOLVER-X.Y.Z.

Starting with version 2.6.0 of SUNDIALS, CMake is the only supported method of installation. The explanations of
the installation procedure begins with a few common observations:

• The remainder of this chapter will follow these conventions:

SOLVERDIR is the directory SOLVER-X.Y.Z created above; i.e. the directory containing the SUNDIALS
sources.

BUILDDIR is the (temporary) directory under which SUNDIALS is built.

INSTDIR is the directory under which the SUNDIALS exported header files and libraries will be installed.
Typically, header files are exported under a directory INSTDIR/include while libraries are installed
under INSTDIR/lib, with INSTDIR specified at configuration time.

• For SUNDIALS’ CMake-based installation, in-source builds are prohibited; in other words, the build directory
BUILDDIR can not be the same as SOLVERDIR and such an attempt will lead to an error. This prevents
“polluting” the source tree and allows efficient builds for different configurations and/or options.

• The installation directory INSTDIR can not be the same as the source directory SOLVERDIR.

• By default, only the libraries and header files are exported to the installation directory INSTDIR. If enabled by
the user (with the appropriate toggle for CMake), the examples distributed with SUNDIALS will be built to-
gether with the solver libraries but the installation step will result in exporting (by default in a subdirectory of the
installation directory) the example sources and sample outputs together with automatically generated configura-
tion files that reference the installed SUNDIALS headers and libraries. As such, these configuration files for the
SUNDIALS examples can be used as “templates” for your own problems. CMake installs CMakeLists.txt
files and also (as an option available only under Unix/Linux) Makefile files. Note this installation approach
also allows the option of building the SUNDIALS examples without having to install them. (This can be used
as a sanity check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX modules.
Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX shared libraries would
result in “undefined symbol” errors at link time.

339

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Further details on the CMake-based installation procedures, instructions for manual compilation, and a roadmap of the
resulting installed libraries and exported header files, are provided in the following subsections:

• CMake-based installation

• Installed libraries and exported header files

13.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix and Linux Make-
files, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the same configuration file. In addition,
CMake also provides a GUI front end and which allows an interactive build and installation process.

The SUNDIALS build process requires CMake version 3.0.2 or higher and a working C compiler. On Unix-like
operating systems, it also requires Make (and curses, including its development libraries, for the GUI front end to
CMake, ccmake or cmake-gui), while on Windows it requires Visual Studio. While many Linux distributions offer
CMake, the version included may be out of date. Many new CMake features have been added recently, and you should
download the latest version from http://www.cmake.org. Build instructions for CMake (only necessary for Unix-like
systems) can be found on the CMake website. Once CMake is installed, Linux/Unix users will be able to use ccmake
or cmake-gui (depending on the version of CMake), while Windows users will be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install SUNDIALS, it is always required to use a
separate build directory. While in-source builds are possible, they are explicitly prohibited by the SUNDIALS CMake
scripts (one of the reasons being that, unlike autotools, CMake does not provide a make distclean procedure and
it is therefore difficult to clean-up the source tree after an in-source build). By ensuring a separate build directory, it
is an easy task for the user to clean-up all traces of the build by simply removing the build directory. CMake does
generate a make clean which will remove files generated by the compiler and linker.

13.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The INSTDIR defaults to /usr/local and can be changed by setting the
CMAKE_INSTALL_PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based GUI by using the
ccmake command, or from a wxWidgets or QT based GUI by using the cmake-gui command. Examples for using
both text and graphical methods will be presented. For the examples shown it is assumed that there is a top level
SUNDIALS directory with appropriate source, build and install directories:

$ mkdir (...)/INSTDIR
$ mkdir (...)/BUILDDIR
$ cd (...)/BUILDDIR

Building with the GUI

Using CMake with the ccmake GUI follows the general process:

• Select and modify values, run configure (c key)

• New values are denoted with an asterisk

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will toggle the value

– If it is string or file, it will allow editing of the string

340 Chapter 13. ARKode Installation Procedure

http://www.cmake.org

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

– For file and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced variables, toggle to advanced mode (t key)

• To search for a variable press / key, and to repeat the search, press the n key

Using CMake with the cmake-gui GUI follows a similar process:

• Select and modify values, click Configure

• The first time you click Configure, make sure to pick the appropriate generator (the following will ssume
generation of Unix Makfiles).

• New values are highlighted in red

• To set a variable, click on or move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will check/uncheck the box

– If it is string or file, it will allow editing of the string. Additionally, an ellipsis button will appear ... on
the far right of the entry. Clicking this button will bring up the file or directory selection dialog.

– For files and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and click the Generate button

• Some variables (advanced variables) are not visible right away

• To see advanced variables, click the advanced button

To build the default configuration using the curses GUI, from the BUILDDIR enter the ccmake command and point
to the SOLVERDIR:

$ ccmake (...)/SOLVERDIR

Similarly, to build the default configuration using the wxWidgets GUI, from the BUILDDIR enter the cmake-gui
command and point to the SOLVERDIR:

$ cmake-gui (...)/SOLVERDIR

The default curses configuration screen is shown in the following figure.

The default INSTDIR for both SUNDIALS and corresponding examples can be changed by setting the
CMAKE_INSTALL_PREFIX and the EXAMPLES_INSTALL_PATH as shown in the following figure.

Pressing the g key or clicking generate will generate makefiles including all dependencies and all rules to build
SUNDIALS on this system. Back at the command prompt, you can now run:

$ make

or for a faster parallel build (e.g. using 4 threads), you can run

$ make -j 4

To install SUNDIALS in the installation directory specified in the configuration, simply run:

$ make install

13.1. CMake-based installation 341

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 13.1: Default configuration screen. Note: Initial screen is empty. To get this default configuration, press ‘c’
repeatedly (accepting default values denoted with asterisk) until the ‘g’ option is available.

Fig. 13.2: Changing the INSTDIR for SUNDIALS and corresponding EXAMPLES.

342 Chapter 13. ARKode Installation Procedure

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with the cmake
command. The following will build the default configuration:

$ cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> ../srcdir
$ make
$ make install

13.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based SUNDIALS configuration is provide below. Note that the
default values shown are for a typical configuration on a Linux system and are provided as illustration only.

BLAS_ENABLE Enable BLAS support

Default: OFF

Note: Setting this option to ON will trigger additional CMake options. See additional information on building
with BLAS enabled in Working with external Libraries.

BLAS_LIBRARIES BLAS library

Default: /usr/lib/libblas.so

Note: CMake will search for libraries in your LD_LIBRARY_PATH prior to searching default system paths.

BUILD_ARKODE Build the ARKODE library

Default: ON

BUILD_CVODE Build the CVODE library

Default: ON

BUILD_CVODES Build the CVODES library

Default: ON

BUILD_IDA Build the IDA library

Default: ON

BUILD_IDAS Build the IDAS library

Default: ON

BUILD_KINSOL Build the KINSOL library

Default: ON

BUILD_SHARED_LIBS Build shared libraries

Default: ON

BUILD_STATIC_LIBS Build static libraries

Default: ON

13.1. CMake-based installation 343

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

CMAKE_BUILD_TYPE Choose the type of build, options are: None (CMAKE_C_FLAGS used), Debug,
Release, RelWithDebInfo, and MinSizeRel

Default:

Note: Specifying a build type will trigger the corresponding build type specific compiler flag options below
which will be appended to the flags set by CMAKE_<language>_FLAGS.

CMAKE_C_COMPILER C compiler

Default: /usr/bin/cc

CMAKE_C_FLAGS Flags for C compiler

Default:

CMAKE_C_FLAGS_DEBUG Flags used by the C compiler during debug builds

Default: -g

CMAKE_C_FLAGS_MINSIZEREL Flags used by the C compiler during release minsize builds

Default: -Os -DNDEBUG

CMAKE_C_FLAGS_RELEASE Flags used by the C compiler during release builds

Default: -O3 -DNDEBUG

CMAKE_CXX_COMPILER C++ compiler

Default: /usr/bin/c++

Note: A C++ compiler (and all related options) are only are triggered if C++ examples are enabled
(EXAMPLES_ENABLE_CXX is ON). All SUNDIALS solvers can be used from C++ applications by default
without setting any additional configuration options.

CMAKE_CXX_FLAGS Flags for C++ compiler

Default:

CMAKE_CXX_FLAGS_DEBUG Flags used by the C++ compiler during debug builds

Default: -g

CMAKE_CXX_FLAGS_MINSIZEREL Flags used by the C++ compiler during release minsize builds

Default: -Os -DNDEBUG

CMAKE_CXX_FLAGS_RELEASE Flags used by the C++ compiler during release builds

Default: -O3 -DNDEBUG

CMAKE_Fortran_COMPILER Fortran compiler

Default: /usr/bin/gfortran

Note: Fortran support (and all related options) are triggered only if either Fortran-C support is
(FCMIX_ENABLE is ON) or BLAS/LAPACK support is enabled (BLAS_ENABLE or LAPACK_ENABLE is
ON).

CMAKE_Fortran_FLAGS Flags for Fortran compiler

Default:

344 Chapter 13. ARKode Installation Procedure

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

CMAKE_Fortran_FLAGS_DEBUG Flags used by the Fortran compiler during debug builds

Default: -g

CMAKE_Fortran_FLAGS_MINSIZEREL Flags used by the Fortran compiler during release minsize builds

Default: -Os

CMAKE_Fortran_FLAGS_RELEASE Flags used by the Fortran compiler during release builds

Default: -O3

CMAKE_INSTALL_PREFIX Install path prefix, prepended onto install directories

Default: /usr/local

Note: The user must have write access to the location specified through this option. Exported
SUNDIALS header files and libraries will be installed under subdirectories include and lib of
CMAKE_INSTALL_PREFIX, respectively.

CXX_ENABLE Flag to enable C++ ARKode examples (if examples are enabled)

Default: OFF

CUDA_ENABLE Build the SUNDIALS CUDA vector module.

Default: OFF

EXAMPLES_ENABLE_C Build the SUNDIALS C examples

Default: ON

EXAMPLES_ENABLE_CUDA Build the SUNDIALS CUDA examples

Default: OFF

Note: You need to enable CUDA support to build these examples.

EXAMPLES_ENABLE_CXX Build the SUNDIALS C++ examples

Default: OFF

EXAMPLES_ENABLE_F77 Build the SUNDIALS Fortran77 examples

Default: ON (if FCMIX_ENABLE is ON)

EXAMPLES_ENABLE_F90 Build the SUNDIALS Fortran90 examples

Default: OFF

EXAMPLES_INSTALL Install example files

Default: ON

Note: This option is triggered when any of the SUNDIALS example programs are enabled
(EXAMPLES_ENABLE_<language> is ON). If the user requires installation of example programs then the
sources and sample output files for all SUNDIALS modules that are currently enabled will be exported to the
directory specified by EXAMPLES_INSTALL_PATH. A CMake configuration script will also be automatically
generated and exported to the same directory. Additionally, if the configuration is done under a Unix-like sys-
tem, makefiles for the compilation of the example programs (using the installed SUNDIALS libraries) will be
automatically generated and exported to the directory specified by EXAMPLES_INSTALL_PATH.

13.1. CMake-based installation 345

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

EXAMPLES_INSTALL_PATH Output directory for installing example files

Default: /usr/local/examples

Note: The actual default value for this option will be an examples subdirectory created under
CMAKE_INSTALL_PREFIX.

FCMIX_ENABLE Enable Fortran-C support

Default: OFF

F90_ENABLE Flag to enable Fortran 90 ARKode examples (if examples are enabled)

Default: OFF

HYPRE_ENABLE Flag to enable hypre support

Default: OFF

Note: See additional information on building with hypre enabled in Working with external Libraries.

HYPRE_INCLUDE_DIR Path to hypre header files

Default: none

HYPRE_LIBRARY Path to hypre installed library files

Default: none

KLU_ENABLE Enable KLU support

Default: OFF

Note: See additional information on building with KLU enabled in Working with external Libraries.

KLU_INCLUDE_DIR Path to SuiteSparse header files

Default: none

KLU_LIBRARY_DIR Path to SuiteSparse installed library files

Default: none

LAPACK_ENABLE Enable LAPACK support

Default: OFF

Note: Setting this option to ON will trigger additional CMake options. See additional information on building
with LAPACK enabled in Working with external Libraries.

LAPACK_LIBRARIES LAPACK (and BLAS) libraries

Default: /usr/lib/liblapack.so;/usr/lib/libblas.so

Note: CMake will search for libraries in your LD_LIBRARY_PATH prior to searching default system paths.

MPI_ENABLE Enable MPI support (build the parallel nvector).

Default: OFF

Note: Setting this option to ON will trigger several additional options related to MPI.

346 Chapter 13. ARKode Installation Procedure

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

MPI_C_COMPILER mpicc program

Default:

MPI_CXX_COMPILER mpicxx program

Default:

Note: This option is triggered only if MPI is enabled (MPI_ENABLE is ON) and C++ examples are enabled
(EXAMPLES_ENABLE_CXX is ON). All SUNDIALS solvers can be used from C++ MPI applications by default
without setting any additional configuration options other than MPI_ENABLE.

MPI_Fortran_COMPILER mpif77 or mpif90 program

Default:

Note: This option is triggered only if MPI is enabled (MPI_ENABLE is ON) and Fortran-C support is enabled
(EXAMPLES_ENABLE_F77 or EXAMPLES_ENABLE_F90 are ON).

MPIEXEC_EXECUTABLE Specify the executable for running MPI programs

Default: mpirun

Note: This option is triggered only if MPI is enabled (MPI_ENABLE is ON).

OPENMP_ENABLE Enable OpenMP support (build the OpenMP NVector)

Default: OFF

PETSC_ENABLE Enable PETSc support

Default: OFF

Note: See additional information on building with PETSc enabled in Working with external Libraries.

PETSC_INCLUDE_DIR Path to PETSc header files

Default: none

PETSC_LIBRARY_DIR Path to PETSc installed library files

Default: none

PTHREAD_ENABLE Enable Pthreads support (build the Pthreads NVector)

Default: OFF

RAJA_ENABLE Enable RAJA support (build the RAJA NVector).

Default: OFF

Note: You need to enable CUDA in order to build the RAJA vector module.

SUNDIALS_F77_FUNC_CASE Specify the case to use in the Fortran name-mangling scheme, options are: lower
or upper

Default:

Note: The build system will attempt to infer the Fortran name-mangling scheme using the Fortran compiler.
This option should only be used if a Fortran compiler is not available or to override the inferred or default
(lower) scheme if one can not be determined. If used, SUNDIALS_F77_FUNC_UNDERSCORES must also
be set.

13.1. CMake-based installation 347

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

index SUNDIALS_F77_FUNC_UNDERSCORES <SUNDIALS_F77_FUNC_UNDERSCORES (CMake
option)> Specify the number of underscores to append in the Fortran name-mangling scheme, op-
tions are: none, one, or two

Default:

Note: The build system will attempt to infer the Fortran name-mangling scheme using the
Fortran compiler. This option should only be used if a Fortran compiler is not available
or to override the inferred or default (one) scheme if one can not be determined. If used,
SUNDIALS_F77_FUNC_CASE must also be set.

SUNDIALS_INDEX_TYPE (advanced) Integer type used for SUNDIALS indices. The size must match the size
provided for the SUNDIALS_INDEX_SIZE option.

Default:

Note: In past SUNDIALS versions, a user could set this option to INT64_T to use 64-bit integers, or INT32_T
to use 32-bit integers. Starting in SUNDIALS 3.2.0, these special values are deprecated. For SUNDIALS 3.2.0
and up, a user will only need to use the SUNDIALS_INDEX_SIZE option in most cases.

SUNDIALS_INDEX_SIZE Integer size (in bits) used for indices in SUNDIALS, options are: 32 or 64

Default: 64

Note: The build system tries to find an integer type of appropriate size. Candidate 64-bit integer types are (in
order of preference): int64_t, __int64, long long, and long. Candidate 32-bit integers are (in order
of preference): int32_t, int, and long. The advanced option, SUNDIALS_INDEX_TYPE can be used to
provide a type not listed here.

SUNDIALS_PRECISION Precision used in SUNDIALS, options are: double, single or extended

Default: double

SUPERLUMT_ENABLE Enable SuperLU_MT support

Default: OFF

Note: See additional information on building with SuperLU_MT enabled in Working with external Libraries.

SUPERLUMT_INCLUDE_DIR Path to SuperLU_MT header files (under a typical SuperLU_MT install, this is
typically the SuperLU_MT SRC directory)

Default: none

SUPERLUMT_LIBRARY_DIR Path to SuperLU_MT installed library files

Default: none

SUPERLUMT_THREAD_TYPE Must be set to Pthread or OpenMP, depending on how SuperLU_MT was com-
piled.

Default: Pthread

USE_GENERIC_MATH Use generic (stdc) math libraries

Default: ON

xSDK Configuration Options

SUNDIALS supports CMake configuration options defined by the Extreme-scale Scientific Software Development Kit
(xSDK) community policies (see https://xsdk.info for more information). xSDK CMake options are unused by default
but may be activated by setting USE_XSDK_DEFAULTS to ON.

348 Chapter 13. ARKode Installation Procedure

https://xsdk.info

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Note: When xSDK options are active, they will overwrite the corresponding SUNDIALS option and may have differ-
ent default values (see details below). As such the equivalent SUNDIALS options should not be used when configuring
with xSDK options. In the GUI front end to CMake (ccmake or cmake-gui), setting USE_XSDK_DEFAULTS to
ON will hide the corresponding SUNDIALS options as advanced CMake variables. During configuration, messages
are output detailing which xSDK flags are active and the equivalent SUNDIALS options that are replaced. Below is a
complete list xSDK options and the corresponding SUNDIALS options if applicable.

TPL_BLAS_LIBRARIES BLAS library

Default: /usr/lib/libblas.so

SUNDIALS equivalent: BLAS_LIBRARIES

Note: CMake will search for libraries in your LD_LIBRARY_PATH prior to searching default system paths.

TPL_ENABLE_BLAS Enable BLAS support

Default: OFF

SUNDIALS equivalent: BLAS_ENABLE

TPL_ENABLE_HYPRE Enable hypre support

Default: OFF

SUNDIALS equivalent: HYPRE_ENABLE

TPL_ENABLE_KLU Enable KLU support

Default: OFF

SUNDIALS equivalent: KLU_ENABLE

TPL_ENABLE_PETSC Enable PETSc support

Default: OFF

SUNDIALS equivalent: PETSC_ENABLE

TPL_ENABLE_LAPACK Enable LAPACK support

Default: OFF

SUNDIALS equivalent: LAPACK_ENABLE

TPL_ENABLE_SUPERLUMT Enable SuperLU_MT support

Default: OFF

SUNDIALS equivalent: SUPERLUMT_ENABLE

TPL_HYPRE_INCLUDE_DIRS Path to hypre header files

SUNDIALS equivalent: HYPRE_INCLUDE_DIR

TPL_HYPRE_LIBRARIES hypre library

SUNDIALS equivalent: N/A

TPL_KLU_INCLUDE_DIRS Path to KLU header files

SUNDIALS equivalent: KLU_INCLUDE_DIR

TPL_KLU_LIBRARIES KLU library

SUNDIALS equivalent: N/A

13.1. CMake-based installation 349

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

TPL_LAPACK_LIBRARIES LAPACK (and BLAS) libraries

Default: /usr/lib/liblapack.so;/usr/lib/libblas.so

SUNDIALS equivalent: LAPACK_LIBRARIES

Note: CMake will search for libraries in your LD_LIBRARY_PATH prior to searching default system paths.

TPL_PETSC_INCLUDE_DIRS Path to PETSc header files

SUNDIALS equivalent: PETSC_INCLUDE_DIR

TPL_PETSC_LIBRARIES PETSc library

SUNDIALS equivalent: N/A

TPL_SUPERLUMT_INCLUDE_DIRS Path to SuperLU_MT header files

SUNDIALS equivalent: SUPERLUMT_INCLUDE_DIR

TPL_SUPERLUMT_LIBRARIES SuperLU_MT library

SUNDIALS equivalent: N/A

TPL_SUPERLUMT_THREAD_TYPE SuperLU_MT library thread type

SUNDIALS equivalent: SUPERLUMT_THREAD_TYPE

USE_XSDK_DEFAULTS Enable xSDK default configuration settings

Default: OFF

SUNDIALS equivalent: N/A

Note: Enabling xSDK defaults also sets CMAKE_BUILD_TYPE to Debug

XSDK_ENABLE_FORTRAN Enable SUNDIALS Fortran interface

Default: OFF

SUNDIALS equivalent: FCMIX_ENABLE

XSDK_INDEX_SIZE Integer size (bits) used for indices in SUNDIALS, options are: 32 or 64

Default: 32

SUNDIALS equivalent: SUNDIALS_INDEX_SIZE

XSDK_PRECISION Precision used in SUNDIALS, options are: double, single, or quad

Default: double

SUNDIALS equivalent: SUNDIALS_PRECISION

13.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.

To configure SUNDIALS using the default C and Fortran compilers, and default mpicc and mpif77 parallel com-
pilers, enable compilation of examples, and install libraries, headers, and example sources under subdirectories of
/home/myname/sundials/, use:

350 Chapter 13. ARKode Installation Procedure

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DMPI_ENABLE=ON \
> -DFCMIX_ENABLE=ON \
> /home/myname/sundials/srcdir

% make install

To disable installation of the examples, use:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DMPI_ENABLE=ON \
> -DFCMIX_ENABLE=ON \
> -DEXAMPLES_INSTALL=OFF \
> /home/myname/sundials/srcdir

% make install

13.1.4 Working with external Libraries

The SUNDIALS suite contains many options to enable implementation flexibility when developing solutions. The
following are some notes addressing specific configurations when using the supported third party libraries.

Building with BLAS

SUNDIALS does not utilize BLAS directly but it may be needed by other external libraries that SUNDIALS can be
build with (e.g. LAPACK, PETSc, SuperLU_MT, etc.). To enable BLAS, set the BLAS_ENABLE option to ON. If
the directory containing the BLAS library is in the LD_LIBRARY_PATH environment variable, CMake will set the
BLAS_LIBRARIES variable accordingly, otherwise CMake will attempt to find the BLAS library in standard system
locations. To explicitly tell CMake what libraries to use, the BLAS_LIBRARIES variable can be set to the desired
library. Example:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DBLAS_ENABLE=ON \
> -DBLAS_LIBRARIES=/myblaspath/lib/libblas.so \
> -DSUPERLUMT_ENABLE=ON \
> -DSUPERLUMT_INCLUDE_DIR=/mysuperlumtpath/SRC
> -DSUPERLUMT_LIBRARY_DIR=/mysuperlumtpath/lib
> /home/myname/sundials/srcdir

% make install

Note: When allowing CMake to automatically locate the LAPACK library, CMake may also locate the corresponding
BLAS library.

If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the options
SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES must be set in order to bypass the
check for a Fortran compiler and define the name-mangling scheme. The defaults for these options in earlier versions
of SUNDIALS were lower and one, respectively.

13.1. CMake-based installation 351

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Building with LAPACK

To enable LAPACK, set the LAPACK_ENABLE option to ON. If the directory containing the LAPACK library is in
the LD_LIBRARY_PATH environment variable, CMake will set the LAPACK_LIBRARIES variable accordingly,
otherwise CMake will attempt to find the LAPACK library in standard system locations. To explicitly tell CMake
what library to use, the LAPACK_LIBRARIES variable can be set to the desired libraries.

Note: When setting the LAPACK location explicitly the location of the corresponding BLAS library will also need
to be set. Example:

% cmake \
> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \
> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \
> -DBLAS_ENABLE=ON \
> -DBLAS_LIBRARIES=/mylapackpath/lib/libblas.so \
> -DLAPACK_ENABLE=ON \
> -DLAPACK_LIBRARIES=/mylapackpath/lib/liblapack.so \
> /home/myname/sundials/srcdir

% make install

Note: When allowing CMake to automatically locate the LAPACK library, CMake may also locate the corresponding
BLAS library.

If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the options
SUNDIALS_F77_FUNC_CASE and SUNDIALS_F77_FUNC_UNDERSCORES must be set in order to bypass the
check for a Fortran compiler and define the name-mangling scheme. The defaults for these options in earlier versions
of SUNDIALS were lower and one, respectively.

Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas A&M University
website: http://faculty.cse.tamu.edu/davis/suitesparse.html .

SUNDIALS has been tested with SuiteSparse version 4.5.3. To enable KLU, set KLU_ENABLE to ON, set
KLU_INCLUDE_DIR to the include path of the KLU installation and set KLU_LIBRARY_DIR to the lib path
of the KLU installation. The CMake configure will result in populating the following variables: AMD_LIBRARY,
AMD_LIBRARY_DIR, BTF_LIBRARY, BTF_LIBRARY_DIR, COLAMD_LIBRARY, COLAMD_LIBRARY_DIR,
and KLU_LIBRARY.

Building with SuperLU_MT

The SuperLU_MT libraries are available for download from the Lawrence Berkeley National Laboratory website:
http://crd-legacy.lbl.gov/simxiaoye/SuperLU/#superlu_mt .

SUNDIALS has been tested with SuperLU_MT version 3.1. To enable SuperLU_MT, set SUPERLUMT_ENABLE
to ON, set SUPERLUMT_INCLUDE_DIR to the SRC path of the SuperLU_MT installation, and set the variable
SUPERLUMT_LIBRARY_DIR to the lib path of the SuperLU_MT installation. At the same time, the variable
SUPERLUMT_THREAD_TYPE must be set to either Pthread or OpenMP.

Do not mix thread types when building SUNDIALS solvers. If threading is enabled for SUNDIALS by having either
OPENMP_ENABLE or PTHREAD_ENABLE set to ON then SuperLU_MT should be set to use the same threading type.

352 Chapter 13. ARKode Installation Procedure

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://crd-legacy.lbl.gov/\protect \T1\textdollar sim\protect \T1\textdollar xiaoye/SuperLU/

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Building with PETSc

The PETSc libraries are available for download from the Argonne National Laboratory website:
http://www.mcs.anl.gov/petsc .

SUNDIALS has been tested with PETSc version 3.7.2. To enable PETSc, set PETSC_ENABLE to
ON, set PETSC_INCLUDE_DIR to the include path of the PETSc installation, and set the variable
PETSC_LIBRARY_DIR to the lib path of the PETSc installation.

Building with hypre

The hypre libraries are available for download from the Lawrence Livermore National Laboratory website:
http://computation.llnl.gov/projects/hypre. SUNDIALS has been tested with hypre version 2.11.1. To enable hypre,
set HYPRE_ENABLE to ON, set HYPRE_INCLUDE_DIR to the include path of the hypre installation, and set the
variable HYPRE_LIBRARY_DIR to the lib path of the hypre installation.

Building with CUDA

SUNDIALS CUDA modules and examples have been tested with version 8.0 of the CUDA toolkit. To build them,
you need to install the Toolkit and compatible NVIDIA drivers. Both are available for download from the NVIDIA
website: https://developer.nvidia.com/cuda-downloads. To enable CUDA, set CUDA_ENABLE to ON. If CUDA is
installed in a nonstandard location, you may be prompted to set the variable CUDA_TOOLKIT_ROOT_DIR with your
CUDA Toolkit installation path. To enable CUDA examples, set EXAMPLES_ENABLE_CUDA to ON.

Building with RAJA

RAJA is a performance portability layer developed by Lawrence Livermore National Laboratory and can be obtained
from {tt https://github.com/LLNL/RAJA. SUNDIALS RAJA modules and examples have been tested with RAJA
version 0.3. Building SUNDIALS RAJA modules requires a CUDA-enabled RAJA installation. To enable RAJA, set
CUDA_ENABLE and RAJA_ENABLE to ON. If RAJA is installed in a nonstandard location you will be prompted to set
the variable RAJA_DIR with the path to the RAJA CMake configuration file. To enable building the RAJA examples
set EXAMPLES_ENABLE_CUDA to ON.

13.1.5 Testing the build and installation

If SUNDIALS was configured with EXAMPLES_ENABLE_<language> options to ON, then a set of regression tests
can be run after building with the make command by running:

% make test

Additionally, if EXAMPLES_INSTALL was also set to ON, then a set of smoke tests can be run after installing with
the make install command by running:

% make test_install

13.1.6 Building and Running Examples

Each of the SUNDIALS solvers is distributed with a set of examples demonstrating basic usage. To build and install
the examples, set at least of the EXAMPLES_ENABLE_<language> options to ON, and set EXAMPLES_INSTALL
to ON. Specify the installation path for the examples with the variable EXAMPLES_INSTALL_PATH. CMake will

13.1. CMake-based installation 353

http://www.mcs.anl.gov/petsc
http://computation.llnl.gov/projects/hypre
https://developer.nvidia.com/cuda-downloads
https://github.com/LLNL/RAJA

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

generate CMakeLists.txt configuration files (and Makefile files if on Linux/Unix) that reference the installed
SUNDIALS headers and libraries.

Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as well as serve
as a template for creating user developed solutions. To use the supplied Makefile simply run make to compile
and generate the executables. To use CMake from within the installed example directory, run cmake (or ccmake or
cmake-gui to use the GUI) followed by make to compile the example code. Note that if CMake is used, it will
overwrite the traditional Makefile with a new CMake-generated Makefile.

The resulting output from running the examples can be compared with example output bundled in the SUNDIALS
distribution.

NOTE: There will potentially be differences in the output due to machine architecture, compiler versions, use of third
party libraries etc.

13.1.7 Configuring, building, and installing on Windows

CMake can also be used to build SUNDIALS on Windows. To build SUNDIALS for use with Visual Studio the
following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the SOLVERDIR

2. Create a separate BUILDDIR

3. Open a Visual Studio Command Prompt and cd to BUILDDIR

4. Run cmake-gui ../SOLVERDIR

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE_INSTALL_PREFIX to INSTDIR

(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Run msbuild ALL_BUILD.vcxproj

(b) Run msbuild INSTALL.vcxproj

The resulting libraries will be in the INSTDIR.

The SUNDIALS project can also now be opened in Visual Studio. Double click on the ALL_BUILD.vcxproj file
to open the project. Build the whole solution to create the SUNDIALS libraries. To use the SUNDIALS libraries in
your own projects, you must set the include directories for your project, add the SUNDIALS libraries to your project
solution, and set the SUNDIALS libraries as dependencies for your project.

13.2 Installed libraries and exported header files

Using the CMake SUNDIALS build system, the command

$ make install

will install the libraries under LIBDIR and the public header files under INCLUDEDIR. The values for these directo-
ries are INSTDIR/lib and INSTDIR/include, respectively. The location can be changed by setting the CMake

354 Chapter 13. ARKode Installation Procedure

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

variable CMAKE_INSTALL_PREFIX. Although all installed libraries reside under LIBDIR/lib, the public header
files are further organized into subdirectories under INCLUDEDIR/include.

The installed libraries and exported header files are listed for reference in the Table: SUNDIALS libraries and header
files. The file extension .LIB is typically .so for shared libraries and .a for static libraries. Note that, in this table
names are relative to LIBDIR for libraries and to INCLUDEDIR for header files.

A typical user program need not explicitly include any of the shared SUNDIALS header files from under the
INCLUDEDIR/include/sundials directory since they are explicitly included by the appropriate solver header
files (e.g., cvode_dense.h includes sundials_dense.h). However, it is both legal and safe to do so, and would
be useful, for example, if the functions declared in sundials_dense.h are to be used in building a preconditioner.

13.2.1 Table: SUNDIALS libraries and header files

Shared Header files sundials/sundials_band.h, sundials/sundials_config.h, sundials/sundials_dense.h, sundials/sundials_direct.h, sundials/sundials_fconfig.h, sundials/sundials_fnvector.h, sundials/sundials_iterative.h, sundials/sundials_linearsolver.h, sundials/sundials_nonlinearsolver.h, sundials/sundials_matrix.h, sundials/sundials_math.h, sundials/sundials_nvector.h, sundials/sundials_types.h, sundials/sundials_version.h
NVECTOR_SERIAL Libraries libsundials_nvecserial.LIB, libsundials_fnvecserial.a
NVECTOR_SERIAL Header files nvector/nvector_serial.h
NVECTOR_PARALLEL Libraries libsundials_nvecparallel.LIB, libsundials_fnvecparallel.a
NVECTOR_PARALLEL Header files nvector/nvector_parallel.h
NVECTOR_OPENMP Libraries libsundials_nvecopenmp.LIB, libsundials_fnvecopenmp.a
NVECTOR_OPENMP Header files nvector/nvector_openmp.h
NVECTOR_PTHREADS Libraries libsundials_nvecpthreads.LIB, libsundials_fnvecpthreads.a
NVECTOR_PTHREADS Header files nvector/nvector_pthreads.h
SUNMATRIX_BAND Libraries libsundials_sunmatrixband.LIB, libsundials_fsunmatrixband.a
SUNMATRIX_BAND Header files sunmatrix/sunmatrix_band.h
SUNMATRIX_DENSE Libraries libsundials_sunmatrixdense.LIB, libsundials_fsunmatrixdense.a
SUNMATRIX_DENSE Header files sunmatrix/sunmatrix_dense.h
SUNMATRIX_SPARSE Libraries libsundials_sunmatrixsparse.LIB, libsundials_fsunmatrixsparse.a
SUNMATRIX_SPARSE Header files sunmatrix/sunmatrix_sparse.h
SUNLINSOL_BAND Libraries libsundials_sunlinsolband.LIB, libsundials_fsunlinsolband.a
SUNLINSOL_BAND Header files sunlinsol/sunlinsol_band.h
SUNLINSOL_DENSE Libraries libsundials_sunlinsoldense.LIB, libsundials_fsunlinsoldense.a
SUNLINSOL_DENSE Header files sunlinsol/sunlinsol_dense.h
SUNLINSOL_KLU Libraries libsundials_sunlinsolklu.LIB, libsundials_fsunlinsolklu.a
SUNLINSOL_KLU Header files sunlinsol/sunlinsol_klu.h
SUNLINSOL_LAPACKBAND Libraries libsundials_sunlinsollapackband.LIB, libsundials_fsunlinsollapackband.a
SUNLINSOL_LAPACKBAND Header files sunlinsol/sunlinsol_lapackband.h
SUNLINSOL_LAPACKDENSE Libraries libsundials_sunlinsollapackdense.LIB, libsundials_fsunlinsollapackdense.a
SUNLINSOL_LAPACKDENSE Header files sunlinsol/sunlinsol_lapackdense.h
SUNLINSOL_PCG Libraries libsundials_sunlinsolpcg.LIB, libsundials_fsunlinsolpcg.a
SUNLINSOL_PCG Header files sunlinsol/sunlinsol_pcg.h
SUNLINSOL_SPBCGS Libraries libsundials_sunlinsolspbcgs.LIB, libsundials_fsunlinsolspbcgs.a
SUNLINSOL_SPBCGS Header files sunlinsol/sunlinsol_spbcgs.h
SUNLINSOL_SPFGMR Libraries libsundials_sunlinsolspfgmr.LIB, libsundials_fsunlinsolspfgmr.a
SUNLINSOL_SPFGMR Header files sunlinsol/sunlinsol_spfgmr.h
SUNLINSOL_SPGMR Libraries libsundials_sunlinsolspgmr.LIB, libsundials_fsunlinsolspgmr.a
SUNLINSOL_SPGMR Header files sunlinsol/sunlinsol_spgmr.h
SUNLINSOL_SPTFQMR Libraries libsundials_sunlinsolsptfqmr.LIB, libsundials_fsunlinsolsptfqmr.a
SUNLINSOL_SPTFQMR Header files sunlinsol/sunlinsol_sptfqmr.h
SUNLINSOL_SUPERLUMT Libraries libsundials_sunlinsolsuperlumt.LIB, libsundials_fsunlinsolsuperlumt.a
SUNLINSOL_SUPERLUMT Header files sunlinsol/sunlinsol_superlumt.h

Continued on next page

13.2. Installed libraries and exported header files 355

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Table 13.1 – continued from previous page
SUNNONLINSOL_NEWTON Libraries libsundials_sunnonlinsolnewton.LIB, libsundials_fsunnonlinsolnewton.a
SUNNONLINSOL_NEWTON Header files sunnonlinsol/sunnonlinsol_newton.h
SUNNONLINSOL_FIXEDPOINT Libraries libsundials_sunnonlinsolfixedpoint.LIB, libsundials_fsunnonlinsolfixedpoint.a
SUNNONLINSOL_FIXEDPOINT Header files sunnonlinsol/sunnonlinsol_fixedpoint.h
CVODE Libraries libsundials_cvode.LIB, libsundials_fcvode.a
CVODE Header files cvode/cvode.h, cvode/cvode_bandpre.h, cvode/cvode_bbdpre.h, cvode/cvode_diag.h, cvode/cvode_direct.h, cvode/cvode_impl.h, cvode/cvode_ls.h, cvode/cvode_spils.h,
CVODES Libraries libsundials_cvodes.LIB
CVODES Header files cvodes/cvodes.h, cvodes/cvodes_bandpre.h, cvodes/cvodes_bbdpre.h, cvodes/cvodes_diag.h, cvodes/cvodes_direct.h, cvodes/cvodes_impl.h, cvodes/cvodes_spils.h,
ARKODE Libraries libsundials_arkode.LIB, libsundials_farkode.a
ARKODE Header files arkode/arkode.h, arkode/arkode_arkstep.h, arkode/arkode_bandpre.h, arkode/arkode_bbdpre.h, arkode/arkode_butcher.h, arkode/arkode_butcher_dirk.h, arkode/arkode_butcher_erk.h, arkode/arkode_erkstep.h, arkode/arkode_impl.h, arkode/arkode_ls.h,
IDA Libraries libsundials_ida.LIB, libsundials_fida.a
IDA Header files ida/ida.h, ida/ida_bbdpre.h, ida/ida_direct.h, ida/ida_impl.h, ida/ida_ls.h, ida/ida_spils.h,
IDAS Libraries libsundials_idas.LIB
IDAS Header files idas/idas.h, idas/idas_bbdpre.h idas/idas_direct.h, idas/idas_impl.h, idas/idas_spils.h,
KINSOL Libraries libsundials_kinsol.LIB, libsundials_fkinsol.a
KINSOL Header files kinsol/kinsol.h, kinsol/kinsol_bbdpre.h, kinsol/kinsol_direct.h, kinsol/kinsol_impl.h, kinsol/kinsol_ls.h, kinsol/kinsol_spils.h,

356 Chapter 13. ARKode Installation Procedure

CHAPTER

FOURTEEN

APPENDIX: ARKODE CONSTANTS

Below we list all input and output constants used by the main solver, timestepper, and linear solver modules, together
with their numerical values and a short description of their meaning.

14.1 ARKode input constants

14.1.1 Shared ARKode input constants

ARK_NORMAL (1): Solver returns at a specified output time.

ARK_ONE_STEP (2): Solver returns after each successful step.

14.1.2 Explicit Butcher table specification

HEUN_EULER_2_1_2 (0): Use the Heun-Euler-2-1-2 ERK method

BOGACKI_SHAMPINE_4_2_3 (1): Use the Bogacki-Shampine-4-2-3 ERK method

ARK324L2SA_ERK_4_2_3 (2): Use the ARK-4-2-3 ERK method

ZONNEVELD_5_3_4 (3): Use the Zonneveld-5-3-4 ERK method

ARK436L2SA_ERK_6_3_4 (4): Use the ARK-6-3-4 ERK method

SAYFY_ABURUB_6_3_4 (5): Use the Sayfy-Aburub-6-3-4 ERK method

CASH_KARP_6_4_5 (6): Use the Cash-Karp-6-4-5 ERK method

FEHLBERG_6_4_5 (7): Use the Fehlberg-6-4-5 ERK method

DORMAND_PRINCE_7_4_5 (8): Use the Dormand-Prince-7-4-5 ERK method

ARK548L2SA_ERK_8_4_5 (9): Use the ARK-8-4-5 ERK method

VERNER_8_5_6 (10): Use the Verner-8-5-6 ERK method

FEHLBERG_13_7_8 (11): Use the Fehlberg-13-7-8 ERK method

KNOTH_WOLKE_3_3 (12): Use the Knoth-Wolke-3-3 ERK method

DEFAULT_ERK_2 (HEUN_EULER_2_1_2): Use the default second-order ERK method

DEFAULT_ERK_3 (BOGACKI_SHAMPINE_4_2_3): Use the default third-order ERK method

DEFAULT_ERK_4 (ZONNEVELD_5_3_4): Use the default fourth-order ERK method

DEFAULT_ERK_5 (CASH_KARP_6_4_5): Use the default fifth-order ERK method

357

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

DEFAULT_ERK_6 (VERNER_8_5_6): Use the default sixth-order ERK method

DEFAULT_ERK_8 (FEHLBERG_13_7_8): Use the default eighth-order ERK method

14.1.3 Implicit Butcher table specification

SDIRK_2_1_2 (12): Use the SDIRK-2-1-2 SDIRK method

BILLINGTON_3_3_2 (13): Use the Billington-3-3-2 SDIRK method

TRBDF2_3_3_2 (14): Use the TRBDF2-3-3-2 ESDIRK method

KVAERNO_4_2_3 (15): Use the Kvaerno-4-2-3 ESDIRK method

ARK324L2SA_DIRK_4_2_3 (16): Use the ARK-4-2-3 ESDIRK method

CASH_5_2_4 (17): Use the Cash-5-2-4 SDIRK method

CASH_5_3_4 (18): Use the Cash-5-3-4 SDIRK method

SDIRK_5_3_4 (19): Use the SDIRK-5-3-4 SDIRK method

KVAERNO_5_3_4 (20): Use the Kvaerno-5-3-4 ESDIRK method

ARK436L2SA_DIRK_6_3_4 (21): Use the ARK-6-3-4 ESDIRK method

KVAERNO_7_4_5 (22): Use the Kvaerno-7-4-5 ESDIRK method

ARK548L2SA_DIRK_8_4_5 (23): Use the ARK-8-4-5 ESDIRK method

DEFAULT_DIRK_2 (SDIRK_2_1_2): Use the default second-order DIRK method

DEFAULT_DIRK_3 (ARK324L2SA_DIRK_4_2_3): Use the default third-order DIRK method

DEFAULT_DIRK_4 (SDIRK_5_3_4): Use the default fourth-order DIRK method

DEFAULT_DIRK_5 (ARK548L2SA_DIRK_8_4_5): Use the default fifth-order DIRK method

14.1.4 ImEx Butcher table specification

ARK324L2SA_ERK_4_2_3 and ARK324L2SA_DIRK_4_2_3 (2 and 16): Use the ARK-4-2-3 ARK method

ARK436L2SA_ERK_6_3_4 and ARK436L2SA_DIRK_6_3_4 (4 and 21): Use the ARK-6-3-4 ARK method

ARK548L2SA_ERK_8_4_5 and ARK548L2SA_DIRK_8_4_5 (9 and 23): Use the ARK-8-4-5 ARK method

DEFAULT_ARK_ETABLE_3 and DEFAULT_ARK_ITABLE_3 (ARK324L2SA_[ERK,DIRK]_4_2_3): Use
the default third-order ARK method

DEFAULT_ARK_ETABLE_4 and DEFAULT_ARK_ITABLE_4 (ARK436L2SA_[ERK,DIRK]_6_3_4): Use
the default fourth-order ARK method

DEFAULT_ARK_ETABLE_5 and DEFAULT_ARK_ITABLE_5 (ARK548L2SA_[ERK,DIRK]_8_4_5): Use
the default fifth-order ARK method

14.2 ARKode output constants

14.2.1 Shared ARKode output constants

ARK_SUCCESS (0): Successful function return.

358 Chapter 14. Appendix: ARKode Constants

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

ARK_TSTOP_RETURN (1): ARKode succeeded by reachign the specified stopping point.

ARK_ROOT_RETURN (2): ARKode succeeded and found one more more roots.

ARK_WARNING (99): ARKode succeeded but an unusual situation occurred.

ARK_TOO_MUCH_WORK (-1): The solver took mxstep internal steps but could not reach tout.

ARK_TOO_MUCH_ACC (-2): The solver could not satisfy the accuracy demanded by the user for some internal
step.

ARK_ERR_FAILURE (-3): Error test failures occurred too many times during one internal time step, or the mini-
mum step size was reached.

ARK_CONV_FAILURE (-4): Convergence test failures occurred too many times during one internal time step, or
the minimum step size was reached.

ARK_LINIT_FAIL (-5): The linear solver’s initialization function failed.

ARK_LSETUP_FAIL (-6): The linear solver’s setup function failed in an unrecoverable manner.

ARK_LSOLVE_FAIL (-7): The linear solver’s solve function failed in an unrecoverable manner.

ARK_RHSFUNC_FAIL (-8): The right-hand side function failed in an unrecoverable manner.

ARK_FIRST_RHSFUNC_ERR (-9): The right-hand side function failed at the first call.

ARK_REPTD_RHSFUNC_ERR (-10): The right-hand side function had repeated recoverable errors.

ARK_UNREC_RHSFUNC_ERR (-11): The right-hand side function had a recoverable error, but no recovery is
possible.

ARK_RTFUNC_FAIL (-12): The rootfinding function failed in an unrecoverable manner.

ARK_LFREE_FAIL (-13): The linear solver’s memory deallocation function failed.

ARK_MASSINIT_FAIL (-14): The mass matrix linear solver’s initialization function failed.

ARK_MASSSETUP_FAIL (-15): The mass matrix linear solver’s setup function failed in an unrecoverable manner.

ARK_MASSSOLVE_FAIL (-16): The mass matrix linear solver’s solve function failed in an unrecoverable manner.

ARK_MASSFREE_FAIL (-17): The mass matrix linear solver’s memory deallocation function failed.

ARK_MASSMULT_FAIL (-17): The mass matrix-vector product function failed.

ARK_MEM_FAIL (-20): A memory allocation failed.

ARK_MEM_NULL (-21): The arkode_mem argument was NULL.

ARK_ILL_INPUT (-22): One of the function inputs is illegal.

ARK_NO_MALLOC (-23): The ARKode memory block was not allocated by a call to ARKodeMalloc().

ARK_BAD_K (-24): The derivative order 𝑘 is larger than allowed.

ARK_BAD_T (-25): The time 𝑡 is outside the last step taken.

ARK_BAD_DKY (-26): The output derivative vector is NULL.

ARK_TOO_CLOSE (-27): The output and initial times are too close to each other.

ARK_VECTOROP_ERR (-29): An error occurred when calling an NVECTOR routine.

ARK_NLS_INIT_FAIL (-30): An error occurred when initializing a SUNNonlinearSolver module.

ARK_NLS_SETUP_FAIL (-31): A non-recoverable error occurred when setting up a SUNNonlinearSolver module.

ARK_NLS_SETUP_RECVR (-32): A recoverable error occurred when setting up a SUNNonlinearSolver module.

14.2. ARKode output constants 359

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

ARK_NLS_OP_ERR (-33): An error occurred when calling a set/get routine in a SUNNonlinearSolver module.

ARK_INNERSTEP_OP_ERR (-34): An error occurred when calling an internal stepper within an ARKode module.

ARK_UNRECOGNIZED_ERROR (-99): An unknown error was encountered.

14.2.2 ARKLS linear solver modules

ARKLS_SUCCESS (0): Successful function return.

ARKLS_MEM_NULL (-1): The arkode_mem argument was NULL.

ARKLS_LMEM_NULL (-2): The ARKLS linear solver interface has not been initialized.

ARKLS_ILL_INPUT (-3): The ARKLS solver interface is not compatible with the current NVECTOR module, or
an input value was illegal.

ARKLS_MEM_FAIL (-4): A memory allocation request failed.

ARKLS_PMEM_NULL (-5): The preconditioner module has not been initialized.

ARKLS_MASSMEM_NULL (-6): The ARKLS mass-matrix linear solver interface has not been initialized.

ARKLS_JACFUNC_UNRECVR (-7): The Jacobian function failed in an unrecoverable manner.

ARKLS_JACFUNC_RECVR (-8): The Jacobian function had a recoverable error.

ARKLS_MASSFUNC_UNRECVR (-9): The mass matrix function failed in an unrecoverable manner.

ARKLS_MASSFUNC_RECVR (-10): The mass matrix function had a recoverable error.

ARKLS_SUNMAT_FAIL (-11): An error occurred with the current SUNMATRIX module.

ARKLS_SUNLS_FAIL (-12): An error occurred with the current SUNLINSOL module.

360 Chapter 14. Appendix: ARKode Constants

CHAPTER

FIFTEEN

APPENDIX: BUTCHER TABLES

Here we catalog the full set of Butcher tables included in ARKode. We group these into three categories: explicit, im-
plicit and additive. However, since the methods that comprise an additive Runge Kutta method are themselves explicit
and implicit, their component Butcher tables are listed within their separate sections, but are referenced together in the
additive section.

In each of the following tables, we use the following notation (shown for a 3-stage method):

𝑐1 𝑎1,1 𝑎1,2 𝑎1,3
𝑐2 𝑎2,1 𝑎2,2 𝑎2,3
𝑐3 𝑎3,1 𝑎3,2 𝑎3,3
𝑞 𝑏1 𝑏2 𝑏3
𝑝 �̃�1 �̃�2 �̃�3

where here the method and embedding share stage 𝐴 and 𝑐 values, but use their stages 𝑧𝑖 differently through the
coefficients 𝑏 and �̃� to generate methods of orders 𝑞 (the main method) and 𝑝 (the embedding, typically 𝑞 = 𝑝 + 1,
though sometimes this is reversed).

Method authors often use different naming conventions to categorize their methods. For each of the methods below
with an embedding, we follow the uniform naming convention:

NAME-S-P-Q

where here

• NAME is the author or the name provided by the author (if applicable),

• S is the number of stages in the method,

• P is the global order of accuracy for the embedding,

• Q is the global order of accuracy for the method.

For methods without an embedding (e.g., fixed-step methods) P is omitted so that methods follow the naming conven-
tion NAME-S-Q.

In the code, unique integer IDs are defined inside arkode_butcher_erk.h and arkode_butcher_dirk.h
for each method, which may be used by calling routines to specify the desired method. These names are specified in
fixed width font at the start of each method’s section below.

Additionally, for each method we provide a plot of the linear stability region in the complex plane. These have been
computed via the following approach. For any Runge Kutta method as defined above, we may define the stability
function

𝑅(𝜂) = 1 + 𝜂𝑏[𝐼 − 𝜂𝐴]−1𝑒,

where 𝑒 ∈ R𝑠 is a column vector of all ones, 𝜂 = ℎ𝜆 and ℎ is the time step size. If the stability function satisfies
|𝑅(𝜂)| ≤ 1 for all eigenvalues, 𝜆, of 𝜕

𝜕𝑦𝑓(𝑡, 𝑦) for a given IVP, then the method will be linearly stable for that problem

361

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

and step size. The stability region

𝑆 = {𝜂 ∈ C : |𝑅(𝜂)| ≤ 1}

is typically given by an enclosed region of the complex plane, so it is standard to search for the border of that region in
order to understand the method. Since all complex numbers with unit magnitude may be written as 𝑒𝑖𝜃 for some value
of 𝜃, we perform the following algorithm to trace out this boundary.

1. Define an array of values Theta. Since we wish for a smooth curve, and since we wish to trace out the
entire boundary, we choose 10,000 linearly-spaced points from 0 to 16𝜋. Since some angles will correspond
to multiple locations on the stability boundary, by going beyond 2𝜋 we ensure that all boundary locations are
plotted, and by using such a fine discretization the Newton method (next step) is more likely to converge to the
root closest to the previous boundary point, ensuring a smooth plot.

2. For each value 𝜃 ∈ Theta, we solve the nonlinear equation

0 = 𝑓(𝜂) = 𝑅(𝜂)− 𝑒𝑖𝜃

using a finite-difference Newton iteration, using tolerance 10−7, and differencing parameter
√
𝜀 (≈ 10−8).

In this iteration, we use as initial guess the solution from the previous value of 𝜃, starting with an initial-initial
guess of 𝜂 = 0 for 𝜃 = 0.

3. We then plot the resulting 𝜂 values that trace the stability region boundary.

We note that for any stable IVP method, the value 𝜂0 = −𝜀+ 0𝑖 is always within the stability region. So in each of the
following pictures, the interior of the stability region is the connected region that includes 𝜂0. Resultingly, methods
whose linear stability boundary is located entirely in the right half-plane indicate an A-stable method.

15.1 Explicit Butcher tables

In the category of explicit Runge-Kutta methods, ARKode includes methods that have orders 2 through 6, with em-
beddings that are of orders 1 through 5.

15.1.1 Heun-Euler-2-1-2

Accessible via the constant HEUN_EULER_2_1_2 to ARKStepSetARKTableNum(),
ERKStepSetERKTableNum() or ARKodeLoadButcherTable_ERK(). This is the default 2nd order
explicit method.

0 0 0

1 1 0

2 1
2

1
2

1 1 0

15.1.2 Bogacki-Shampine-4-2-3

Accessible via the constant BOGACKI_SHAMPINE_4_2_3 to ARKStepSetARKTableNum(),
ERKStepSetERKTableNum() or ARKodeLoadButcherTable_ERK(). This is the default 3rd order

362 Chapter 15. Appendix: Butcher tables

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 15.1: Linear stability region for the Heun-Euler method. The method’s region is outlined in blue; the embedding’s
region is in red.

explicit method (from [BS1989]).

0 0 0 0 0

1
2

1
2 0 0 0

3
4 0 3

4 0 0

1 2
9

1
3

4
9 0

3 2
9

1
3

4
9

2 7
24

1
4

1
3

1
8

Fig. 15.2: Linear stability region for the Bogacki-Shampine method. The method’s region is outlined in blue; the
embedding’s region is in red.

15.1. Explicit Butcher tables 363

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

15.1.3 ARK-4-2-3 (explicit)

Accessible via the constant ARK324L2SA_ERK_4_2_3 to ARKStepSetARKTableNum(),
ERKStepSetERKTableNum() or ARKodeLoadButcherTable_ERK(). This is the explicit portion of
the default 3rd order additive method (from [KC2003]).

0 0 0 0 0

1767732205903
2027836641118

1767732205903
2027836641118 0 0 0

3
5

5535828885825
10492691773637

788022342437
10882634858940 0 0

1 6485989280629
16251701735622 − 4246266847089

9704473918619
10755448449292
10357097424841 0

3 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

2 2756255671327
12835298489170 − 10771552573575

22201958757719
9247589265047
10645013368117

2193209047091
5459859503100

Fig. 15.3: Linear stability region for the explicit ARK-4-2-3 method. The method’s region is outlined in blue; the
embedding’s region is in red.

15.1.4 Knoth-Wolke-3-3

Accessible via the constant KNOTH_WOLKE_3_3 to MRIStepSetMRITableNum() and
ARKodeLoadButcherTable_ERK(). This is the default 3th order slow and fast MRIStep method (from
[KW1998]).

0 0 0 0

1
3

1
3 0 0

3
4 − 3

16
15
16 0

3 1
6

3
10

8
15

15.1.5 Zonneveld-5-3-4

Accessible via the constant ZONNEVELD_5_3_4 to ARKStepSetARKTableNum(),
ERKStepSetERKTableNum() or ARKodeLoadButcherTable_ERK(). This is the default 4th order

364 Chapter 15. Appendix: Butcher tables

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 15.4: Linear stability region for the Knoth-Wolke method

explicit method (from [Z1963]).

0 0 0 0 0 0

1
2

1
2 0 0 0 0

1
2 0 1

2 0 0 0

1 0 0 1 0 0

3
4

5
32

7
32

13
32 − 1

32 0

4 1
6

1
3

1
3

1
6 0

3 − 1
2

7
3

7
3

13
6 − 16

3

Fig. 15.5: Linear stability region for the Zonneveld method. The method’s region is outlined in blue; the embedding’s
region is in red.

15.1. Explicit Butcher tables 365

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

15.1.6 ARK-6-3-4 (explicit)

Accessible via the constant ARK436L2SA_ERK_6_3_4 to ARKStepSetARKTableNum(),
ERKStepSetERKTableNum() or ARKodeLoadButcherTable_ERK(). This is the explicit portion of
the default 4th order additive method (from [KC2003]).

0 0 0 0 0 0 0

1
2

1
2 0 0 0 0 0

83
250

13861
62500

6889
62500 0 0 0 0

31
50 − 116923316275

2393684061468 − 2731218467317
15368042101831

9408046702089
11113171139209 0 0 0

17
20 − 451086348788

2902428689909 − 2682348792572
7519795681897

12662868775082
11960479115383

3355817975965
11060851509271 0 0

1 647845179188
3216320057751

73281519250
8382639484533

552539513391
3454668386233

3354512671639
8306763924573

4040
17871 0

4 82889
524892 0 15625

83664
69875
102672 − 2260

8211
1
4

3 4586570599
29645900160 0 178811875

945068544
814220225
1159782912 − 3700637

11593932
61727
225920

Fig. 15.6: Linear stability region for the explicit ARK-6-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

366 Chapter 15. Appendix: Butcher tables

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

15.1.7 Sayfy-Aburub-6-3-4

Accessible via the constant SAYFY_ABURUB_6_3_4 to ARKStepSetARKTableNum(),
ERKStepSetERKTableNum() or ARKodeLoadButcherTable_ERK() (from [SA2002]).

0 0 0 0 0 0 0

1
2

1
2 0 0 0 0 0

1 −1 2 0 0 0 0

1 1
6

2
3

1
6 0 0 0

1
2 0.137 0.226 0.137 0 0 0

1 0.452 −0.904 −0.548 0 2 0

4 1
6

1
3

1
12 0 1

3
1
12

3 1
6

2
3

1
6 0 0 0

Fig. 15.7: Linear stability region for the Sayfy-Aburub-6-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

15.1.8 Cash-Karp-6-4-5

Accessible via the constant CASH_KARP_6_4_5 to ARKStepSetARKTableNum(),
ERKStepSetERKTableNum() or ARKodeLoadButcherTable_ERK(). This is the default 5th order

15.1. Explicit Butcher tables 367

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

explicit method (from [CK1990]).

0 0 0 0 0 0 0

1
5

1
5 0 0 0 0 0

3
10

3
40

9
40 0 0 0 0

3
5

3
10 − 9

10
6
5 0 0 0

1 − 11
54

5
2 − 70

27
35
27 0 0

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096 0

5 37
378 0 250

621
125
594 0 512

1771

4 2825
27648 0 18575

48384
13525
55296

277
14336

1
4

Fig. 15.8: Linear stability region for the Cash-Karp method. The method’s region is outlined in blue; the embedding’s
region is in red.

15.1.9 Fehlberg-6-4-5

Accessible via the constant FEHLBERG_6_4_5 to ARKStepSetARKTableNum(),
ERKStepSetERKTableNum() or ARKodeLoadButcherTable_ERK() (from [F1969]).

0 0 0 0 0 0 0

1
4

1
4 0 0 0 0 0

3
8

3
32

9
32 0 0 0 0

12
13

1932
2197 − 7200

2197
7296
2197 0 0 0

1 439
216 −8 3680

513 − 845
4104 0 0

1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40 0

5 16
135 0 6656

12825
28561
56430 − 9

50
2
55

4 25
216 0 1408

2565
2197
4104 − 1

5 0

368 Chapter 15. Appendix: Butcher tables

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 15.9: Linear stability region for the Fehlberg method. The method’s region is outlined in blue; the embedding’s
region is in red.

15.1.10 Dormand-Prince-7-4-5

Accessible via the constant DORMAND_PRINCE_7_4_5 to ARKStepSetARKTableNum(),
ERKStepSetERKTableNum() or ARKodeLoadButcherTable_ERK() (from [DP1980]).

0 0 0 0 0 0 0 0

1
5

1
5 0 0 0 0 0 0

3
10

3
40

9
40 0 0 0 0 0

4
5

44
45 − 56

15
32
9 0 0 0 0

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729 0 0 0

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656 0 0

1 35
384 0 500

1113
125
192 − 2187

6784
11
84 0

5 35
384 0 500

1113
125
192 − 2187

6784
11
84 0

4 5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

15.1.11 ARK-8-4-5 (explicit)

Accessible via the constant ARK548L2SA_ERK_8_4_5 to ARKStepSetARKTableNum(),
ERKStepSetERKTableNum() or ARKodeLoadButcherTable_ERK(). This is the explicit portion of

15.1. Explicit Butcher tables 369

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 15.10: Linear stability region for the Dormand-Prince method. The method’s region is outlined in blue; the
embedding’s region is in red.

the default 5th order additive method (from [KC2003]).

0 0 0 0 0 0 0 0 0

41
100

41
100 0 0 0 0 0 0 0

2935347310677
11292855782101

367902744464
2072280473677

677623207551
8224143866563 0 0 0 0 0 0

1426016391358
7196633302097

1268023523408
10340822734521 0 1029933939417

13636558850479 0 0 0 0 0

92
100

14463281900351
6315353703477 0 66114435211212

5879490589093 − 54053170152839
4284798021562 0 0 0 0

24
100

14090043504691
34967701212078 0 15191511035443

11219624916014 − 18461159152457
12425892160975 − 281667163811

9011619295870 0 0 0

3
5

19230459214898
13134317526959 0 21275331358303

2942455364971 − 38145345988419
4862620318723 − 1

8 − 1
8 0 0

1 − 19977161125411
11928030595625 0 − 40795976796054

6384907823539
177454434618887
12078138498510

782672205425
8267701900261 − 69563011059811

9646580694205
7356628210526
4942186776405 0

5 − 872700587467
9133579230613 0 0 22348218063261

9555858737531 − 1143369518992
8141816002931 − 39379526789629

19018526304540
32727382324388
42900044865799

41
200

4 − 975461918565
9796059967033 0 0 78070527104295

32432590147079 − 548382580838
3424219808633 − 33438840321285

15594753105479
3629800801594
4656183773603

4035322873751
18575991585200

15.1.12 Verner-8-5-6

Accessible via the constant VERNER_8_5_6 to ARKStepSetARKTableNum(),
ERKStepSetERKTableNum() or ARKodeLoadButcherTable_ERK(). This is the default 6th order

370 Chapter 15. Appendix: Butcher tables

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 15.11: Linear stability region for the explicit ARK-8-4-5 method. The method’s region is outlined in blue; the
embedding’s region is in red.

explicit method (from [V1978]).

0 0 0 0 0 0 0 0 0

1
6

1
6 0 0 0 0 0 0 0

4
15

4
75

16
75 0 0 0 0 0 0

2
3

5
6 − 8

3
5
2 0 0 0 0 0

5
6 − 165

64
55
6 − 425

64
85
96 0 0 0 0

1 12
5 −8 4015

612 − 11
36

88
255 0 0 0

1
15 − 8263

15000
124
75 − 643

680 − 81
250

2484
10625 0 0 0

1 3501
1720 − 300

43
297275
52632 − 319

2322
24068
84065 0 3850

26703 0

6 3
40 0 875

2244
23
72

264
1955 0 125

11592
43
616

5 13
160 0 2375

5984
5
16

12
85

3
44 0 0

15.1.13 Fehlberg-13-7-8

Accessible via the constant FEHLBERG_13_7_8 to ARKStepSetARKTableNum(),
ERKStepSetERKTableNum() or ARKodeLoadButcherTable_ERK(). This is the default 8th order

15.1. Explicit Butcher tables 371

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 15.12: Linear stability region for the Verner-8-5-6 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

explicit method (from [B2008]).

0 0 0 0 0 0 0 0 0 0 0 0 0 0

2
27

2
27 0 0 0 0 0 0 0 0 0 0 0 0

1
9

1
36

1
12 0 0 0 0 0 0 0 0 0 0 0

1
6

1
24 0 1

8 0 0 0 0 0 0 0 0 0 0

5
12

5
12 0 − 25

16
25
16 0 0 0 0 0 0 0 0 0

1
2

1
20 0 0 1

4
1
5 0 0 0 0 0 0 0 0

5
6 − 25

108 0 0 125
108 − 65

27
125
54 0 0 0 0 0 0 0

1
6

31
300 0 0 0 61

225 − 2
9

13
900 0 0 0 0 0 0

2
3 2 0 0 − 53

6
704
45 − 107

9
67
90 3 0 0 0 0 0

1
3 − 91

108 0 0 23
108 − 976

135
311
54 − 19

60
17
6 − 1

12 0 0 0 0

1 2383
4100 0 0 − 341

164
4496
1025 − 301

82
2133
4100

45
82

45
164

18
41 0 0 0

0 3
205 0 0 0 0 − 6

41 − 3
205 − 3

41
3
41

6
41 0 0 0

1 − 1777
4100 0 0 − 341

164
4496
1025 − 289

82
2193
4100

51
82

33
164

12
41 0 1 0

8 0 0 0 0 0 34
105

9
35

9
35

9
280

9
280 0 41

840
41
840

7 41
840 0 0 0 0 34

105
9
35

9
35

9
280

9
280

41
840 0 0

15.2 Implicit Butcher tables

In the category of diagonally implicit Runge-Kutta methods, ARKode includes methods that have orders 2 through 5,
with embeddings that are of orders 1 through 4.

372 Chapter 15. Appendix: Butcher tables

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 15.13: Linear stability region for the Fehlberg-13-7-8 method. The method’s region is outlined in blue; the
embedding’s region is in red.

15.2.1 SDIRK-2-1-2

Accessible via the constant SDIRK_2_1_2 to ARKStepSetIRKTableNum() or
ARKodeLoadButcherTable_DIRK(). This is the default 2nd order implicit method. Both the method
and embedding are A- and B-stable.

1 1 0

0 −1 1

2 1
2

1
2

1 1 0

Fig. 15.14: Linear stability region for the SDIRK-2-1-2 method. The method’s region is outlined in blue; the
embedding’s region is in red.

15.2. Implicit Butcher tables 373

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

15.2.2 Billington-3-3-2

Accessible via the constant BILLINGTON_3_3_2 to ARKStepSetIRKTableNum() or
ARKodeLoadButcherTable_DIRK(). Here, the higher-order embedding is less stable than the lower-order
method (from [B1983]).

0.292893218813 0.292893218813 0 0

1.091883092037 0.798989873223 0.292893218813 0

1.292893218813 0.740789228841 0.259210771159 0.292893218813

2 0.740789228840 0.259210771159 0

3 0.691665115992 0.503597029883 −0.195262145876

Fig. 15.15: Linear stability region for the Billington method. The method’s region is outlined in blue; the embedding’s
region is in red.

15.2.3 TRBDF2-3-3-2

Accessible via the constant TRBDF2_3_3_2 to ARKStepSetIRKTableNum() or
ARKodeLoadButcherTable_DIRK(). As with Billington, here the higher-order embedding is less stable
than the lower-order method (from [B1985]).

0 0 0 0

2−
√

2 2−
√
2

2
2−

√
2

2 0

1
√
2
4

√
2
4

2−
√
2

2

2
√
2
4

√
2
4

2−
√
2

2

3
1−

√
2

4

3

3
√

2
4 +1

3
2−

√
2

6

374 Chapter 15. Appendix: Butcher tables

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 15.16: Linear stability region for the TRBDF2 method. The method’s region is outlined in blue; the embedding’s
region is in red.

15.2.4 Kvaerno-4-2-3

Accessible via the constant KVAERNO_4_2_3 to ARKStepSetIRKTableNum() or
ARKodeLoadButcherTable_DIRK(). Both the method and embedding are A-stable; additionally the
method is L-stable (from [K2004]).

0 0 0 0 0

0.871733043 0.4358665215 0.4358665215 0 0

1 0.490563388419108 0.073570090080892 0.4358665215 0

1 0.308809969973036 1.490563388254106 −1.235239879727145 0.4358665215

3 0.308809969973036 1.490563388254106 −1.235239879727145 0.4358665215

2 0.490563388419108 0.073570090080892 0.4358665215 0

Fig. 15.17: Linear stability region for the Kvaerno-4-2-3 method. The method’s region is outlined in blue; the
embedding’s region is in red.

15.2. Implicit Butcher tables 375

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

15.2.5 ARK-4-2-3 (implicit)

Accessible via the constant ARK324L2SA_DIRK_4_2_3 to ARKStepSetIRKTableNum() or
ARKodeLoadButcherTable_DIRK(). This is the default 3rd order implicit method, and the implicit por-
tion of the default 3rd order additive method. Both the method and embedding are A-stable; additionally the method
is L-stable (from [KC2003]).

0 0 0 0 0

1767732205903
2027836641118

1767732205903
4055673282236

1767732205903
4055673282236 0 0

3
5

2746238789719
10658868560708 − 640167445237

6845629431997
1767732205903
4055673282236 0

1 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

3 1471266399579
7840856788654 − 4482444167858

7529755066697
11266239266428
11593286722821

1767732205903
4055673282236

2 2756255671327
12835298489170 − 10771552573575

22201958757719
9247589265047
10645013368117

2193209047091
5459859503100

Fig. 15.18: Linear stability region for the implicit ARK-4-2-3 method. The method’s region is outlined in blue; the
embedding’s region is in red.

15.2.6 Cash-5-2-4

Accessible via the constant CASH_5_2_4 to ARKStepSetIRKTableNum() or
ARKodeLoadButcherTable_DIRK(). Both the method and embedding are A-stable; additionally the
method is L-stable (from [C1979]).

0.435866521508 0.435866521508 0 0 0 0

−0.7 −1.13586652150 0.435866521508 0 0 0

0.8 1.08543330679 −0.721299828287 0.435866521508 0 0

0.924556761814 0.416349501547 0.190984004184 −0.118643265417 0.435866521508 0

1 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508

4 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508

2 1.05646216107052 −0.0564621610705236 0 0 0

376 Chapter 15. Appendix: Butcher tables

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 15.19: Linear stability region for the Cash-5-2-4 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

15.2.7 Cash-5-3-4

Accessible via the constant CASH_5_3_4 to ARKStepSetIRKTableNum() or
ARKodeLoadButcherTable_DIRK(). Both the method and embedding are A-stable; additionally the
method is L-stable (from [C1979]).

0.435866521508 0.435866521508 0 0 0 0

−0.7 −1.13586652150 0.435866521508 0 0 0

0.8 1.08543330679 −0.721299828287 0.435866521508 0 0

0.924556761814 0.416349501547 0.190984004184 −0.118643265417 0.435866521508 0

1 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508

4 0.896869652944 0.0182725272734 −0.0845900310706 −0.266418670647 0.435866521508

3 0.776691932910 0.0297472791484 −0.0267440239074 0.220304811849 0

15.2.8 SDIRK-5-3-4

Accessible via the constant SDIRK_5_3_4 to ARKStepSetIRKTableNum() or
ARKodeLoadButcherTable_DIRK(). This is the default 4th order implicit method. Here, the method is
both A- and L-stable, although the embedding has reduced stability (from [HW1996]).

1
4

1
4 0 0 0 0

3
4

1
2

1
4 0 0 0

11
20

17
50 − 1

25
1
4 0 0

1
2

371
1360 − 137

2720
15
544

1
4 0

1 25
24 − 49

48
125
16 − 85

12
1
4

4 25
24 − 49

48
125
16 − 85

12
1
4

3 59
48 − 17

96
225
32 − 85

12 0

15.2. Implicit Butcher tables 377

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 15.20: Linear stability region for the Cash-5-3-4 method. The method’s region is outlined in blue; the embed-
ding’s region is in red.

Fig. 15.21: Linear stability region for the SDIRK-5-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

378 Chapter 15. Appendix: Butcher tables

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

15.2.9 Kvaerno-5-3-4

Accessible via the constant KVAERNO_5_3_4 to ARKStepSetIRKTableNum() or
ARKodeLoadButcherTable_DIRK(). Both the method and embedding are A-stable (from [K2004]).

0 0 0 0 0 0

0.871733043 0.4358665215 0.4358665215 0 0 0

0.468238744853136 0.140737774731968 −0.108365551378832 0.4358665215 0 0

1 0.102399400616089 −0.376878452267324 0.838612530151233 0.4358665215 0

1 0.157024897860995 0.117330441357768 0.61667803039168 −0.326899891110444 0.4358665215

4 0.157024897860995 0.117330441357768 0.61667803039168 −0.326899891110444 0.4358665215

3 0.102399400616089 −0.376878452267324 0.838612530151233 0.4358665215 0

Fig. 15.22: Linear stability region for the Kvaerno-5-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

15.2.10 ARK-6-3-4 (implicit)

Accessible via the constant ARK436L2SA_DIRK_6_3_4 to ARKStepSetIRKTableNum() or
ARKodeLoadButcherTable_DIRK(). This is the implicit portion of the default 4th order additive method.

15.2. Implicit Butcher tables 379

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Both the method and embedding are A-stable; additionally the method is L-stable (from [KC2003]).

0 0 0 0 0 0 0

1
2

1
4

1
4 0 0 0 0

83
250

8611
62500 − 1743

31250
1
4 0 0 0

31
50

5012029
34652500 − 654441

2922500
174375
388108

1
4 0 0

17
20

15267082809
155376265600 − 71443401

120774400
730878875
902184768

2285395
8070912

1
4 0

1 82889
524892 0 15625

83664
69875
102672 − 2260

8211
1
4

4 82889
524892 0 15625

83664
69875
102672 − 2260

8211
1
4

3 4586570599
29645900160 0 178811875

945068544
814220225
1159782912 − 3700637

11593932
61727
225920

Fig. 15.23: Linear stability region for the implicit ARK-6-3-4 method. The method’s region is outlined in blue; the
embedding’s region is in red.

15.2.11 Kvaerno-7-4-5

Accessible via the constant KVAERNO_7_4_5 to ARKStepSetIRKTableNum() or
ARKodeLoadButcherTable_DIRK(). Both the method and embedding are A-stable; additionally the
method is L-stable (from [K2004]).

0 0 0 0 0 0 0 0

0.52 0.26 0.26 0 0 0 0 0

1.230333209967908 0.13 0.84033320996790809 0.26 0 0 0 0

0.895765984350076 0.22371961478320505 0.47675532319799699 −0.06470895363112615 0.26 0 0 0

0.436393609858648 0.16648564323248321 0.10450018841591720 0.03631482272098715 −0.13090704451073998 0.26 0 0

1 0.13855640231268224 0 −0.04245337201752043 0.02446657898003141 0.61943039072480676 0.26 0

1 0.13659751177640291 0 −0.05496908796538376 −0.04118626728321046 0.62993304899016403 0.06962479448202728 0.26

5 0.13659751177640291 0 −0.05496908796538376 −0.04118626728321046 0.62993304899016403 0.06962479448202728 0.26

4 0.13855640231268224 0 −0.04245337201752043 0.02446657898003141 0.61943039072480676 0.26 0

380 Chapter 15. Appendix: Butcher tables

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 15.24: Linear stability region for the Kvaerno-7-4-5 method. The method’s region is outlined in blue; the
embedding’s region is in red.

15.2.12 ARK-8-4-5 (implicit)

Accessible via the constant ARK548L2SA_DIRK_8_4_5 for ARKStepSetIRKTableNum() or
ARKodeLoadButcherTable_DIRK(). This is the default 5th order implicit method, and the implicit por-
tion of the default 5th order additive method. Both the method and embedding are A-stable; additionally the method
is L-stable (from [KC2003]).

0 0 0 0 0 0 0 0 0

41
100

41
200

41
200 0 0 0 0 0 0

2935347310677
11292855782101

41
400 − 567603406766

11931857230679
41
200 0 0 0 0 0

1426016391358
7196633302097

683785636431
9252920307686 0 − 110385047103

1367015193373
41
200 0 0 0 0

92
100

3016520224154
10081342136671 0 30586259806659

12414158314087 − 22760509404356
11113319521817

41
200 0 0 0

24
100

218866479029
1489978393911 0 638256894668

5436446318841 − 1179710474555
5321154724896 − 60928119172

8023461067671
41
200 0 0

3
5

1020004230633
5715676835656 0 25762820946817

25263940353407 − 2161375909145
9755907335909 − 211217309593

5846859502534 − 4269925059573
7827059040749

41
200 0

1 − 872700587467
9133579230613 0 0 22348218063261

9555858737531 − 1143369518992
8141816002931 − 39379526789629

19018526304540
32727382324388
42900044865799

41
200

5 − 872700587467
9133579230613 0 0 22348218063261

9555858737531 − 1143369518992
8141816002931 − 39379526789629

19018526304540
32727382324388
42900044865799

41
200

4 − 975461918565
9796059967033 0 0 78070527104295

32432590147079 − 548382580838
3424219808633 − 33438840321285

15594753105479
3629800801594
4656183773603

4035322873751
18575991585200

15.3 Additive Butcher tables

In the category of additive Runge-Kutta methods for split implicit and explicit calculations, ARKode includes methods
that have orders 3 through 5, with embeddings that are of orders 2 through 4. These Butcher table pairs are as follows:

• 3rd-order pair: ARK-4-2-3 (explicit) with ARK-4-2-3 (implicit), corresponding to Butcher tables
ARK324L2SA_ERK_4_2_3 and ARK324L2SA_DIRK_4_2_3 for ARKStepSetARKTableNum().

15.3. Additive Butcher tables 381

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

Fig. 15.25: Linear stability region for the implicit ARK-8-4-5 method. The method’s region is outlined in blue; the
embedding’s region is in red.

• 4th-order pair: ARK-6-3-4 (explicit) with ARK-6-3-4 (implicit), corresponding to Butcher tables
ARK436L2SA_ERK_6_3_4 and ARK436L2SA_DIRK_6_3_4 for ARKStepSetARKTableNum().

• 5th-order pair: ARK-8-4-5 (explicit) with ARK-8-4-5 (implicit), corresponding to Butcher tables
ARK548L2SA_ERK_8_4_5 and ARK548L2SA_ERK_8_4_5 for ARKStepSetARKTableNum().

382 Chapter 15. Appendix: Butcher tables

BIBLIOGRAPHY

[A1965] D.G. Anderson, Iterative Procedures for Nonlinear Integral Equations, J. Assoc. Comput. Machinery, 12:547-
560, 1965.

[B1985] Bank et al., Transient Simulation of Silicon Devices and Circuits, IEEE Trans. CAD, 4:436-451, 1985.

[B1983] S.R. Billington, Type-Insensitive Codes for the Solution of Stiff and Nonstiff Systems of Ordinary Differen-
tial Equations, in: Master Thesis, University of Manchester, United Kingdom, 1983.

[BS1989] P. Bogacki and L.F. Shampine. A 3(2) pair of Runge–Kutta formulas, Appl. Math. Lett., 2:321–325, 1989.

[B1987] P.N. Brown. A local convergence theory for combined inexact-Newton/finite difference projection methods.
SIAM J. Numer. Anal., 24:407-434, 1987.

[BH1989] P.N. Brown and A.C. Hindmarsh. Reduced Storage Matrix Methods in Stiff ODE Systems. J. Appl. Math.
& Comp., 31:49-91, 1989.

[BS1990] P.N. Brown and Y. Saad. Hybrid Krylov Methods for Nonlinear Systems of Equations. SIAM J. Sci. Stat.
Comput., 11:450-481, 1990.

[B2008] J.C. Butcher, Numerical Methods for Ordinary Differential Equations. Wiley, 2nd edition, Chicester, Eng-
land, 2008.

[B1992] G.D. Byrne. Pragmatic Experiments with Krylov Methods in the Stiff ODE Setting. In J.R. Cash and I.
Gladwell, editors, Computational Ordinary Differential Equations, pp. 323-356, Oxford University Press, 1992.

[C1979] J.R. Cash. Diagonally Implicit Runge-Kutta Formulae with Error Estimates. IMA J Appl Math, 24:293-301,
1979.

[CK1990] J.R. Cash and A.H. Karp. A variable order Runge-Kutta method for initial value problems with rapidly
varying right-hand sides, ACM Trans. Math. Soft., 16:201-222, 1990.

[CGM2014] J. CHeng, M. Grossman and T. McKercher. Professional Cuda C Programming. John Wiley & Sons,
2014.

[DP1980] J.R. Dormand and P.J. Prince. A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math.
6:19–26, 1980.

[DP2010] T. Davis and E. Palamadai Natarajan. Algortithm 907: KLU, a direct sparse solver for circuit simulation
problems. ACM Trans. Math. Soft., 37, 2010.

[DES1982] R.S. Dembo, S.C. Eisenstat and T. Steihaug. Inexact Newton Methods. SIAM J. Numer. Anal., 19:400-408,
1982.

[DGL1999] J.W. Demmel, J.R. Gilbert and X.S. Li. An Asynchronous Parallel Supernodal Algorithm for Sparse
Gaussian Elimination. SIAM J. Matrix Analysis and Applications, 20:915-952, 1999.

[DS1996] J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equa-
tions. SIAM, Philadelphia, 1996.

383

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

[F2015] R. Falgout and U.M. Yang. Hypre user’s manual. LLNL Technical Report, 2015.

[FS2009] H. Fang and Y. Saad. Two classes of secant methods for nonlinear acceleration. Numer. Linear Algebra
Appl., 16:197-21, 2009.

[F1969] E. Fehlberg. Low-order classical Runge-Kutta formulas with step size control and their application to some
heat transfer problems. NASA Technical Report 315, 1969.

[F1993] R.W. Freund. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems.
SIAM J. Sci. Comp., 14:470-482, 1993.

[G1991] K. Gustafsson. Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods. ACM
Trans. Math. Soft., 17:533-554, 1991.

[G1994] K. Gustafsson. Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods. ACM
Trans. Math. Soft. 20:496-512, 1994.

[HW1993] E. Hairer, S. Norsett and G. Wanner. Solving Ordinary Differential Equations I. Springer Series in Com-
putational Mathematics, vol. 8, 1993.

[HW1996] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Springer Series in Computational
Mathematics, vol. 14, 1996.

[HS1952] M.R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Systems. J. Research of
the National Bureau of Standards, 49:409-436, 1952.

[HS1980] K.L. Hiebert and L.F. Shampine. Implicitly Defined Output Points for Solutions of ODEs. Technical Report
SAND80-0180, Sandia National Laboratories, February 1980.

[HS2017] A.C. Hindmarsh and R. Serban. User Documentation for CVODE v3.0.0. Technical Report UCRL-SM-
208108, LLNL, 2017.

[HSR2017] A.C. Hindmarsh, R. Serban and D.R. Reynolds. Example Programs for CVODE v3.0.0. Technical Report
UCRL-SM-208110, LLNL, 2017.

[HT1998] A.C. Hindmarsh and A.G. Taylor. PVODE and KINSOL: Parallel Software for Differential and Nonlinear
Systems. Technical Report UCRL-IL-129739, LLNL, February 1998.

[HK2014] R.D. Hornung and J.A. Keasler. The RAJA Portability Layer: Overview and Status. Technical Report
LLNL-TR-661403, LLNL, September 2014.

[K1995] C.T. Kelley. Iterative Methods for Solving Linear and Nonlinear Equations. SIAM, Philadelphia, 1995.

[KC2003] C.A. Kennedy and M.H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equa-
tions. Appl. Numer. Math., 44:139-181, 2003.

[KLU] KLU Sparse Matrix Factorization Library.

[K2004] A. Kv{ae}rno. Singly Diagonally Implicit Runge-Kutta Methods with an Explicit First Stage. BIT Numer.
Math., 44:489-502, 2004.

[L2005] X.S. Li. An Overview of SuperLU: Algorithms, Implementation, and User Interface. ACM Trans. Math. Soft.,
31:302-325, 2005.

[LWWY2012] P.A. Lott, H.F. Walker, C.S. Woodward and U.M. Yang. An Accelerated Picard Method for Nonlinear
Systems Related to Variably Saturated Flow, Adv. Wat. Resour., 38:92-101, 2012.

[R2018] D.R. Reynolds. ARKode Example Documentation. Technical Report, Southern Methodist University Center
for Scientific Computation, 2018.

[SS1986] Y. Saad and M.H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric
Linear Systems. SIAM J. Sci. Stat. Comp., 7:856-869, 1986.

[S1993] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput., 14:461-469, 1993.

384 Bibliography

http://faculty.cse.tamu.edu/davis/suitesparse.html

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

[SA2002] A. Sayfy and A. Aburub. Embedded Additive Runge-Kutta Methods. Intern. J. Computer Math., 79:945-
953, 2002.

[SKAW2009] M. Schlegel, O. Knoth, M. Arnold, and R. Wolke. Multirate Runge–Kutta schemes for advection equa-
tions. J. Comput. Appl. Math., 226:345-357, 2009.

[SKAW2012a] M. Schlegel, O. Knoth, M. Arnold, and R. Wolke. Implementation of multirate time integration meth-
ods for air pollution modelling. GMD, 5:1395-1405, 2012.

[SKAW2012b] M. Schlegel, O. Knoth, M. Arnold, and R. Wolke. Numerical solution of multiscale problems in
atmospheric modeling. Appl. Numer. Math., 62:1531-1542, 2012.

[S1998] G. Soderlind. The automatic control of numerical integration. CWI Quarterly, 11:55-74, 1998.

[S2003] G. Soderlind. Digital filters in adaptive time-stepping. ACM Trans. Math. Soft., 29:1-26, 2003.

[S2006] G. Soderlind. Time-step selection algorithms: Adaptivity, control and signal processing. Appl. Numer. Math.,
56:488-502, 2006.

[SuperLUMT] SuperLU_MT Threaded Sparse Matrix Factorization Library.

[V1992] H.A. Van Der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of
Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comp., 13:631-644, 1992.

[V1978] J.H. Verner. Explicit Runge-Kutta methods with estimates of the local truncation error. SIAM J. Numer. Anal.,
15:772-790, 1978.

[WN2011] H.F. Walker and P. Ni. Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal., 49:1715-
1735, 2011.

[KW1998] O. Knoth and R. Wolke. Implicit-explicit Runge-Kutta methods for computing atmospheric reactive flows.
Appl. Numer. Math., 28(2):327-341, 1998.

[Z1963] J.A. Zonneveld. Automatic integration of ordinary differential equations. Report R743, Mathematisch Cen-
trum, Postbus 4079, 1009AB Amsterdam, 1963.

Bibliography 385

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

386 Bibliography

INDEX

additive Runge-Kutta methods, 15
ARK-4-2-3 ARK method, 358, 381
ARK-4-2-3 ERK method, 357, 364
ARK-4-2-3 ESDIRK method, 358, 376
ARK-6-3-4 ARK method, 358, 382
ARK-6-3-4 ERK method, 357, 366
ARK-6-3-4 ESDIRK method, 358, 379
ARK-8-4-5 ARK method, 358, 382
ARK-8-4-5 ERK method, 357, 369
ARK-8-4-5 ESDIRK method, 358, 381
ARK_BAD_DKY, 359
ARK_BAD_K, 359
ARK_BAD_T, 359
ARK_CONV_FAILURE, 359
ARK_ERR_FAILURE, 359
ARK_FIRST_RHSFUNC_ERR, 359
ARK_ILL_INPUT, 359
ARK_INNERSTEP_OP_ERR, 360
ARK_LFREE_FAIL, 359
ARK_LINIT_FAIL, 359
ARK_LSETUP_FAIL, 359
ARK_LSOLVE_FAIL, 359
ARK_MASSFREE_FAIL, 359
ARK_MASSINIT_FAIL, 359
ARK_MASSMULT_FAIL, 359
ARK_MASSSETUP_FAIL, 359
ARK_MASSSOLVE_FAIL, 359
ARK_MEM_FAIL, 359
ARK_MEM_NULL, 359
ARK_NLS_INIT_FAIL, 359
ARK_NLS_OP_ERR, 360
ARK_NLS_SETUP_FAIL, 359
ARK_NLS_SETUP_RECVR, 359
ARK_NO_MALLOC, 359
ARK_NORMAL, 357
ARK_ONE_STEP, 357
ARK_REPTD_RHSFUNC_ERR, 359
ARK_RHSFUNC_FAIL, 359
ARK_ROOT_RETURN, 359
ARK_RTFUNC_FAIL, 359
ARK_SUCCESS, 358
ARK_TOO_CLOSE, 359

ARK_TOO_MUCH_ACC, 359
ARK_TOO_MUCH_WORK, 359
ARK_TSTOP_RETURN, 359
ARK_UNREC_RHSFUNC_ERR, 359
ARK_UNRECOGNIZED_ERROR, 360
ARK_VECTOROP_ERR, 359
ARK_WARNING, 359
ARKAdaptFn (C type), 99, 185
ARKBandPrecGetNumRhsEvals (C function), 110
ARKBandPrecGetWorkSpace (C function), 110
ARKBandPrecInit (C function), 109
ARKBBDPrecGetNumGfnEvals (C function), 115
ARKBBDPrecGetWorkSpace (C function), 115
ARKBBDPrecInit (C function), 114
ARKBBDPrecReInit (C function), 115
ARKCommFn (C function), 112
ARKErrHandlerFn (C type), 98, 184, 206
ARKEwtFn (C type), 98, 184
ARKExpStabFn (C type), 100, 185
ARKLocalFn (C function), 112
ARKLS_ILL_INPUT, 360
ARKLS_JACFUNC_RECVR, 360
ARKLS_JACFUNC_UNRECVR, 360
ARKLS_LMEM_NULL, 360
ARKLS_MASSFUNC_RECVR, 360
ARKLS_MASSFUNC_UNRECVR, 360
ARKLS_MASSMEM_NULL, 360
ARKLS_MEM_FAIL, 360
ARKLS_MEM_NULL, 360
ARKLS_PMEM_NULL, 360
ARKLS_SUCCESS, 360
ARKLS_SUNLS_FAIL, 360
ARKLS_SUNMAT_FAIL, 360
ARKLsJacFn (C type), 100
ARKLsJacTimesSetupFn (C type), 103
ARKLsJacTimesVecFn (C type), 102
ARKLsMassFn (C type), 105
ARKLsMassPrecSetupFn (C type), 107
ARKLsMassPrecSolveFn (C type), 106
ARKLsMassTimesSetupFn (C type), 106
ARKLsMassTimesVecFn (C type), 106
ARKLsPrecSetupFn (C type), 104

387

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

ARKLsPrecSolveFn (C type), 103
ARKodeButcherTable (C type), 209
ARKodeButcherTable_Alloc (C function), 210
ARKodeButcherTable_CheckARKOrder (C function),

212
ARKodeButcherTable_CheckOrder (C function), 212
ARKodeButcherTable_Copy (C function), 211
ARKodeButcherTable_Create (C function), 210
ARKodeButcherTable_Free (C function), 211
ARKodeButcherTable_LoadDIRK (C function), 210
ARKodeButcherTable_LoadERK (C function), 210
ARKodeButcherTable_Space (C function), 211
ARKodeButcherTable_Write (C function), 211
ARKRhsFn (C type), 97, 183, 206
ARKRootFn (C type), 100, 186, 207
ARKRwtFn (C type), 98
ARKStepCreate (C function), 45
ARKStepEvolve (C function), 53
ARKStepFree (C function), 45
ARKStepGetActualInitStep (C function), 80
ARKStepGetCurrentButcherTables (C function), 84
ARKStepGetCurrentStep (C function), 81
ARKStepGetCurrentTime (C function), 81
ARKStepGetDky (C function), 77
ARKStepGetErrWeights (C function), 82
ARKStepGetEstLocalErrors (C function), 84
ARKStepGetLastLinFlag (C function), 90
ARKStepGetLastMassFlag (C function), 93
ARKStepGetLastStep (C function), 81
ARKStepGetLinReturnFlagName (C function), 90
ARKStepGetLinWorkSpace (C function), 87
ARKStepGetMassWorkSpace (C function), 91
ARKStepGetNonlinSolvStats (C function), 86
ARKStepGetNumAccSteps (C function), 83
ARKStepGetNumErrTestFails (C function), 83
ARKStepGetNumExpSteps (C function), 82
ARKStepGetNumGEvals (C function), 87
ARKStepGetNumJacEvals (C function), 88
ARKStepGetNumJtimesEvals (C function), 89
ARKStepGetNumJTSetupEvals (C function), 89
ARKStepGetNumLinConvFails (C function), 89
ARKStepGetNumLinIters (C function), 89
ARKStepGetNumLinRhsEvals (C function), 90
ARKStepGetNumLinSolvSetups (C function), 85
ARKStepGetNumMassConvFails (C function), 92
ARKStepGetNumMassIters (C function), 92
ARKStepGetNumMassMult (C function), 91
ARKStepGetNumMassPrecEvals (C function), 92
ARKStepGetNumMassPrecSolves (C function), 92
ARKStepGetNumMassSetups (C function), 91
ARKStepGetNumMassSolves (C function), 91
ARKStepGetNumMTSetups (C function), 93
ARKStepGetNumNonlinSolvConvFails (C function), 86
ARKStepGetNumNonlinSolvIters (C function), 85

ARKStepGetNumPrecEvals (C function), 88
ARKStepGetNumPrecSolves (C function), 88
ARKStepGetNumRhsEvals (C function), 83
ARKStepGetNumStepAttempts (C function), 83
ARKStepGetNumSteps (C function), 80
ARKStepGetResWeights (C function), 82
ARKStepGetReturnFlagName (C function), 82
ARKStepGetRootInfo (C function), 86
ARKStepGetStepStats (C function), 82
ARKStepGetTimestepperStats (C function), 85
ARKStepGetTolScaleFactor (C function), 81
ARKStepGetWorkSpace (C function), 80
ARKStepReInit (C function), 95
ARKStepResFtolerance (C function), 47
ARKStepResize (C function), 95
ARKStepResStolerance (C function), 47
ARKStepResVtolerance (C function), 47
ARKStepRootInit (C function), 52
ARKStepSetAdaptivityFn (C function), 63
ARKStepSetAdaptivityMethod (C function), 63
ARKStepSetCFLFraction (C function), 64
ARKStepSetDefaults (C function), 55
ARKStepSetDeltaGammaMax (C function), 70
ARKStepSetDenseOrder (C function), 55
ARKStepSetDiagnostics (C function), 56
ARKStepSetEpsLin (C function), 76
ARKStepSetErrFile (C function), 56
ARKStepSetErrHandlerFn (C function), 56
ARKStepSetErrorBias (C function), 64
ARKStepSetExplicit (C function), 61
ARKStepSetFixedStep (C function), 57
ARKStepSetFixedStepBounds (C function), 64
ARKStepSetImEx (C function), 61
ARKStepSetImplicit (C function), 61
ARKStepSetInitStep (C function), 57
ARKStepSetJacFn (C function), 72
ARKStepSetJacTimes (C function), 73
ARKStepSetLinear (C function), 67
ARKStepSetLinearSolver (C function), 50
ARKStepSetMassEpsLin (C function), 76
ARKStepSetMassFn (C function), 72
ARKStepSetMassLinearSolver (C function), 51
ARKStepSetMassPreconditioner (C function), 75
ARKStepSetMassTimes (C function), 74
ARKStepSetMaxCFailGrowth (C function), 65
ARKStepSetMaxConvFails (C function), 69
ARKStepSetMaxEFailGrowth (C function), 65
ARKStepSetMaxErrTestFails (C function), 59
ARKStepSetMaxFirstGrowth (C function), 65
ARKStepSetMaxGrowth (C function), 66
ARKStepSetMaxHnilWarns (C function), 58
ARKStepSetMaxNonlinIters (C function), 68
ARKStepSetMaxNumSteps (C function), 58
ARKStepSetMaxStep (C function), 58

388 Index

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

ARKStepSetMaxStepsBetweenJac (C function), 71
ARKStepSetMaxStepsBetweenLSet (C function), 71
ARKStepSetMinStep (C function), 59
ARKStepSetNoInactiveRootWarn (C function), 77
ARKStepSetNonlinConvCoef (C function), 69
ARKStepSetNonlinCRDown (C function), 69
ARKStepSetNonlinear (C function), 67
ARKStepSetNonlinearSolver (C function), 52
ARKStepSetNonlinRDiv (C function), 69
ARKStepSetOptimalParams (C function), 60
ARKStepSetOrder (C function), 60
ARKStepSetPreconditioner (C function), 75
ARKStepSetPredictorMethod (C function), 68
ARKStepSetRootDirection (C function), 76
ARKStepSetSafetyFactor (C function), 66
ARKStepSetSmallNumEFails (C function), 66
ARKStepSetStabilityFn (C function), 66
ARKStepSetStopTime (C function), 59
ARKStepSetTableNum (C function), 62
ARKStepSetTables (C function), 61
ARKStepSetUserData (C function), 59
ARKStepSStolerances (C function), 45
ARKStepSVtolerances (C function), 46
ARKStepWFtolerances (C function), 46
ARKStepWriteButcher (C function), 94
ARKStepWriteParameters (C function), 93
ARKVecResizeFn (C type), 108, 186, 207
ATimesFn (C type), 282

BIG_REAL, 38, 154, 188
Billington-3-3-2 SDIRK method, 358, 374
BLAS_ENABLE (CMake option), 343
BLAS_LIBRARIES (CMake option), 343
Bogacki-Shampine-4-2-3 ERK method, 357, 362
BUILD_ARKODE (CMake option), 343
BUILD_CVODE (CMake option), 343
BUILD_CVODES (CMake option), 343
BUILD_IDA (CMake option), 343
BUILD_IDAS (CMake option), 343
BUILD_KINSOL (CMake option), 343
BUILD_SHARED_LIBS (CMake option), 343
BUILD_STATIC_LIBS (CMake option), 343

Cash-5-2-4 SDIRK method, 358, 376
Cash-5-3-4 SDIRK method, 358, 377
Cash-Karp-6-4-5 ERK method, 357, 367
ccmake, 340
cmake, 341
cmake-gui, 340
CMAKE_BUILD_TYPE (CMake option), 344
CMAKE_C_COMPILER (CMake option), 344
CMAKE_C_FLAGS (CMake option), 344
CMAKE_C_FLAGS_DEBUG (CMake option), 344
CMAKE_C_FLAGS_MINSIZEREL (CMake option),

344

CMAKE_C_FLAGS_RELEASE (CMake option), 344
CMAKE_CXX_COMPILER (CMake option), 344
CMAKE_CXX_FLAGS (CMake option), 344
CMAKE_CXX_FLAGS_DEBUG (CMake option), 344
CMAKE_CXX_FLAGS_MINSIZEREL (CMake op-

tion), 344
CMAKE_CXX_FLAGS_RELEASE (CMake option),

344
CMAKE_Fortran_COMPILER (CMake option), 344
CMAKE_Fortran_FLAGS (CMake option), 344
CMAKE_Fortran_FLAGS_DEBUG (CMake option),

345
CMAKE_Fortran_FLAGS_MINSIZEREL (CMake op-

tion), 345
CMAKE_Fortran_FLAGS_RELEASE (CMake option),

345
CMAKE_INSTALL_PREFIX (CMake option), 345
CUDA_ENABLE (CMake option), 345
CXX_ENABLE (CMake option), 345

DEFAULT_ARK_ETABLE_3, 358
DEFAULT_ARK_ETABLE_4, 358
DEFAULT_ARK_ETABLE_5, 358
DEFAULT_ARK_ITABLE_3, 358
DEFAULT_ARK_ITABLE_4, 358
DEFAULT_ARK_ITABLE_5, 358
DEFAULT_DIRK_2, 358
DEFAULT_DIRK_3, 358
DEFAULT_DIRK_4, 358
DEFAULT_DIRK_5, 358
DEFAULT_ERK_2, 357
DEFAULT_ERK_3, 357
DEFAULT_ERK_4, 357
DEFAULT_ERK_5, 357
DEFAULT_ERK_6, 358
DEFAULT_ERK_8, 358
diagonally-implicit Runge-Kutta methods, 16
Dormand-Prince-7-4-5 ERK method, 357, 369

ERKStepCreate (C function), 157
ERKStepEvolve (C function), 160
ERKStepFree (C function), 157
ERKStepGetActualInitStep (C function), 175
ERKStepGetCurrentButcherTable (C function), 178
ERKStepGetCurrentStep (C function), 176
ERKStepGetCurrentTime (C function), 176
ERKStepGetDky (C function), 173
ERKStepGetErrWeights (C function), 177
ERKStepGetEstLocalErrors (C function), 179
ERKStepGetLastStep (C function), 176
ERKStepGetNumAccSteps (C function), 177
ERKStepGetNumErrTestFails (C function), 178
ERKStepGetNumExpSteps (C function), 177
ERKStepGetNumGEvals (C function), 180

Index 389

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

ERKStepGetNumRhsEvals (C function), 178
ERKStepGetNumStepAttempts (C function), 178
ERKStepGetNumSteps (C function), 175
ERKStepGetReturnFlagName (C function), 177
ERKStepGetRootInfo (C function), 180
ERKStepGetStepStats (C function), 177
ERKStepGetTimestepperStats (C function), 179
ERKStepGetTolScaleFactor (C function), 176
ERKStepGetWorkSpace (C function), 175
ERKStepReInit (C function), 181
ERKStepResize (C function), 182
ERKStepRootInit (C function), 160
ERKStepSetAdaptivityFn (C function), 168
ERKStepSetAdaptivityMethod (C function), 169
ERKStepSetCFLFraction (C function), 169
ERKStepSetDefaults (C function), 162
ERKStepSetDenseOrder (C function), 162
ERKStepSetDiagnostics (C function), 163
ERKStepSetErrFile (C function), 163
ERKStepSetErrHandlerFn (C function), 164
ERKStepSetErrorBias (C function), 169
ERKStepSetFixedStep (C function), 164
ERKStepSetFixedStepBounds (C function), 170
ERKStepSetInitStep (C function), 164
ERKStepSetMaxEFailGrowth (C function), 170
ERKStepSetMaxErrTestFails (C function), 166
ERKStepSetMaxFirstGrowth (C function), 170
ERKStepSetMaxGrowth (C function), 171
ERKStepSetMaxHnilWarns (C function), 165
ERKStepSetMaxNumSteps (C function), 165
ERKStepSetMaxStep (C function), 165
ERKStepSetMinStep (C function), 166
ERKStepSetNoInactiveRootWarn (C function), 172
ERKStepSetOrder (C function), 167
ERKStepSetRootDirection (C function), 172
ERKStepSetSafetyFactor (C function), 171
ERKStepSetSmallNumEFails (C function), 171
ERKStepSetStabilityFn (C function), 171
ERKStepSetStopTime (C function), 166
ERKStepSetTable (C function), 167
ERKStepSetTableNum (C function), 168
ERKStepSetUserData (C function), 166
ERKStepSStolerances (C function), 158
ERKStepSVtolerances (C function), 158
ERKStepWFtolerances (C function), 158
ERKStepWriteButcher (C function), 181
ERKStepWriteParameters (C function), 180
error weight vector, 17
EXAMPLES_ENABLE_C (CMake option), 345
EXAMPLES_ENABLE_CUDA (CMake option), 345
EXAMPLES_ENABLE_CXX (CMake option), 345
EXAMPLES_ENABLE_F77 (CMake option), 345
EXAMPLES_ENABLE_F90 (CMake option), 345
EXAMPLES_INSTALL (CMake option), 345

EXAMPLES_INSTALL_PATH (CMake option), 346
explicit Runge-Kutta methods, 15, 16

F90_ENABLE (CMake option), 346
FARKADAPT() (fortran subroutine), 129
FARKADAPTSET() (fortran subroutine), 129
FARKBANDSETJAC() (fortran subroutine), 132
FARKBANDSETMASS() (fortran subroutine), 138
FARKBBDINIT() (fortran subroutine), 150
FARKBBDOPT() (fortran subroutine), 151
FARKBBDREINIT() (fortran subroutine), 151
FARKBJAC() (fortran subroutine), 131
FARKBMASS() (fortran subroutine), 138
FARKBPINIT() (fortran subroutine), 148
FARKBPOPT() (fortran subroutine), 149
FARKCOMMFN() (fortran subroutine), 152
FARKDENSESETJAC() (fortran subroutine), 131
FARKDENSESETMASS() (fortran subroutine), 137
FARKDJAC() (fortran subroutine), 131
FARKDKY() (fortran subroutine), 142
FARKDMASS() (fortran subroutine), 137
FARKEFUN() (fortran subroutine), 122
FARKEWT() (fortran subroutine), 125
FARKEWTSET() (fortran subroutine), 125
FARKEXPSTAB() (fortran subroutine), 130
FARKEXPSTABSET() (fortran subroutine), 130
FARKFREE() (fortran subroutine), 144
FARKGETERRWEIGHTS() (fortran subroutine), 146
FARKGETESTLOCALERR() (fortran subroutine), 146
FARKGLOCFN() (fortran subroutine), 152
FARKIFUN() (fortran subroutine), 121
FARKJTIMES() (fortran subroutine), 134
FARKJTSETUP() (fortran subroutine), 135
FARKLSINIT() (fortran subroutine), 130
FARKLSMASSINIT() (fortran subroutine), 137
FARKLSSETEPSLIN() (fortran subroutine), 133
FARKLSSETJAC() (fortran subroutine), 134
FARKLSSETMASS() (fortran subroutine), 140
FARKLSSETMASSEPSLIN() (fortran subroutine), 139
FARKLSSETMASSPREC() (fortran subroutine), 140
FARKLSSETPREC() (fortran subroutine), 134
FARKMALLOC() (fortran subroutine), 124
FARKMASSPSET() (fortran subroutine), 140
FARKMASSPSOL() (fortran subroutine), 141
FARKMTIMES() (fortran subroutine), 139
FARKMTSETUP() (fortran subroutine), 140
FARKNLSINIT() (fortran subroutine), 130
FARKODE() (fortran subroutine), 142
FARKPSET() (fortran subroutine), 136
FARKPSOL() (fortran subroutine), 135
FARKREINIT() (fortran subroutine), 143
FARKRESIZE() (fortran subroutine), 143
FARKROOTFN() (fortran subroutine), 147
FARKROOTFREE() (fortran subroutine), 148

390 Index

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

FARKROOTINFO() (fortran subroutine), 147
FARKROOTINIT() (fortran subroutine), 147
FARKSETADAPTIVITYMETHOD() (fortran subrou-

tine), 128
FARKSETARKTABLES() (fortran subroutine), 128
FARKSETDEFAULTS() (fortran subroutine), 127
FARKSETERKTABLE() (fortran subroutine), 127
FARKSETIIN() (fortran subroutine), 125
FARKSETIRKTABLE() (fortran subroutine), 127
FARKSETRESTOLERANCE() (fortran subroutine), 128
FARKSETRIN() (fortran subroutine), 126
FARKSPARSESETJAC() (fortran subroutine), 133
FARKSPARSESETMASS() (fortran subroutine), 139
FARKSPJAC() (fortran subroutine), 132
FARKSPMASS() (fortran subroutine), 138
FCMIX_ENABLE (CMake option), 346
Fehlberg-13-7-8 ERK method, 357, 371
Fehlberg-6-4-5 ERK method, 357, 368
fixed point iteration, 23
FSUNBandLinSolInit() (fortran subroutine), 291
FSUNBandMassMatInit() (fortran subroutine), 267
FSUNBandMatInit() (fortran subroutine), 267
FSUNDenseLinSolInit() (fortran subroutine), 289
FSUNDenseMassMatInit() (fortran subroutine), 262
FSUNDenseMatInit() (fortran subroutine), 261
FSUNFixedPointInit() (fortran subroutine), 338
FSUNKLUInit() (fortran subroutine), 297
FSUNKLUReInit() (fortran subroutine), 298
FSUNKLUSetOrdering() (fortran subroutine), 298
FSUNLapackBandInit() (fortran subroutine), 294
FSUNLapackDenseInit() (fortran subroutine), 292
FSUNMassBandLinSolInit() (fortran subroutine), 291
FSUNMassDenseLinSolInit() (fortran subroutine), 289
FSUNMassKLUInit() (fortran subroutine), 297
FSUNMassKLUReInit() (fortran subroutine), 298
FSUNMassKLUSetOrdering() (fortran subroutine), 298
FSUNMassLapackBandInit() (fortran subroutine), 295
FSUNMassLapackDenseInit() (fortran subroutine), 293
FSUNMassPCGInit() (fortran subroutine), 321
FSUNMassPCGSetMaxl() (fortran subroutine), 322
FSUNMassPCGSetPrecType() (fortran subroutine), 322
FSUNMassSPBCGSInit() (fortran subroutine), 313
FSUNMassSPBCGSSetMaxl() (fortran subroutine), 314
FSUNMassSPBCGSSetPrecType() (fortran subroutine),

314
FSUNMassSPFGMRInit() (fortran subroutine), 309
FSUNMassSPFGMRSetGSType() (fortran subroutine),

309
FSUNMassSPFGMRSetMaxRS() (fortran subroutine),

310
FSUNMassSPFGMRSetPrecType() (fortran subroutine),

309
FSUNMassSPGMRInit() (fortran subroutine), 304

FSUNMassSPGMRSetGSType() (fortran subroutine),
305

FSUNMassSPGMRSetMaxRS() (fortran subroutine),
305

FSUNMassSPGMRSetPrecType() (fortran subroutine),
305

FSUNMassSPTFQMRInit() (fortran subroutine), 317
FSUNMassSPTFQMRSetMaxl() (fortran subroutine),

318
FSUNMassSPTFQMRSetPrecType() (fortran subrou-

tine), 317
FSUNMassSuperLUMTInit() (fortran subroutine), 301
FSUNMassSuperLUMTSetOrdering() (fortran subrou-

tine), 301
FSUNNewtonInit() (fortran subroutine), 334
FSUNPCGInit() (fortran subroutine), 321
FSUNPCGSetMaxl() (fortran subroutine), 322
FSUNPCGSetPrecType() (fortran subroutine), 322
FSUNSparseMassMatInit() (fortran subroutine), 273
FSUNSparseMatInit() (fortran subroutine), 273
FSUNSPBCGSInit() (fortran subroutine), 313
FSUNSPBCGSSetMaxl() (fortran subroutine), 314
FSUNSPBCGSSetPrecType() (fortran subroutine), 314
FSUNSPFGMRInit() (fortran subroutine), 309
FSUNSPFGMRSetGSType() (fortran subroutine), 309
FSUNSPFGMRSetMaxRS() (fortran subroutine), 310
FSUNSPFGMRSetPrecType() (fortran subroutine), 309
FSUNSPGMRInit() (fortran subroutine), 304
FSUNSPGMRSetGSType() (fortran subroutine), 305
FSUNSPGMRSetMaxRS() (fortran subroutine), 305
FSUNSPGMRSetPrecType() (fortran subroutine), 305
FSUNSPTFQMRInit() (fortran subroutine), 317
FSUNSPTFQMRSetMaxl() (fortran subroutine), 317
FSUNSPTFQMRSetPrecType() (fortran subroutine), 317
FSUNSuperLUMTInit() (fortran subroutine), 301
FSUNSuperLUMTSetOrdering() (fortran subroutine),

301

Heun-Euler-2-1-2 ERK method, 357, 362
HYPRE_ENABLE (CMake option), 346
HYPRE_INCLUDE_DIR (CMake option), 346
HYPRE_LIBRARY (CMake option), 346

inexact Newton iteration, 24

KLU_INCLUDE_DIR (CMake option), 346
KLU_LIBRARY_DIR (CMake option), 346
Knoth-Wolke-3-3 ERK method, 357, 364
Kvaerno-4-2-3 ESDIRK method, 358, 375
Kvaerno-5-3-4 ESDIRK method, 358, 379
Kvaerno-7-4-5 ESDIRK method, 358, 380

LAPACK_ENABLE (CMake option), 346
LAPACK_LIBRARIES (CMake option), 346
linear solver setup, 25

Index 391

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

modified Newton iteration, 24
MPI_C_COMPILER (CMake option), 347
MPI_CXX_COMPILER (CMake option), 347
MPI_ENABLE (CMake option), 346
MPI_Fortran_COMPILER (CMake option), 347
MPIEXEC_EXECUTABLE (CMake option), 347
MRIStepCreate (C function), 191
MRIStepEvolve (C function), 192
MRIStepFree (C function), 191
MRIStepGetCurrentButcherTables (C function), 202
MRIStepGetCurrentTime (C function), 201
MRIStepGetDky (C function), 199
MRIStepGetLastInnerStepFlag (C function), 202
MRIStepGetLastStep (C function), 201
MRIStepGetNumGEvals (C function), 204
MRIStepGetNumRhsEvals (C function), 202
MRIStepGetNumSteps (C function), 201
MRIStepGetReturnFlagName (C function), 202
MRIStepGetRootInfo (C function), 204
MRIStepGetWorkSpace (C function), 201
MRIStepReInit (C function), 205
MRIStepResize (C function), 205
MRIStepRootInit (C function), 191
MRIStepSetDefaults (C function), 194
MRIStepSetDenseOrder (C function), 194
MRIStepSetDiagnostics (C function), 194
MRIStepSetErrFile (C function), 195
MRIStepSetErrHandlerFn (C function), 195
MRIStepSetFixedStep (C function), 195
MRIStepSetMaxHnilWarns (C function), 196
MRIStepSetMaxNumSteps (C function), 196
MRIStepSetMRITableNum (C function), 198
MRIStepSetMRITables (C function), 197
MRIStepSetNoInactiveRootWarn (C function), 198
MRIStepSetRootDirection (C function), 198
MRIStepSetStopTime (C function), 196
MRIStepSetUserData (C function), 197
MRIStepWriteButcher (C function), 203
MRIStepWriteParameters (C function), 203

N_VAbs (C function), 217
N_VAddConst (C function), 218
N_VClone (C function), 216
N_VCloneEmpty (C function), 216
N_VCloneVectorArray_Cuda (C function), 243
N_VCloneVectorArray_OpenMP (C function), 231
N_VCloneVectorArray_Parallel (C function), 227
N_VCloneVectorArray_ParHyp (C function), 236
N_VCloneVectorArray_Petsc (C function), 239
N_VCloneVectorArray_Pthreads (C function), 234
N_VCloneVectorArray_Raja (C function), 246
N_VCloneVectorArray_Serial (C function), 224
N_VCloneVectorArrayEmpty_Cuda (C function), 243

N_VCloneVectorArrayEmpty_OpenMP (C function),
231

N_VCloneVectorArrayEmpty_Parallel (C function), 227
N_VCloneVectorArrayEmpty_ParHyp (C function), 236
N_VCloneVectorArrayEmpty_Petsc (C function), 239
N_VCloneVectorArrayEmpty_Pthreads (C function), 234
N_VCloneVectorArrayEmpty_Raja (C function), 246
N_VCloneVectorArrayEmpty_Serial (C function), 224
N_VCompare (C function), 219
N_VConst (C function), 217
N_VConstrMask (C function), 219
N_VConstVectorArray (C function), 221
N_VCopyFromDevice_Cuda (C function), 243
N_VCopyFromDevice_Raja (C function), 246
N_VCopyToDevice_Cuda (C function), 243
N_VCopyToDevice_Raja (C function), 246
N_VDestroy (C function), 216
N_VDestroyVectorArray_Cuda (C function), 243
N_VDestroyVectorArray_OpenMP (C function), 231
N_VDestroyVectorArray_Parallel (C function), 227
N_VDestroyVectorArray_ParHyp (C function), 237
N_VDestroyVectorArray_Petsc (C function), 239
N_VDestroyVectorArray_Pthreads (C function), 234
N_VDestroyVectorArray_Raja (C function), 246
N_VDestroyVectorArray_Serial (C function), 224
N_VDiv (C function), 217
N_VDotProd (C function), 218
N_VDotProdMulti (C function), 221
N_VEnableConstVectorArray_Cuda (C function), 243
N_VEnableConstVectorArray_OpenMP (C function),

232
N_VEnableConstVectorArray_OpenMPDEV (C func-

tion), 250
N_VEnableConstVectorArray_Parallel (C function), 228
N_VEnableConstVectorArray_ParHyp (C function), 237
N_VEnableConstVectorArray_Petsc (C function), 239
N_VEnableConstVectorArray_Pthreads (C function), 235
N_VEnableConstVectorArray_Raja (C function), 247
N_VEnableConstVectorArray_Serial (C function), 225
N_VEnableDotProdMulti_Cuda (C function), 243
N_VEnableDotProdMulti_OpenMP (C function), 231
N_VEnableDotProdMulti_OpenMPDEV (C function),

249
N_VEnableDotProdMulti_Parallel (C function), 228
N_VEnableDotProdMulti_ParHyp (C function), 237
N_VEnableDotProdMulti_Petsc (C function), 239
N_VEnableDotProdMulti_Pthreads (C function), 235
N_VEnableDotProdMulti_Serial (C function), 225
N_VEnableFusedOps_Cuda (C function), 243
N_VEnableFusedOps_OpenMP (C function), 231
N_VEnableFusedOps_OpenMPDEV (C function), 249
N_VEnableFusedOps_Parallel (C function), 228
N_VEnableFusedOps_ParHyp (C function), 237
N_VEnableFusedOps_Petsc (C function), 239

392 Index

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

N_VEnableFusedOps_Pthreads (C function), 234
N_VEnableFusedOps_Raja (C function), 246
N_VEnableFusedOps_Serial (C function), 224
N_VEnableLinearCombination_Cuda (C function), 243
N_VEnableLinearCombination_OpenMP (C function),

231
N_VEnableLinearCombination_OpenMPDEV (C func-

tion), 249
N_VEnableLinearCombination_Parallel (C function),

228
N_VEnableLinearCombination_ParHyp (C function),

237
N_VEnableLinearCombination_Petsc (C function), 239
N_VEnableLinearCombination_Pthreads (C function),

235
N_VEnableLinearCombination_Raja (C function), 246
N_VEnableLinearCombination_Serial (C function), 224
N_VEnableLinearCombinationVectorArray_Cuda (C

function), 244
N_VEnableLinearCombinationVectorArray_OpenMP (C

function), 232
N_VEnableLinearCombinationVectorArray_OpenMPDEV

(C function), 250
N_VEnableLinearCombinationVectorArray_Parallel (C

function), 228
N_VEnableLinearCombinationVectorArray_ParHyp (C

function), 238
N_VEnableLinearCombinationVectorArray_Petsc (C

function), 240
N_VEnableLinearCombinationVectorArray_Pthreads (C

function), 235
N_VEnableLinearCombinationVectorArray_Raja (C

function), 247
N_VEnableLinearCombinationVectorArray_Serial (C

function), 225
N_VEnableLinearSumVectorArray_Cuda (C function),

243
N_VEnableLinearSumVectorArray_OpenMP (C func-

tion), 231
N_VEnableLinearSumVectorArray_OpenMPDEV (C

function), 249
N_VEnableLinearSumVectorArray_Parallel (C function),

228
N_VEnableLinearSumVectorArray_ParHyp (C function),

237
N_VEnableLinearSumVectorArray_Petsc (C function),

239
N_VEnableLinearSumVectorArray_Pthreads (C func-

tion), 235
N_VEnableLinearSumVectorArray_Raja (C function),

246
N_VEnableLinearSumVectorArray_Serial (C function),

225
N_VEnableScaleAddMulti_Cuda (C function), 243

N_VEnableScaleAddMulti_OpenMP (C function), 231
N_VEnableScaleAddMulti_OpenMPDEV (C function),

249
N_VEnableScaleAddMulti_Parallel (C function), 228
N_VEnableScaleAddMulti_ParHyp (C function), 237
N_VEnableScaleAddMulti_Petsc (C function), 239
N_VEnableScaleAddMulti_Pthreads (C function), 235
N_VEnableScaleAddMulti_Raja (C function), 246
N_VEnableScaleAddMulti_Serial (C function), 224
N_VEnableScaleAddMultiVectorArray_Cuda (C func-

tion), 244
N_VEnableScaleAddMultiVectorArray_OpenMP (C

function), 232
N_VEnableScaleAddMultiVectorArray_OpenMPDEV

(C function), 250
N_VEnableScaleAddMultiVectorArray_Parallel (C func-

tion), 228
N_VEnableScaleAddMultiVectorArray_ParHyp (C func-

tion), 237
N_VEnableScaleAddMultiVectorArray_Petsc (C func-

tion), 240
N_VEnableScaleAddMultiVectorArray_Pthreads (C

function), 235
N_VEnableScaleAddMultiVectorArray_Raja (C func-

tion), 247
N_VEnableScaleAddMultiVectorArray_Serial (C func-

tion), 225
N_VEnableScaleVectorArray_Cuda (C function), 243
N_VEnableScaleVectorArray_OpenMP (C function), 231
N_VEnableScaleVectorArray_OpenMPDEV (C func-

tion), 250
N_VEnableScaleVectorArray_Parallel (C function), 228
N_VEnableScaleVectorArray_ParHyp (C function), 237
N_VEnableScaleVectorArray_Petsc (C function), 239
N_VEnableScaleVectorArray_Pthreads (C function), 235
N_VEnableScaleVectorArray_Raja (C function), 246
N_VEnableScaleVectorArray_Serial (C function), 225
N_VEnableWrmsNormMaskVectorArray_Cuda (C func-

tion), 244
N_VEnableWrmsNormMaskVectorArray_OpenMP (C

function), 232
N_VEnableWrmsNormMaskVectorArray_OpenMPDEV

(C function), 250
N_VEnableWrmsNormMaskVectorArray_Parallel (C

function), 228
N_VEnableWrmsNormMaskVectorArray_ParHyp (C

function), 237
N_VEnableWrmsNormMaskVectorArray_Petsc (C func-

tion), 240
N_VEnableWrmsNormMaskVectorArray_Pthreads (C

function), 235
N_VEnableWrmsNormMaskVectorArray_Serial (C func-

tion), 225
N_VEnableWrmsNormVectorArray_Cuda (C function),

Index 393

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

244
N_VEnableWrmsNormVectorArray_OpenMP (C func-

tion), 232
N_VEnableWrmsNormVectorArray_OpenMPDEV (C

function), 250
N_VEnableWrmsNormVectorArray_Parallel (C func-

tion), 228
N_VEnableWrmsNormVectorArray_ParHyp (C func-

tion), 237
N_VEnableWrmsNormVectorArray_Petsc (C function),

240
N_VEnableWrmsNormVectorArray_Pthreads (C func-

tion), 235
N_VEnableWrmsNormVectorArray_Serial (C function),

225
N_VGetArrayPointer (C function), 216
N_VGetDeviceArrayPointer_Cuda (C function), 241
N_VGetDeviceArrayPointer_Raja (C function), 245
N_VGetHostArrayPointer_Cuda (C function), 241
N_VGetHostArrayPointer_Raja (C function), 245
N_VGetLength_Cuda (C function), 241
N_VGetLength_OpenMP (C function), 231
N_VGetLength_Parallel (C function), 227
N_VGetLength_Pthreads (C function), 234
N_VGetLength_Raja (C function), 245
N_VGetLength_Serial (C function), 224
N_VGetLocalLength_Cuda (C function), 241
N_VGetLocalLength_Parallel (C function), 227
N_VGetLocalLength_Raja (C function), 245
N_VGetMPIComm_Cuda (C function), 241
N_VGetMPIComm_Raja (C function), 245
N_VGetVector_ParHyp (C function), 236
N_VGetVector_Petsc (C function), 239
N_VGetVectorID (C function), 215
N_VInv (C function), 217
N_VInvTest (C function), 219
N_VIsManagedMemory_Cuda (C function), 241
N_VIsManagedMemory_Raja (C function), 245
N_VL1Norm (C function), 219
N_VLinearCombination (C function), 220
N_VLinearCombinationVectorArray (C function), 222
N_VLinearSum (C function), 216
N_VLinearSumVectorArray (C function), 221
N_VMake_Cuda (C function), 242
N_VMake_OpenMP (C function), 231
N_VMake_Parallel (C function), 227
N_VMake_ParHyp (C function), 236
N_VMake_Petsc (C function), 239
N_VMake_Pthreads (C function), 234
N_VMake_Raja (C function), 246
N_VMake_Serial (C function), 224
N_VMakeManaged_Cuda (C function), 242
N_VMaxNorm (C function), 218
N_VMin (C function), 219

N_VMinQuotient (C function), 220
N_VNew_Cuda (C function), 242
N_VNew_OpenMP (C function), 230
N_VNew_Parallel (C function), 227
N_VNew_Pthreads (C function), 234
N_VNew_Raja (C function), 245
N_VNew_Serial (C function), 224
N_VNewEmpty_Cuda (C function), 242
N_VNewEmpty_OpenMP (C function), 231
N_VNewEmpty_Parallel (C function), 227
N_VNewEmpty_ParHyp (C function), 236
N_VNewEmpty_Petsc (C function), 238
N_VNewEmpty_Pthreads (C function), 234
N_VNewEmpty_Raja (C function), 246
N_VNewEmpty_Serial (C function), 224
N_VNewManaged_Cuda (C function), 242
N_VPrint_Cuda (C function), 243
N_VPrint_OpenMP (C function), 231
N_VPrint_Parallel (C function), 227
N_VPrint_ParHyp (C function), 237
N_VPrint_Petsc (C function), 239
N_VPrint_Pthreads (C function), 234
N_VPrint_Raja (C function), 246
N_VPrint_Serial (C function), 224
N_VPrintFile_Cuda (C function), 243
N_VPrintFile_OpenMP (C function), 231
N_VPrintFile_Parallel (C function), 227
N_VPrintFile_ParHyp (C function), 237
N_VPrintFile_Petsc (C function), 239
N_VPrintFile_Pthreads (C function), 234
N_VPrintFile_Raja (C function), 246
N_VPrintFile_Serial (C function), 224
N_VProd (C function), 217
N_VScale (C function), 217
N_VScaleAddMulti (C function), 220
N_VScaleAddMultiVectorArray (C function), 222
N_VScaleVectorArray (C function), 221
N_VSetArrayPointer (C function), 216
N_VSpace (C function), 216
N_VWl2Norm (C function), 219
N_VWrmsNorm (C function), 218
N_VWrmsNormMask (C function), 218
N_VWrmsNormMaskVectorArray (C function), 222
N_VWrmsNormVectorArray (C function), 222
Newton linear system, 23
Newton update, 23
Newton’s method, 23
NV_COMM_P (C macro), 227
NV_CONTENT_OMP (C macro), 229
NV_CONTENT_OMPDEV (C macro), 247
NV_CONTENT_P (C macro), 226
NV_CONTENT_PT (C macro), 233
NV_CONTENT_S (C macro), 223
NV_DATA_DEV_OMPDEV (C macro), 248

394 Index

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

NV_DATA_HOST_OMPDEV (C macro), 248
NV_DATA_OMP (C macro), 230
NV_DATA_P (C macro), 226
NV_DATA_PT (C macro), 233
NV_DATA_S (C macro), 223
NV_GLOBLENGTH_P (C macro), 226
NV_Ith_OMP (C macro), 230
NV_Ith_P (C macro), 227
NV_Ith_PT (C macro), 234
NV_Ith_S (C macro), 223
NV_LENGTH_OMP (C macro), 230
NV_LENGTH_OMPDEV (C macro), 248
NV_LENGTH_PT (C macro), 233
NV_LENGTH_S (C macro), 223
NV_LOCLENGTH_P (C macro), 226
NV_NUM_THREADS_OMP (C macro), 230
NV_NUM_THREADS_PT (C macro), 233
NV_OWN_DATA_OMP (C macro), 230
NV_OWN_DATA_OMPDEV (C macro), 248
NV_OWN_DATA_P (C macro), 226
NV_OWN_DATA_PT (C macro), 233
NV_OWN_DATA_S (C macro), 223

OPENMP_ENABLE (CMake option), 347

PETSC_ENABLE (CMake option), 347
PETSC_INCLUDE_DIR (CMake option), 347
PETSC_LIBRARY_DIR (CMake option), 347
PSetupFn (C type), 282
PSolveFn (C type), 282
PTHREAD_ENABLE (CMake option), 347

RAJA_ENABLE (CMake option), 347
RCONST, 38, 154, 188
realtype, 38, 154, 188
residual weight vector, 17

Sayfy-Aburub-6-3-4 ERK method, 357, 367
SDIRK-2-1-2 method, 358, 373
SDIRK-5-3-4 method, 358, 377
SM_COLS_B (C macro), 265
SM_COLS_D (C macro), 260
SM_COLUMN_B (C macro), 265
SM_COLUMN_D (C macro), 260
SM_COLUMN_ELEMENT_B (C macro), 265
SM_COLUMNS_B (C macro), 263
SM_COLUMNS_D (C macro), 259
SM_COLUMNS_S (C macro), 271
SM_CONTENT_B (C macro), 263
SM_CONTENT_D (C macro), 259
SM_CONTENT_S (C macro), 269
SM_DATA_B (C macro), 265
SM_DATA_D (C macro), 260
SM_DATA_S (C macro), 271
SM_ELEMENT_B (C macro), 265

SM_ELEMENT_D (C macro), 260
SM_INDEXPTRS_S (C macro), 272
SM_INDEXVALS_S (C macro), 271
SM_LBAND_B (C macro), 263
SM_LDATA_B (C macro), 265
SM_LDATA_D (C macro), 259
SM_LDIM_B (C macro), 263
SM_NNZ_S (C macro), 271
SM_NP_S (C macro), 271
SM_ROWS_B (C macro), 263
SM_ROWS_D (C macro), 259
SM_ROWS_S (C macro), 269
SM_SPARSETYPE_S (C macro), 271
SM_SUBAND_B (C macro), 263
SM_UBAND_B (C macro), 263
SMALL_REAL, 38, 154, 188
SUNBandLinearSolver (C function), 290
SUNBandMatrix (C function), 266
SUNBandMatrix_Cols (C function), 266
SUNBandMatrix_Column (C function), 267
SUNBandMatrix_Columns (C function), 266
SUNBandMatrix_Data (C function), 266
SUNBandMatrix_LDim (C function), 266
SUNBandMatrix_LowerBandwidth (C function), 266
SUNBandMatrix_Print (C function), 266
SUNBandMatrix_Rows (C function), 266
SUNBandMatrix_StoredUpperBandwidth (C function),

266
SUNBandMatrix_UpperBandwidth (C function), 266
SUNBandMatrixStorage (C function), 266
SUNDenseLinearSolver (C function), 289
SUNDenseMatrix (C function), 260
SUNDenseMatrix_Cols (C function), 261
SUNDenseMatrix_Column (C function), 261
SUNDenseMatrix_Columns (C function), 261
SUNDenseMatrix_Data (C function), 261
SUNDenseMatrix_LData (C function), 261
SUNDenseMatrix_Print (C function), 261
SUNDenseMatrix_Rows (C function), 261
SUNDIALS_F77_FUNC_CASE (CMake option), 347
SUNDIALS_INDEX_SIZE (CMake option), 348
SUNDIALS_INDEX_TYPE (CMake option), 348
SUNDIALS_PRECISION (CMake option), 348
SUNDIALSGetVersion (C function), 79, 174, 200
SUNDIALSGetVersionNumber (C function), 79, 174,

200
SUNKLU (C function), 297
SUNKLUReInit (C function), 297
SUNKLUSetOrdering (C function), 297
SUNLapackBand (C function), 294
SUNLapackDense (C function), 292
SUNLinSol_Band (C function), 290
SUNLinSol_Dense (C function), 288
SUNLinSol_KLU (C function), 296

Index 395

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

SUNLinSol_KLUReInit (C function), 296
SUNLinSol_KLUSetOrdering (C function), 297
SUNLinSol_LapackBand (C function), 294
SUNLinSol_LapackDense (C function), 292
SUNLinSol_PCG (C function), 320
SUNLinSol_PCGSetMaxl (C function), 321
SUNLinSol_PCGSetPrecType (C function), 321
SUNLinSol_SPBCGS (C function), 312
SUNLinSol_SPBCGSSetMaxl (C function), 313
SUNLinSol_SPBCGSSetPrecType (C function), 313
SUNLinSol_SPFGMR (C function), 308
SUNLinSol_SPFGMRSetGSType (C function), 308
SUNLinSol_SPFGMRSetMaxRestarts (C function), 308
SUNLinSol_SPFGMRSetPrecType (C function), 308
SUNLinSol_SPGMR (C function), 303
SUNLinSol_SPGMRSetGSType (C function), 304
SUNLinSol_SPGMRSetMaxRestarts (C function), 304
SUNLinSol_SPGMRSetPrecType (C function), 304
SUNLinSol_SPTFQMR (C function), 316
SUNLinSol_SPTFQMRSetMaxl (C function), 316
SUNLinSol_SPTFQMRSetPrecType (C function), 316
SUNLinSol_SuperLUMT (C function), 300
SUNLinSol_SuperLUMTSetOrdering (C function), 300
SUNLinSolFree (C function), 280
SUNLinSolGetType (C function), 278
SUNLinSolInitialize (C function), 279
SUNLinSolLastFlag (C function), 281
SUNLinSolNumIters (C function), 281
SUNLinSolResid (C function), 281
SUNLinSolResNorm (C function), 281
SUNLinSolSetATimes (C function), 280
SUNLinSolSetPreconditioner (C function), 280
SUNLinSolSetScalingVectors (C function), 280
SUNLinSolSetup (C function), 279
SUNLinSolSolve (C function), 279
SUNLinSolSpace (C function), 281
SUNMatClone (C function), 257
SUNMatCopy (C function), 257
SUNMatDestroy (C function), 257
SUNMatGetID (C function), 256
SUNMatMatvec (C function), 258
SUNMatScaleAdd (C function), 257
SUNMatScaleAddI (C function), 258
SUNMatSpace (C function), 257
SUNMatZero (C function), 257
SUNNonlinSol_FixedPoint (C function), 336
SUNNonlinSol_Newton (C function), 333
SUNNonlinSolConvTestFn (C type), 330
SUNNonlinSolFree (C function), 326
SUNNonlinSolGetCurIter (C function), 328
SUNNonlinSolGetNumConvFails (C function), 329
SUNNonlinSolGetNumIters (C function), 328
SUNNonlinSolGetSysFn_FixedPoint (C function), 336
SUNNonlinSolGetSysFn_Newton (C function), 333

SUNNonlinSolGetType (C function), 325
SUNNonlinSolInitialize (C function), 326
SUNNonlinSolLSetupFn (C type), 329
SUNNonlinSolLSolveFn (C type), 330
SUNNonlinSolSetConvTestFn (C function), 328
SUNNonlinSolSetLSetupFn (C function), 327
SUNNonlinSolSetLSolveFn (C function), 327
SUNNonlinSolSetMaxIters (C function), 328
SUNNonlinSolSetSysFn (C function), 327
SUNNonlinSolSetup (C function), 326
SUNNonlinSolSolve (C function), 326
SUNNonlinSolSysFn (C type), 329
SUNPCG (C function), 321
SUNPCGSetMaxl (C function), 321
SUNPCGSetPrecType (C function), 321
SUNSparseFromBandMatrix (C function), 272
SUNSparseFromDenseMatrix (C function), 272
SUNSparseMatrix (C function), 272
SUNSparseMatrix_Columns (C function), 272
SUNSparseMatrix_Data (C function), 273
SUNSparseMatrix_IndexPointers (C function), 273
SUNSparseMatrix_IndexValues (C function), 273
SUNSparseMatrix_NNZ (C function), 273
SUNSparseMatrix_NP (C function), 273
SUNSparseMatrix_Print (C function), 272
SUNSparseMatrix_Realloc (C function), 272
SUNSparseMatrix_Rows (C function), 272
SUNSparseMatrix_SparseType (C function), 273
SUNSPBCGS (C function), 313
SUNSPBCGSSetMaxl (C function), 313
SUNSPBCGSSetPrecType (C function), 313
SUNSPFGMR (C function), 308
SUNSPFGMRSetGSType (C function), 308
SUNSPFGMRSetMaxRestarts (C function), 308
SUNSPFGMRSetPrecType (C function), 308
SUNSPGMR (C function), 304
SUNSPGMRSetGSType (C function), 304
SUNSPGMRSetMaxRestarts (C function), 304
SUNSPGMRSetPrecType (C function), 304
SUNSPTFQMR (C function), 316
SUNSPTFQMRSetMaxl (C function), 317
SUNSPTFQMRSetPrecType (C function), 316
SUNSuperLUMT (C function), 300
SUNSuperLUMTSetOrdering (C function), 301
SUPERLUMT_ENABLE (CMake option), 348
SUPERLUMT_INCLUDE_DIR (CMake option), 348
SUPERLUMT_LIBRARY_DIR (CMake option), 348
SUPERLUMT_THREAD_TYPE (CMake option), 348

TPL_BLAS_LIBRARIES (xSDK CMake option), 349
TPL_ENABLE_BLAS (xSDK CMake option), 349
TPL_ENABLE_HYPRE (xSDK CMake option), 349
TPL_ENABLE_KLU (xSDK CMake option), 349
TPL_ENABLE_LAPACK (xSDK CMake option), 349

396 Index

User Documentation for ARKode v3.1.0
(SUNDIALS v4.1.0),

TPL_ENABLE_PETSC (xSDK CMake option), 349
TPL_ENABLE_SUPERLUMT (xSDK CMake option),

349
TPL_HYPRE_INCLUDE_DIRS (xSDK CMake option),

349
TPL_HYPRE_LIBRARIES (xSDK CMake option), 349
TPL_KLU_INCLUDE_DIRS (xSDK CMake option),

349
TPL_KLU_LIBRARIES (xSDK CMake option), 349
TPL_LAPACK_LIBRARIES (xSDK CMake option),

350
TPL_PETSC_INCLUDE_DIRS (xSDK CMake option),

350
TPL_PETSC_LIBRARIES (xSDK CMake option), 350
TPL_SUPERLUMT_INCLUDE_DIRS (xSDK CMake

option), 350
TPL_SUPERLUMT_LIBRARIES (xSDK CMake op-

tion), 350
TPL_SUPERLUMT_THREAD_TYPE (xSDK CMake

option), 350
TRBDF2-3-3-2 ESDIRK method, 358, 374

UNIT_ROUNDOFF, 38, 154, 188
USE_GENERIC_MATH (CMake option), 348
USE_XSDK_DEFAULTS (xSDK CMake option), 350
User main program, 40, 155, 189

Verner-8-5-6 ERK method, 357, 370

weighted root-mean-square norm, 17

XSDK_ENABLE_FORTRAN (xSDK CMake option),
350

XSDK_INDEX_SIZE (xSDK CMake option), 350
XSDK_PRECISION (xSDK CMake option), 350

Zonneveld-5-3-4 ERK method, 357, 364

Index 397

	Introduction
	Changes from previous versions
	Reading this User Guide
	SUNDIALS Release License

	Mathematical Considerations
	Adaptive single-step methods
	Interpolation
	ARKStep – Additive Runge-Kutta methods
	ERKStep – Explicit Runge-Kutta methods
	MRIStep – Multirate infinitesimal step methods
	Error norms
	Time step adaptivity
	Explicit stability
	Algebraic solvers
	Rootfinding

	Code Organization
	ARKode organization

	Using ARKStep for C and C++ Applications
	Access to library and header files
	Data Types
	Header Files
	A skeleton of the user's main program
	User-callable functions
	User-supplied functions
	Preconditioner modules

	FARKODE, an Interface Module for FORTRAN Applications
	Important note on portability
	Fortran Data Types

	Using ERKStep for C and C++ Applications
	Access to library and header files
	Data Types
	Header Files
	A skeleton of the user's main program
	ERKStep User-callable functions
	User-supplied functions

	Using MRIStep for C and C++ Applications
	Access to library and header files
	Data Types
	Header Files
	A skeleton of the user's main program
	MRIStep User-callable functions
	User-supplied functions

	Butcher Table Data Structure
	ARKodeButcherTable functions

	Vector Data Structures
	Description of the NVECTOR Modules
	Description of the NVECTOR operations
	The NVECTOR_SERIAL Module
	The NVECTOR_PARALLEL Module
	The NVECTOR_OPENMP Module
	The NVECTOR_PTHREADS Module
	The NVECTOR_PARHYP Module
	The NVECTOR_PETSC Module
	The NVECTOR_CUDA Module
	The NVECTOR_RAJA Module
	The NVECTOR_OPENMPDEV Module
	NVECTOR Examples
	NVECTOR functions required by ARKode

	Matrix Data Structures
	Description of the SUNMATRIX Modules
	Description of the SUNMATRIX operations
	Compatibility of SUNMATRIX types
	The SUNMATRIX_DENSE Module
	The SUNMATRIX_BAND Module
	The SUNMATRIX_SPARSE Module
	SUNMATRIX Examples
	SUNMATRIX functions required by ARKode

	Description of the SUNLinearSolver module
	The SUNLinearSolver API
	ARKode SUNLinearSolver interface
	The SUNLinSol_Dense Module
	The SUNLinSol_Band Module
	The SUNLinSol_LapackDense Module
	The SUNLinSol_LapackBand Module
	The SUNLinSol_KLU Module
	The SUNLinSol_SuperLUMT Module
	The SUNLinSol_SPGMR Module
	The SUNLinSol_SPFGMR Module
	The SUNLinSol_SPBCGS Module
	The SUNLinSol_SPTFQMR Module
	The SUNLinSol_PCG Module
	SUNLinearSolver Examples

	Nonlinear Solver Data Structures
	Description of the SUNNonlinearSolver Module

	ARKode Installation Procedure
	CMake-based installation
	Installed libraries and exported header files

	Appendix: ARKode Constants
	ARKode input constants
	ARKode output constants

	Appendix: Butcher tables
	Explicit Butcher tables
	Implicit Butcher tables
	Additive Butcher tables

	Bibliography
	Index

