
The Octave Queueing Package
User’s Guide, Edition 1 for release 1.2.5

2016-12-06

Moreno Marzolla

Copyright c© 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2016 Moreno Marzolla
(moreno.marzolla@unibo.it).

This is the first edition of the Queueing package documentation, and is consistent with
version 1.2.5 of the package.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Portions of this document have been adapted from the octave manual, Copyright c© John
W. Eaton.

mailto:moreno.marzolla@unibo.it

i

Table of Contents

1 Summary . 1
1.1 About the Queueing Package . 1
1.2 Contributing Guidelines . 2
1.3 Acknowledgments . 3

2 Installation and Getting Started 5
2.1 Installation through Octave package management system 5
2.2 Manual installation . 6
2.3 Development sources . 6
2.4 Naming Conventions . 7
2.5 Quick start Guide . 9

3 Markov Chains . 11
3.1 Discrete-Time Markov Chains . 11

3.1.1 State occupancy probabilities . 11
3.1.2 Birth-death process . 13
3.1.3 Expected Number of Visits . 14
3.1.4 Time-averaged expected sojourn times . 15
3.1.5 Mean Time to Absorption . 15
3.1.6 First Passage Times . 16

3.2 Continuous-Time Markov Chains . 17
3.2.1 State occupancy probabilities . 17
3.2.2 Birth-Death Process . 19
3.2.3 Expected Sojourn Times . 19
3.2.4 Time-Averaged Expected Sojourn Times 21
3.2.5 Mean Time to Absorption . 22
3.2.6 First Passage Times . 22

4 Single Station Queueing Systems 25
4.1 The M/M/1 System . 25
4.2 The M/M/m System . 26
4.3 The Erlang-B Formula . 27
4.4 The Erlang-C Formula . 28
4.5 The Engset Formula . 28
4.6 The M/M/inf System . 29
4.7 The M/M/1/K System . 30
4.8 The M/M/m/K System . 31
4.9 The Asymmetric M/M/m System . 32
4.10 The M/G/1 System . 32
4.11 The M/Hm/1 System . 33

ii queueing

5 Queueing Networks . 35
5.1 Introduction to QNs . 35
5.2 Single Class Models . 36

5.2.1 Open Networks . 39
5.2.2 Closed Networks . 41
5.2.3 Non Product-Form QNs . 48

5.3 Multiple Class Models . 50
5.3.1 Open Networks . 52
5.3.2 Closed Networks . 53
5.3.3 Mixed Networks . 58

5.4 Generic Algorithms . 59
5.5 Bounds Analysis . 62
5.6 QN Analysis Examples . 69

5.6.1 Closed, Single Class Network . 69
5.6.2 Open, Single Class Network . 70
5.6.3 Closed Multiclass Network/1 . 71
5.6.4 Closed Multiclass Network/2 . 73
5.6.5 Closed Multiclass Network/3 . 76

6 References . 79

Appendix A GNU GENERAL PUBLIC
LICENSE . 81

Concept Index . 93

Function Index . 95

Author Index . 97

Chapter 1: Summary 1

1 Summary

1.1 About the Queueing Package

This document describes the queueing package for GNU Octave (queueing in short). The
queueing package, previously known as qnetworks toolbox, is a collection of functions
for analyzing queueing networks and Markov chains written for GNU Octave. Specifically,
queueing contains functions for analyzing Jackson networks, open, closed or mixed product-
form BCMP networks, and computing performance bounds. The following algorithms are
available

• Convolution for closed, single-class product-form networks with load-dependent service
centers;

• Exact and approximate Mean Value Analysis (MVA) for single and multiple class
product-form closed networks;

• MVA for mixed, multiple class product-form networks with load-independent service
centers;

• Approximate MVA for closed, single-class networks with blocking (MVABLO algorithm
by F. Akyildiz);

• Asymptotic Bounds, Balanced System Bounds and Geometric Bounds;

queueing provides functions for analyzing the following types of single-station queueing
systems:

• M/M/1

• M/M/m

• M/M/∞
• M/M/1/k single-server, finite capacity system

• M/M/m/k multiple-server, finite capacity system

• Asymmetric M/M/m

• M/G/1 (general service time distribution)

• M/Hm/1 (Hyperexponential service time distribution)

Functions for Markov chain analysis are also provided (discrete- and continuous-time
chains are supported):

• Birth-death processes;

• Transient and stationary state occupancy probabilities;

• Mean time to absorption;

• Expected sojourn times and time-averaged sojourn times;

• Mean first passage times;

The queueing package is distributed under the terms of the GNU General Public License
(GPL), version 3 or later (see Appendix A [Copying], page 81). You are encouraged to share
this software with others, and improve this package by contributing additional functions and
reporting bugs. See Section 1.2 [Contributing Guidelines], page 2.

If you use the queueing package in a technical paper, please cite it as:

2 queueing

Moreno Marzolla, The qnetworks Toolbox: A Software Package for Queueing
Networks Analysis. Khalid Al-Begain, Dieter Fiems and William J. Knotten-
belt, Editors, Proceedings 17th International Conference on Analytical and
Stochastic Modeling Techniques and Applications (ASMTA 2010) Cardiff, UK,
June 14–16, 2010, volume 6148 of Lecture Notes in Computer Science, Springer,
pp. 102–116, ISBN 978-3-642-13567-5

If you use BibTeX, this is the citation block:

@inproceedings{queueing,

author = {Moreno Marzolla},

title = {The qnetworks Toolbox: A Software Package for Queueing

Networks Analysis},

booktitle = {Analytical and Stochastic Modeling Techniques and

Applications, 17th International Conference,

ASMTA 2010, Cardiff, UK, June 14-16, 2010. Proceedings},

editor = {Khalid Al-Begain and Dieter Fiems and William J. Knottenbelt},

year = {2010},

publisher = {Springer},

series = {Lecture Notes in Computer Science},

volume = {6148},

pages = {102--116},

ee = {http://dx.doi.org/10.1007/978-3-642-13568-2_8},

isbn = {978-3-642-13567-5}

}

An early draft of the paper above is available as Technical Report UBLCS-2010-04,
February 2010, Department of Computer Science, University of Bologna, Italy.

1.2 Contributing Guidelines

Contributions and bug reports are always welcome. If you want to contribute to the
queueing package, here are some guidelines:

• If you are contributing a new function, please embed proper documentation within
the function itself. The documentation must be in texinfo format, so that it can be
extracted and included into the printable manual. See the existing functions for the
documentation style.

• Make sure that each new function validates its input parameters. For example, a
function accepting vectors should check whether the dimensions match.

• Provide bibliographic references for each new algorithm you contribute. Document
any significant difference from the reference. Update the doc/references.txi file if
appropriate.

• Include test and demo blocks. Test blocks are particularly important, since most
algorithms are tricky to implement correctly. If appropriate, test blocks should also
verify that the function fails on incorrect inputs.

Send your contribution to Moreno Marzolla (moreno.marzolla@unibo.it). If you are
a user of this package and find it useful, let me know by dropping me a line. Thanks.

http://www.informatica.unibo.it/it/ricerca/technical-report/2010/UBLCS-2010-04
mailto:moreno.marzolla@unibo.it

Chapter 1: Summary 3

1.3 Acknowledgments

The following people (listed alphabetically) contributed to the queueing package, either
by providing feedback, reporting bugs or contributing code: Philip Carinhas, Phil Col-
bourn, Diego Didona, Yves Durand, Marco Guazzone, Dmitry Kolesnikov, Michele Maz-
zucco, Marco Paolieri.

Chapter 2: Installation and Getting Started 5

2 Installation and Getting Started

2.1 Installation through Octave package management system

The most recent version of queueing is 1.2.5 and can be downloaded from Octave-Forge

http://octave.sourceforge.net/queueing/

Additional information can be found at

http://www.moreno.marzolla.name/software/queueing/

To install queueing, follow these steps:

1. If you have a recent version of GNU Octave and a network connection, you can install
queueing from Octave command prompt using this command:

octave:1> pkg install -forge queueing

The command above will automatically download and install the latest version of the
queueing package from Octave Forge, and install it on your machine.

If you do not have root access, you can do a local install using:

octave:1> pkg install -local -forge queueing

This will install queueing in your home directory, and the package will be available to
the current user only.

2. Alternatively, you can first download the queueing tarball from Octave-Forge; to install
the package in the system-wide location issue this command at the Octave prompt:

octave:1> pkg install queueing-1.2.5.tar.gz

(you may need to start Octave as root in order to allow the installation to copy the
files to the target locations). After this, all functions will be available each time Octave
starts, without the need to tweak the search path.

If you do not have root access, you can do a local install using:

octave:1> pkg install -local queueing-1.2.5.tar.gz

Note: Octave version 3.2.3 as shipped with Ubuntu 10.04 LTS seems to
ignore -local and always tries to install the package on the system direc-
tory.

3. Verify that the package is installed using the pkg list command at the Octave prompt;
after successful installation you should see something like that:

octave:1>pkg list queueing

Package Name | Version | Installation directory

--------------+---------+-----------------------

queueing | 1.2.5 | /home/moreno/octave/queueing-1.2.5

4. Starting from version 1.1.1, queueing is no longer automatically loaded on Octave
start. To make the functions available for use, you need to issue the command

octave:1>pkg load queueing

at the Octave prompt. To automatically load queueing each time Octave starts, you
can add the command above to the startup script (usually, ~/.octaverc on Unix
systems).

5. To completely remove queueing from your system, use the pkg uninstall command:

octave:1> pkg uninstall queueing

http://octave.sourceforge.net/queueing/
http://www.moreno.marzolla.name/software/queueing/

6 queueing

2.2 Manual installation

If you want to manually install queueing in a custom location, you can download the tarball
and unpack it somewhere:

tar xvfz queueing-1.2.5.tar.gz

cd queueing-1.2.5/queueing/

Copy all .m files from the inst/ directory to some target location. Then, start Octave
with the -p option to add the target location to the search path, so that Octave will find
all queueing functions automatically:

octave -p /path/to/queueing

For example, if all queueing m-files are in /usr/local/queueing, you can start Octave
as follows:

octave -p /usr/local/queueing

If you want, you can add the following line to ~/.octaverc:

addpath("/path/to/queueing");

so that the path /path/to/queueing is automatically added to the search path each time
Octave is started, and you no longer need to specify the -p option on the command line.

2.3 Development sources

The source code of the queueing package can be found in the Mercurial repository at the
URL:

https://sourceforge.net/p/octave/queueing/ci/default/tree/

The source distribution contains additional development files which are not present in
the installation tarball. This section briefly describes the content of the source tree. This
is only relevant for developers who want to modify the code or the documentation.

The source distribution contains the following directories:

doc/ Documentation sources. Most of the documentation is extracted from the com-
ment blocks of function files from the inst/ directory.

inst/ This directory contains the m-files which implement the various algorithms
provided by queueing. As a notational convention, the names of functions
for Queueing Networks begin with the ‘qn’ prefix; the name of functions for
Continuous-Time Markov Chains (CTMCs) begin with the ‘ctmc’ prefix, and
the names of functions for Discrete-Time Markov Chains (DTMCs) begin with
the ‘dtmc’ prefix.

test/ This directory contains the test scripts used to run all function tests.

devel/ This directory contains functions that are either not working properly, or need
additional testing before they are moved to the inst/ directory.

The queueing package ships with a Makefile which can be used to produce the docu-
mentation (in PDF and HTML format), and automatically execute all function tests. The
following targets are defined:

https://sourceforge.net/p/octave/queueing/ci/default/tree/

Chapter 2: Installation and Getting Started 7

all Running ‘make’ (or ‘make all’) on the top-level directory builds the programs
used to extract the documentation from the comments embedded in the
m-files, and then produce the documentation in PDF and HTML format
(doc/queueing.pdf and doc/queueing.html, respectively).

check Running ‘make check’ will execute all tests contained in the m-files. If you
modify the code of any function in the inst/ directory, you should run the
tests to ensure that no errors have been introduced. You are also encouraged to
contribute new tests, especially for functions that are not adequately validated.

clean

distclean

dist The ‘make clean’, ‘make distclean’ and ‘make dist’ commands are used to
clean up the source directory and prepare the distribution archive in compressed
tar format.

2.4 Naming Conventions

Most of the functions in the queueing package obey a common naming convention. Function
names are made of several parts; the first part is a prefix which indicates the class of
problems the function addresses:

ctmc- Functions for continuous-time Markov chains

dtmc- Functions for discrete-time Markov chains

qs- Functions for analyzing single-station queueing systems (individual service cen-
ters)

qn- Functions for analyzing queueing networks

Functions dealing with Markov chains start with either the ctmc or dtmc prefix; the
prefix is optionally followed by an additional string which hints at what the function does:

-bd Birth-Death process

-mtta Mean Time to Absorption

-fpt First Passage Times

-exps Expected Sojourn Times

-taexps Time-Averaged Expected Sojourn Times

For example, function ctmcbd returns the infinitesimal generator matrix for a continuous
birth-death process, while dtmcbd returns the transition probability matrix for a discrete
birth-death process. Note that there exist functions ctmc and dtmc (without any suffix) that
compute steady-state and transient state occupancy probabilities for CTMCs and DTMCs,
respectively. See Chapter 3 [Markov Chains], page 11.

Functions whose name starts with qs- deal with single station queueing systems. The
suffix describes the type of system, e.g., qsmm1 for M/M/1, qnmmm for M/M/m and so on.
See Chapter 4 [Single Station Queueing Systems], page 25.

Finally, functions whose name starts with qn- deal with queueing networks. The charac-
ter that follows indicates whether the function handles open (’o’) or closed (’c’) networks,

8 queueing

and whether there is a single customer class (’s’) or multiple classes (’m’). The string mix

indicates that the function supports mixed networks with both open and closed customer
classes.

-os- Open, single-class network: open network with a single class of customers

-om- Open, multiclass network: open network with multiple job classes

-cs- Closed, single-class network

-cm- Closed, multiclass network

-mix- Mixed network with open and closed classes of customers

The last part of the function name indicates the algorithm implemented by the function.
See Chapter 5 [Queueing Networks], page 35.

-aba Asymptotic Bounds Analysis

-bsb Balanced System Bounds

-gb Geometric Bounds

-pb PB Bounds

-cb Composite Bounds (CB)

-mva Mean Value Analysis (MVA) algorithm

-cmva Conditional MVA

-mvald MVA with general load-dependent servers

-mvaap Approximate MVA

-mvablo MVABLO approximation for blocking queueing networks

-conv Convolution algorithm

-convld Convolution algorithm with general load-dependent servers

The current version (1.2.5) of the queueing package still supports the naming convention
used in old releases of queueing. These old functions are no longer documented and will
be removed in future releases. Calling one of the deprecate functions results in a warning
message being displayed; the message appears only one time per session:

octave:1> qnclosedab(10,[1 2 3])

a warning: qnclosedab is deprecated. Please use qncsaba instead

⇒ ans = 0.16667

Therefore, your legacy code should run with the current version of the queueing package.
You can turn off all warning messages with the following command:

octave:1> warning ("off", "qn:deprecated-function");

However, it is recommended to update your code to the new API and not ignore the
warnings above. To help you catch usages of deprecated functions you can transform warn-
ings into errors so that your application will stop immediately:

octave:1> warning ("error", "qn:deprecated-function");

Chapter 2: Installation and Getting Started 9

2.5 Quick start Guide

You can use all functions by simply invoking their name with the appropriate parameters;
the queueing package should display an error in case of missing/wrong parameters. Ex-
tensive documentation is provided for each function, and can be displayed with the help

command. For example:

octave:2> help qncsmvablo

prints the documentation for the qncsmvablo function. Additional information can be found
in the queueing manual, which is available in PDF format in doc/queueing.pdf and in
HTML format in doc/queueing.html.

Many functions have demo blocks showing usage examples. To execute the demos for
the qnclosed function, use the demo command:

octave:4> demo qnclosed

We now illustrate a few examples of how the queueing package can be used. More
examples are provided in the manual.

Example 1 Compute the stationary state occupancy probabilities of a continuous-time
Markov chain with infinitesimal generator matrix

Q =

−0.8 0.6 9, 2
0.3 −0.7 0.4
0.2 0.2 −0.4

Q = [-0.8 0.6 0.2; \

0.3 -0.7 0.4; \

0.2 0.2 -0.4];

q = ctmc(Q)

⇒ q = 0.23256 0.32558 0.44186

Example 2 Compute the transient state occupancy probability after n = 3 transitions
of a three state discrete-time birth-death process, with birth probabilities λ01 = 0.3 and
λ12 = 0.5 and death probabilities µ10 = 0.5 and µ21 = 0.7, assuming that the system is
initially in state zero (i.e., the initial state occupancy probabilities are (1, 0, 0)).

n = 3;

p0 = [1 0 0];

P = dtmcbd([0.3 0.5], [0.5 0.7]);

p = dtmc(P,n,p0)

⇒ p = 0.55300 0.29700 0.15000

Example 3 Compute server utilization, response time, mean number of requests and
throughput of a closed queueing network with N = 4 requests and three M/M/1–FCFS
queues with mean service times S = (1.0, 0.8, 1.4) and average number of visits
V = (1.0, 0.8, 0.8)

10 queueing

S = [1.0 0.8 1.4];

V = [1.0 0.8 0.8];

N = 4;

[U R Q X] = qncsmva(N, S, V)

⇒
U = 0.70064 0.44841 0.78471

R = 2.1030 1.2642 3.2433

Q = 1.47346 0.70862 1.81792

X = 0.70064 0.56051 0.56051

Example 4 Compute server utilization, response time, mean number of requests and
throughput of an open queueing network with three M/M/1–FCFS queues with mean
service times S = (1.0, 0.8, 1.4) and average number of visits V = (1.0, 0.8, 0.8). The overall
arrival rate is λ = 0.8 requests/second.

S = [1.0 0.8 1.4];

V = [1.0 0.8 0.8];

lambda = 0.8;

[U R Q X] = qnos(lambda, S, V)

⇒
U = 0.80000 0.51200 0.89600

R = 5.0000 1.6393 13.4615

Q = 4.0000 1.0492 8.6154

X = 0.80000 0.64000 0.64000

Chapter 3: Markov Chains 11

3 Markov Chains

3.1 Discrete-Time Markov Chains

Let X0, X1, . . . , Xn, . . . be a sequence of random variables defined over the discrete state
space 1, 2, The sequence X0, X1, . . . , Xn, . . . is a stochastic process with discrete time
0, 1, 2, A Markov chain is a stochastic process {Xn, n = 0, 1, 2, . . . } which satisfies the
following Markov property:

P (Xn+1 = xn+1 | Xn = xn, Xn−1 = xn−1, . . . , X0 = x0)

= P (Xn+1 = xn+1 | Xn = xn)

which basically means that the probability that the system is in a particular state at time
n+ 1 only depends on the state the system was at time n.

The evolution of a Markov chain with finite state space {1, 2, . . . , N} can be fully de-
scribed by a stochastic matrix P(n) = [Pi,j(n)] where Pi,j(n) = P (Xn+1 = j | Xn = i).
If the Markov chain is homogeneous (that is, the transition probability matrix P(n) is
time-independent), we can write P = [Pi,j], where Pi,j = P (Xn+1 = j | Xn = i) for all
n = 0, 1,

The transition probability matrix P must satisfy the following two properties:

1. Pi,j ≥ 0 for all 1 ≤ i, j ≤ N ;

2.
∑N
j=1 Pi,j = 1 for all i

[Function File][r err] = dtmcchkP (P)
Check whether P is a valid transition probability matrix.

If P is valid, r is the size (number of rows or columns) of P. If P is not a transition
probability matrix, r is set to zero, and err to an appropriate error string.

3.1.1 State occupancy probabilities

Given a discrete-time Markov chain with state space {1, 2, . . . , N}, we denote with π(n) =
(π1(n), π2(n), . . . , πN(n)) the state occupancy probability vector at step n, n = 0, 1,
πi(n) is the probability that the system is in state i after n transitions.

Given the transition probability matrix P and the initial state occupancy probability
vector π(0) = (π1(0), π2(0), . . . , πN(0)), π(n) can be computed as:

π(n) = π(0)Pn

Under certain conditions, there exists a stationary state occupancy probability π =
limn→+∞ π(n), which is independent from π(0). The vector π is the solution of the fol-
lowing linear system: {

πP = π

π1T = 1

where 1 is the row vector of ones, and (·)T the transpose operator.

12 queueing

[Function File]p = dtmc (P)
[Function File]p = dtmc (P, n, p0)

Compute stationary or transient state occupancy probabilities for a discrete-time
Markov chain.

With a single argument, compute the stationary state occupancy probabilities p(1),
..., p(N) for a discrete-time Markov chain with state space {1, 2, . . . , N} and with
N × N transition matrix P. With three arguments, compute the transient state
occupancy probabilities p(1), ..., p(N) that the system is in state i after n steps,
given initial occupancy probabilities p0(1), . . . , p0(N).

INPUTS

P(i,j) transition probability from state i to state j. P must be an N × N
irreducible stochastic matrix, which means that the sum of each row
must be 1 (

∑N
j=1 Pi,j = 1), and the rank of P must be N .

n Number of transitions after which compute the state occupancy proba-
bilities (scalar, n ≥ 0)

p0(i) probability that at step 0 the system is in state i (vector of length N).

OUTPUTS

p(i) If this function is called with a single argument, p(i) is the steady-state
probability that the system is in state i. If this function is called with
three arguments, p(i) is the probability that the system is in state i after
n transitions, given the initial probabilities p0(i) that the initial state is
i.

See also: ctmc.

EXAMPLE

The following example is from [GrSn97], page 79. Let us consider a maze with nine
rooms, as shown in the following figure

+-----+-----+-----+

| | | |

| 1 2 3 |

| | | |

+- -+- -+- -+

| | | |

| 4 5 6 |

| | | |

+- -+- -+- -+

| | | |

| 7 8 9 |

| | | |

+-----+-----+-----+

A mouse is placed in one of the rooms and can wander around. At each step, the mouse
moves from the current room to a neighboring one with equal probability. For example, if
it is in room 1, it can move to room 2 and 4 with probability 1/2, respectively; if the mouse
is in room 8, it can move to either 7, 5 or 9 with probability 1/3.

Chapter 3: Markov Chains 13

The transition probabilities Pi,j from room i to room j can be summarized in the fol-
lowing matrix:

P =

0 1/2 0 1/2 0 0 0 0 0
1/3 0 1/3 0 1/3 0 0 0 0
0 1/2 0 0 0 1/2 0 0 0

1/3 0 0 0 1/3 0 1/3 0 0
0 1/4 0 1/4 0 1/4 0 1/4 0
0 0 1/3 0 1/3 0 0 0 1/3
0 0 0 1/2 0 0 0 1/2 0
0 0 0 0 1/3 0 1/3 0 1/3
0 0 0 0 0 1/2 0 1/2 0

The stationary state occupancy probabilities can then be computed with the following

code:

P = zeros(9,9);

P(1,[2 4]) = 1/2;

P(2,[1 5 3]) = 1/3;

P(3,[2 6]) = 1/2;

P(4,[1 5 7]) = 1/3;

P(5,[2 4 6 8]) = 1/4;

P(6,[3 5 9]) = 1/3;

P(7,[4 8]) = 1/2;

P(8,[7 5 9]) = 1/3;

P(9,[6 8]) = 1/2;

p = dtmc(P);

disp(p)

⇒ 0.083333 0.125000 0.083333 0.125000

0.166667 0.125000 0.083333 0.125000

0.083333

3.1.2 Birth-death process

[Function File]P = dtmcbd (b, d)
Returns the transition probability matrix P for a discrete birth-death process over
state space 1, 2, . . . , N . b(i) is the transition probability from state i to i + 1, and
d(i) is the transition probability from state i+ 1 to state i, i = 1, 2, . . . , N − 1.

Matrix P is therefore defined as:

(1− λ1) λ1

µ1 (1− µ1 − λ2) λ2

µ2 (1− µ2 − λ3) λ3

. . .
. . .

. . .

µN−2 (1− µN−2 − λN−1) λN−1
µN−1 (1− µN−1)

14 queueing

where λi and µi are the birth and death probabilities, respectively.

See also: ctmcbd.

3.1.3 Expected Number of Visits

Given a N state discrete-time Markov chain with transition matrix P and an integer n ≥ 0,
we let Li(n) be the the expected number of visits to state i during the first n transitions.
The vector L(n) = (L1(n), L2(n), . . . , LN(n)) is defined as

L(n) =
n∑
i=0

π(i) =
n∑
i=0

π(0)Pi

where π(i) = π(0)Pi is the state occupancy probability after i transitions, and π(0) =
(π1(0), π2(0), . . . , πN(0)) are the initial state occupancy probabilities.

If P is absorbing, i.e., the stochastic process eventually enters a state with no outgoing
transitions with probability 1, then we can compute the expected number of visits until
absorption L. To do so, we first rearrange the states by rewriting P as:

P =

(
Q R
0 I

)
where the first t states are transient and the last r states are absorbing (t + r = N). The
matrix N = (I−Q)−1 is called the fundamental matrix ; Ni,j is the expected number of times
the process is in the j-th transient state assuming it started in the i-th transient state. If
we reshape N to the size of P (filling missing entries with zeros), we have that, for absorbing
chains, L = π(0)N.

[Function File]L = dtmcexps (P, n, p0)
[Function File]L = dtmcexps (P, p0)

Compute the expected number of visits to each state during the first n transitions,
or until abrosption.

INPUTS

P(i,j) N ×N transition matrix. P(i,j) is the transition probability from state
i to state j.

n Number of steps during which the expected number of visits are computed
(n ≥ 0). If n=0, returns p0. If n > 0, returns the expected number of visits
after exactly n transitions.

p0(i) Initial state occupancy probabilities; p0(i) is the probability that the
system is in state i at step 0.

OUTPUTS

L(i) When called with two arguments, L(i) is the expected number of visits
to transient state i before absorption. When called with three arguments,
L(i) is the expected number of visits to state i during the first n transi-
tions, given initial occupancy probability p0.

See also: ctmcexps.

Chapter 3: Markov Chains 15

3.1.4 Time-averaged expected sojourn times

[Function File]M = dtmctaexps (P, n, p0)
[Function File]M = dtmctaexps (P, p0)

Compute the time-averaged sojourn times M(i), defined as the fraction of time spent
in state i during the first steps {0, 1, . . . , n} (or until absorption), assuming that the
state occupancy probabilities at time 0 are p0.

INPUTS

P(i,j) N ×N transition probability matrix.

Number of transitions during which the time-averaged expected sojourn
times are computed (n ≥ 0). if n = 0, returns p0.

p0(i) Initial state occupancy probabilities.

OUTPUTS

M(i) If this function is called with three arguments, M(i) is the expected frac-
tion of steps {0, 1, . . . , n} spent in state i, assuming that the state occu-
pancy probabilities at time zero are p0. If this function is called with two
arguments, M(i) is the expected fraction of steps spent in state i until
absorption.

See also: ctmctaexps.

3.1.5 Mean Time to Absorption

The mean time to absorption is defined as the average number of transitions that are
required to enter an absorbing state, starting from a transient state (or given initial state
occupancy probabilities π(0)).

Let ti be the expected number of transitions before being absorbed in any absorbing
state, starting from state i. The vector t can be computed from the fundamental matrix N
(see Section 3.1.3 [Expected number of visits (DTMC)], page 14) as

t = 1N

where 1 = {1, 1, . . . 1}.
Let B = [Bi,j] be a matrix where Bi,j is the probability of being absorbed in state j,

starting from transient state i. Again, using matrices N and R (see Section 3.1.3 [Expected
number of visits (DTMC)], page 14) we can write

B = NR

[Function File][t N B] = dtmcmtta (P)
[Function File][t N B] = dtmcmtta (P, p0)

Compute the expected number of steps before absorption for a DTMC with state
space {1, 2, . . . N} and transition probability matrix P.

INPUTS

16 queueing

P(i,j) N×N transition probability matrix. P(i,j) is the transition probability
from state i to state j.

p0(i) Initial state occupancy probabilities (vector of length N).

OUTPUTS

t

t(i) When called with a single argument, t is a vector of length N such that
t(i) is the expected number of steps before being absorbed in any ab-
sorbing state, starting from state i; if i is absorbing, t(i) = 0. When
called with two arguments, t is a scalar, and represents the expected
number of steps before absorption, starting from the initial state occu-
pancy probability p0.

N(i)

N(i,j) When called with a single argument, N is the N ×N fundamental matrix
for P. N(i,j) is the expected number of visits to transient state j before
absorption, if it is started in transient state i. The initial state is counted
if i = j. When called with two arguments, N is a vector of size N such
that N(j) is the expected number of visits to transient state j before
absorption, given initial state occupancy probability P0.

B(i)

B(i,j) When called with a single argument, B is a N ×N matrix where B(i,j)
is the probability of being absorbed in state j, starting from transient
state i; if j is not absorbing, B(i,j) = 0; if i is absorbing, B(i,i) = 1

and B(i,j) = 0 for all j 6= j. When called with two arguments, B is a
vector of size N where B(j) is the probability of being absorbed in state
j, given initial state occupancy probabilities p0.

See also: ctmcmtta.

3.1.6 First Passage Times

The First Passage Time Mi,j is the average number of transitions needed to enter state j
for the first time, starting from state i. Matrix M satisfies the property

Mi,j = 1 +
∑
k 6=j

Pi,kMk,j

To compute M = [Mi,j] a different formulation is used. Let W be the N × N matrix
having each row equal to the stationary state occupancy probability vector π for P; let I be
the N ×N identity matrix (i.e., the matrix of all ones). Define Z as follows:

Z = (I− P+W)
−1

Then, we have that

Mi,j =
Zj,j − Zi,j

πj

Chapter 3: Markov Chains 17

According to the definition above, Mi,i = 0. We arbitrarily set Mi,i to the mean recur-
rence time ri for state i, that is the average number of transitions needed to return to state
i starting from it. ri is:

ri =
1

πi

[Function File]M = dtmcfpt (P)
Compute mean first passage times and mean recurrence times for an irreducible
discrete-time Markov chain over the state space {, 1, . . . , N}.
INPUTS

P(i,j) transition probability from state i to state j. P must be an irreducible
stochastic matrix, which means that the sum of each row must be 1
(
∑N
j=1 Pij = 1), and the rank of P must be N .

OUTPUTS

M(i,j) For all 1 ≤ i 6= j ≤ N , M(i,j) is the average number of transitions before
state j is entered for the first time, starting from state i. M(i,i) is the
mean recurrence time of state i, and represents the average time needed
to return to state i.

See also: ctmcfpt.

3.2 Continuous-Time Markov Chains

A stochastic process {X(t), t ≥ 0} is a continuous-time Markov chain if, for all integers n,
and for any sequence t0, t1, . . . , tn, tn+1 such that t0 < t1 < . . . < tn < tn+1, we have

P (X(tn+1) = xn+1 | X(tn) = xn, X(tn−1) = xn−1, . . . , X(t0) = x0)

= P (X(tn+1) = xn+1 | X(tn) = xn)

A continuous-time Markov chain is defined according to an infinitesimal generator matrix
Q = [Qi,j], where for each i 6= j, Qi,j is the transition rate from state i to state j. The
matrix Q must satisfy the property that, for all i,

∑N
j=1Qi,j = 0.

[Function File][result err] = ctmcchkQ (Q)
If Q is a valid infinitesimal generator matrix, return the size (number of rows or
columns) of Q. If Q is not an infinitesimal generator matrix, set result to zero, and
err to an appropriate error string.

3.2.1 State occupancy probabilities

Similarly to the discrete case, we denote with π(t) = (π1(t), π2(t), . . . , πN(t)) the state
occupancy probability vector at time t. πi(t) is the probability that the system is in state i
at time t ≥ 0.

Given the infinitesimal generator matrix Q and initial state occupancy probabilities
π(0) = (π1(0), π2(0), . . . , πN(0)), the occupancy probabilities π(t) at time t can be computed
as:

18 queueing

π(t) = π(0) exp(Qt)

where exp(Qt) is the matrix exponential of Qt. Under certain conditions, there exists a
stationary state occupancy probability π = limt→+∞ π(t) that is independent from π(0). π
is the solution of the following linear system:

{
πQ = 0

π1T = 1

[Function File]p = ctmc (Q)
[Function File]p = ctmc (Q, t. p0)

Compute stationary or transient state occupancy probabilities for a continuous-time
Markov chain.

With a single argument, compute the stationary state occupancy probabilitiesr
p(1), . . . ,p(N) for a continuous-time Markov chain with state space {1, 2, . . . , N}
and N × N infinitesimal generator matrix Q. With three arguments, compute the
state occupancy probabilities p(1), . . . ,p(N) that the system is in state i at time t,
given initial state occupancy probabilities p0(1), . . . ,p0(N) at time 0.

INPUTS

Q(i,j) Infinitesimal generator matrix. Q is a N×N square matrix where Q(i,j)
is the transition rate from state i to state j, for 1 ≤ i 6= j ≤ N . Q must
satisfy the property that

∑N
j=1Qi,j = 0

t Time at which to compute the transient probability (t ≥ 0). If omitted,
the function computes the steady state occupancy probability vector.

p0(i) probability that the system is in state i at time 0.

OUTPUTS

p(i) If this function is invoked with a single argument, p(i) is the steady-state
probability that the system is in state i, i = 1, . . . , N . If this function is
invoked with three arguments, p(i) is the probability that the system is
in state i at time t, given the initial occupancy probabilities p0(1), . . . ,
p0(N).

See also: dtmc.

EXAMPLE

Consider a two-state CTMC where all transition rates between states are equal to 1.
The stationary state occupancy probabilities can be computed as follows:

Q = [-1 1; ...

1 -1];

q = ctmc(Q)

⇒ q = 0.50000 0.50000

Chapter 3: Markov Chains 19

3.2.2 Birth-Death Process

[Function File]Q = ctmcbd (b, d)
Returns the infinitesimal generator matrix Q for a continuous birth-death process
over the state space {1, 2, . . . , N}. b(i) is the transition rate from state i to i + 1,
and d(i) is the transition rate from state i+ 1 to state i, i = 1, 2, . . . , N − 1.

Matrix Q is therefore defined as:

−λ1 λ1

µ1 −(µ1 + λ2) λ2

µ2 −(µ2 + λ3) λ3

. . .
. . .

. . .

µN−2 −(µN−2 + λN−1) λN−1
µN−1 −µN−1

where λi and µi are the birth and death rates, respectively.

See also: dtmcbd.

3.2.3 Expected Sojourn Times

Given a N state continuous-time Markov Chain with infinitesimal generator matrix Q, we
define the vector L(t) = (L1(t), L2(t), . . . , LN(t)) such that Li(t) is the expected sojourn
time in state i during the interval [0, t), assuming that the initial occupancy probability at
time 0 was π(0). L(t) can be expressed as the solution of the following differential equation:

dL(t)

dt
= L(t)Q+ π(0), L(0) = 0

Alternatively, L(t) can also be expressed in integral form as:

L(t) =

∫ t

0

π(u)du

where π(t) = π(0) exp(Qt) is the state occupancy probability at time t; exp(Qt) is the
matrix exponential of Qt.

If there are absorbing states, we can define the vector of expected sojourn times until
absorption L(∞), where for each transient state i, Li(∞) is the expected total time spent
in state i until absorption, assuming that the system started with given state occupancy
probabilities π(0). Let τ be the set of transient (i.e., non absorbing) states; let Qτ be the
restriction of Q to the transient sub-states only. Similarly, let πτ (0) be the restriction of
the initial state occupancy probability vector π(0) to transient states τ .

The expected time to absorption Lτ (∞) is defined as the solution of the following equa-
tion:

Lτ (∞)Qτ = −πτ (0)

20 queueing

[Function File]L = ctmcexps (Q, t, p)
[Function File]L = ctmcexps (Q, p)

With three arguments, compute the expected times L(i) spent in each state i during
the time interval [0, t], assuming that the initial occupancy vector is p. With two
arguments, compute the expected time L(i) spent in each transient state i until
absorption.

INPUTS

Q(i,j) N ×N infinitesimal generator matrix. Q(i,j) is the transition rate from
state i to state j, 1 ≤ i 6= j ≤ N . The matrix Q must also satisfy the
condition

∑N
j=1Qij = 0.

t If given, compute the expected sojourn times in [0, t]

p(i) Initial occupancy probability vector; p(i) is the probability the system
is in state i at time 0, i = 1, . . . , N

OUTPUTS

L(i) If this function is called with three arguments, L(i) is the expected time
spent in state i during the interval [0, t]. If this function is called with
two arguments L(i) is the expected time spent in transient state i until
absorption; if state i is absorbing, L(i) is zero.

See also: dtmcexps.

EXAMPLE

Let us consider a 4-states pure birth continuous process where the transition rate from
state i to state i+ 1 is λi = iλ (i = 1, 2, 3), with λ = 0.5. The following code computes the
expected sojourn time for each state i, given initial occupancy probabilities π0 = (1, 0, 0, 0).

lambda = 0.5;

N = 4;

b = lambda*[1:N-1];

d = zeros(size(b));

Q = ctmcbd(b,d);

t = linspace(0,10,100);

p0 = zeros(1,N); p0(1)=1;

L = zeros(length(t),N);

for i=1:length(t)

L(i,:) = ctmcexps(Q,t(i),p0);

endfor

plot(t, L(:,1), ";State 1;", "linewidth", 2, ...

t, L(:,2), ";State 2;", "linewidth", 2, ...

t, L(:,3), ";State 3;", "linewidth", 2, ...

t, L(:,4), ";State 4;", "linewidth", 2);

legend("location","northwest"); legend("boxoff");

xlabel("Time");

ylabel("Expected sojourn time");

Chapter 3: Markov Chains 21

3.2.4 Time-Averaged Expected Sojourn Times

[Function File]M = ctmctaexps (Q, t, p0)
[Function File]M = ctmctaexps (Q, p0)

Compute the time-averaged sojourn time M(i), defined as the fraction of the time
interval [0, t] (or until absorption) spent in state i, assuming that the state occupancy
probabilities at time 0 are p.

INPUTS

Q(i,j) Infinitesimal generator matrix. Q(i,j) is the transition rate from state i
to state j, 1 ≤ i 6= j ≤ N . The matrix Q must also satisfy the condition∑N
j=1Qij = 0

t Time. If omitted, the results are computed until absorption.

p0(i) initial state occupancy probabilities. p0(i) is the probability that the
system is in state i at time 0, i = 1, . . . , N

OUTPUTS

M(i) When called with three arguments, M(i) is the expected fraction of the
interval [0, t] spent in state i assuming that the state occupancy proba-
bility at time zero is p. When called with two arguments, M(i) is the
expected fraction of time until absorption spent in state i; in this case
the mean time to absorption is sum(M).

See also: dtmctaexps.

EXAMPLE

lambda = 0.5;

N = 4;

birth = lambda*linspace(1,N-1,N-1);

death = zeros(1,N-1);

Q = diag(birth,1)+diag(death,-1);

Q -= diag(sum(Q,2));

t = linspace(1e-5,30,100);

p = zeros(1,N); p(1)=1;

M = zeros(length(t),N);

for i=1:length(t)

M(i,:) = ctmctaexps(Q,t(i),p);

endfor

clf;

plot(t, M(:,1), ";State 1;", "linewidth", 2, ...

t, M(:,2), ";State 2;", "linewidth", 2, ...

t, M(:,3), ";State 3;", "linewidth", 2, ...

t, M(:,4), ";State 4 (absorbing);", "linewidth", 2);

legend("location","east"); legend("boxoff");

xlabel("Time");

ylabel("Time-averaged Expected sojourn time");

22 queueing

3.2.5 Mean Time to Absorption

[Function File]t = ctmcmtta (Q, p)
Compute the Mean-Time to Absorption (MTTA) of the CTMC described by the
infinitesimal generator matrix Q, starting from initial occupancy probabilities p. If
there are no absorbing states, this function fails with an error.

INPUTS

Q(i,j) N ×N infinitesimal generator matrix. Q(i,j) is the transition rate from
state i to state j, i 6= j. The matrix Q must satisfy the condition∑N
j=1Qij = 0

p(i) probability that the system is in state i at time 0, for each i = 1, . . . , N

OUTPUTS

t Mean time to absorption of the process represented by matrix Q. If there
are no absorbing states, this function fails.

See also: dtmcmtta.

EXAMPLE

Let us consider a simple model of redundant disk array. We assume that the array is
made of 5 independent disks and can tolerate up to 2 disk failures without losing data. If
three or more disks break, the array is dead and unrecoverable. We want to estimate the
Mean-Time-To-Failure (MTTF) of the disk array.

We model this system as a 4 states continuous Markov chain with state space {2, 3, 4, 5}.
In state i there are exactly i active (i.e., non failed) disks; state 2 is absorbing. Let µ be the
failure rate of a single disk. The system starts in state 5 (all disks are operational). We use
a pure death process, where the death rate from state i to state i− 1 is µi, for i = 3, 4, 5).

The MTTF of the disk array is the MTTA of the Markov Chain, and can be computed
as follows:

mu = 0.01;

death = [3 4 5] * mu;

birth = 0*death;

Q = ctmcbd(birth,death);

t = ctmcmtta(Q,[0 0 0 1])

⇒ t = 78.333

REFERENCES

• G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications,
Wiley, 1998.

3.2.6 First Passage Times

[Function File]M = ctmcfpt (Q)
[Function File]m = ctmcfpt (Q, i, j)

Compute mean first passage times for an irreducible continuous-time Markov chain.

INPUTS

Chapter 3: Markov Chains 23

Q(i,j) Infinitesimal generator matrix. Q is a N×N square matrix where Q(i,j)
is the transition rate from state i to state j, for 1 ≤ i 6= j ≤ N . Transition
rates must be nonnegative, and

∑N
j=1Qij = 0

i Initial state.

j Destination state.

OUTPUTS

M(i,j) average time before state j is visited for the first time, starting from state
i. We let M(i,i) = 0.

m m is the average time before state j is visited for the first time, starting
from state i.

See also: dtmcfpt.

Chapter 4: Single Station Queueing Systems 25

4 Single Station Queueing Systems

Single Station Queueing Systems contain a single station, and can usually be analyzed
easily. The queueing package contains functions for handling the following types of queues:

• M/M/1 single-server queueing station;

• M/M/m multiple-server queueing station;

• Asymmetric M/M/m;

• M/M/∞ infinite-server station (delay center);

• M/M/1/K single-server, finite-capacity queueing station;

• M/M/m/K multiple-server, finite-capacity queueing station;

• M/G/1 single-server with general service time distribution;

• M/Hm/1 single-server with hyperexponential service time distribution.

4.1 The M/M/1 System

The M/M/1 system contains a single server connected to an unbounded FCFS queue.
Requests arrive according to a Poisson process with rate λ; the service time is exponentially
distributed with average service rate µ. The system is stable if λ < µ.

[Function File][U, R, Q, X, p0] = qsmm1 (lambda, mu)
Compute utilization, response time, average number of requests and throughput for
a M/M/1 queue.

The steady-state probability πk that there are k jobs in the system, k ≥ 0, can be
computed as:

πk = (1− ρ)ρk

where ρ = λ/µ is the server utilization.

INPUTS

lambda Arrival rate (lambda ≥ 0).

mu Service rate (mu > lambda).

OUTPUTS

U Server utilization

R Server response time

Q Average number of requests in the system

X Server throughput. If the system is ergodic (mu > lambda), we always
have X = lambda

p0 Steady-state probability that there are no requests in the system.

lambda and mu can be vectors of the same size. In this case, the results will be
vectors as well.

See also: qsmmm, qsmminf, qsmmmk.

26 queueing

REFERENCES

• G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications,
Wiley, 1998, Section 6.3.

4.2 The M/M/m System

TheM/M/m system is similar to theM/M/1 system, except that there are m ≥ 1 identical
servers connected to a shared FCFS queue. Thus, at most m requests can be served at the
same time. The M/M/m system can be seen as a single server with load-dependent service
rate µ(n), which is a function of the number n of requests in the system:

µ(n) = min(m,n)µ

where µ is the service rate of each individual server.

[Function File][U, R, Q, X, p0, pm] = qsmmm (lambda, mu)
[Function File][U, R, Q, X, p0, pm] = qsmmm (lambda, mu, m)

Compute utilization, response time, average number of requests in service and
throughput for a M/M/m queue, a queueing system with m identical servers
connected to a single FCFS queue.

The steady-state probability πk that there are k jobs in the system, k ≥ 0, can be
computed as:

πk =

π0

(mρ)k

k!
0 ≤ k ≤ m;

π0

ρkmm

m!
k > m.

where ρ = λ/(mµ) is the individual server utilization. The steady-state probability
π0 that there are no jobs in the system can be computed as:

π0 =

[
m−1∑
k=0

(mρ)k

k!
+

(mρ)m

m!

1

1− ρ

]−1
INPUTS

lambda Arrival rate (lambda>0).

mu Service rate (mu>lambda).

m Number of servers (m ≥ 1). If omitted, it is assumed m=1.

OUTPUTS

U Service center utilization, U = λ/(mµ).

R Service center response time

Q Average number of requests in the system

X Service center throughput. If the system is ergodic, we will always have
X = lambda

Chapter 4: Single Station Queueing Systems 27

p0 Steady-state probability that there are 0 requests in the system

pm Steady-state probability that an arriving request has to wait in the queue

lambda, mu and m can be vectors of the same size. In this case, the results will be
vectors as well.

See also: erlangc,qsmm1,qsmminf,qsmmmk.

REFERENCES

• G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications,
Wiley, 1998, Section 6.5.

4.3 The Erlang-B Formula

[Function File]B = erlangb (A, m)
Compute the value of the Erlang-B formula EB(A,m) giving the probability that an
open system with m identical servers, arrival rate λ, individual service rate µ and
offered load A = λ/µ has all servers busy.

EB(A,m) is defined as:

EB(A,m) =
Am

m!

(
m∑
k=0

Ak

k!

)−1

INPUTS

A Offered load, defined as A = λ/µ where λ is the mean arrival rate and µ
the mean service rate of each individual server (real, A > 0).

m Number of identical servers (integer, m ≥ 1). Default m = 1

OUTPUTS

B The value EB(A,m)

A or m can be vectors, and in this case, the results will be vectors as well.

See also: qsmmm.

REFERENCES

• G. Zeng, Two common properties of the erlang-B function, erlang-C function, and
Engset blocking function, Mathematical and Computer Modelling, Volume 37, Issues
12-13, June 2003, Pages 1287-1296

28 queueing

4.4 The Erlang-C Formula

[Function File]C = erlangc (A, m)
Compute the steady-state probability EC(A,m) that an open queueing system with
m identical servers, infinite wating space, arrival rate λ, individual service rate µ and
offered load A = λ/µ has all the servers busy.

EC(A,m) is defined as:

EC(A,m) =
Am

m!

1

1− ρ

(
m−1∑
k=0

Ak

k!
+
Am

m!

1

1− ρ

)−1

where ρ = A/m = λ/(mµ).

INPUTS

A Offered load. A = \lambda/\mu where
λ is the mean arrival rate and µ the mean service rate of each individual
server (real, 0 < A < m).

m Number of identical servers (integer, m ≥ 1).
Default m = 1

OUTPUTS

B The value EC(A,m)

A or m can be vectors, and in this case, the results will be vectors as well.

See also: qsmmm.

4.5 The Engset Formula

[Function File]B = engset (A, m, n)
Compute the Engset blocking probability Pb(A,m, n) for a system with a finite pop-
ulation of n users, m identical servers, no queue, individual service rate µ, individual
arrival rate λ (i.e., the time until a user tries to request service is exponentially dis-
tributed with mean 1/λ), and offered load A = λ/µ.

Pb(A,m, n) is defined for n > m as:

Pb(A,m, n) =

Am
(
n

m

)
m∑
k=0

Ak
(
n

k

)

and is 0 if n ≤ m.

INPUTS

A Offered load, defined as A = λ/µ where λ is the mean arrival rate and µ
the mean service rate of each individual server (real, A > 0).

m Number of identical servers (integer, m ≥ 1). Default m = 1

Chapter 4: Single Station Queueing Systems 29

n Number of requests (integer, n ≥ 1). Default n = 1

OUTPUTS

B The value Pb(A,m, n)

A, m or n can be vectors, and in this case, the results will be vectors as well.

See also: erlangb, erlangc.

4.6 The M/M/inf System

The M/M/∞ system is a special case of M/M/m system with infinitely many identical
servers (i.e., m = ∞). Each new request is always assigned to a new server, so that
queueing never occurs. The M/M/∞ system is always stable.

[Function File][U, R, Q, X, p0] = qsmminf (lambda, mu)
Compute utilization, response time, average number of requests and throughput for
a M/M/∞ queue.

The M/M/∞ system has an infinite number of identical servers; this kind of system
is always stable for every arrival and service rates.

The steady-state probability πk that there are k requests in the system, k ≥ 0, can
be computed as:

πk =
1

k!

(
λ

µ

)k
e−λ/µ

INPUTS

lambda Arrival rate (lambda>0).

mu Service rate (mu>0).

OUTPUTS

U Traffic intensity (defined as λ/µ). Note that this is different from the
utilization, which in the case of M/M/∞ centers is always zero.

R Service center response time.

Q Average number of requests in the system (which is equal to the traffic
intensity λ/µ).

X Throughput (which is always equal to X = lambda).

p0 Steady-state probability that there are no requests in the system

lambda and mu can be vectors of the same size. In this case, the results will be
vectors as well.

See also: qsmm1,qsmmm,qsmmmk.

REFERENCES

• G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications,
Wiley, 1998, Section 6.4.

30 queueing

4.7 The M/M/1/K System

In a M/M/1/K finite capacity system there is a single server, and there can be at most K
jobs at any time (including the job currently in service), K > 1. If a new request tries to
join the system when there are already K other requests, the request is lost. The queue has
K − 1 slots. The M/M/1/K system is always stable, regardless of the arrival and service
rates.

[Function File][U, R, Q, X, p0, pK] = qsmm1k (lambda, mu, K)
Compute utilization, response time, average number of requests and throughput for a
M/M/1/K finite capacity system. In a M/M/1/K queue there is a single server; the
maximum number of requests in the system is K, and the maximum queue length is
K − 1.

The steady-state probability πk that there are k jobs in the system, 0 ≤ k ≤ K, can
be computed as:

πk =
(1− a)ak

1− aK+1

where a = λ/µ.

INPUTS

lambda Arrival rate (lambda>0).

mu Service rate (mu>0).

K Maximum number of requests allowed in the system (K ≥ 1).

OUTPUTS

U Service center utilization, which is defined as U = 1-p0

R Service center response time

Q Average number of requests in the system

X Service center throughput

p0 Steady-state probability that there are no requests in the system

pK Steady-state probability that there are K requests in the system (i.e.,
that the system is full)

lambda, mu and K can be vectors of the same size. In this case, the results will be
vectors as well.

See also: qsmm1,qsmminf,qsmmm.

Chapter 4: Single Station Queueing Systems 31

4.8 The M/M/m/K System

The M/M/m/K finite capacity system is similar to the M/M/1/k system except that the
number of servers is m, where 1 ≤ m ≤ K. The queue has K −m slots. The M/M/m/K
system is always stable.

[Function File][U, R, Q, X, p0, pK] = qsmmmk (lambda, mu, m, K)
Compute utilization, response time, average number of requests and throughput for a
M/M/m/K finite capacity system. In aM/M/m/K system there arem ≥ 1 identical
service centers sharing a fixed-capacity queue. At any time, at most K ≥ m requests
can be in the system. The maximum queue length is K−m. This function generates
and solves the underlying CTMC.

The steady-state probability πk that there are k jobs in the system, 0 ≤ k ≤ K can
be expressed as:

πk =

ρk

k!
π0 if 0 ≤ k ≤ m;

ρm

m!

(
ρ

m

)k−m
π0 if m < k ≤ K

where ρ = λ/µ is the offered load. The probability π0 that the system is empty can
be computed by considering that all probabilities must sum to one:

∑K
k=0 πk = 1,

which gives:

π0 =

[
m∑
k=0

ρk

k!
+
ρm

m!

K∑
k=m+1

(
ρ

m

)k−m]−1
INPUTS

lambda Arrival rate (lambda>0).

mu Service rate (mu>0).

m Number of servers (m ≥ 1).

K Maximum number of requests allowed in the system, including those in-
side the service centers (K ≥ m).

OUTPUTS

U Service center utilization

R Service center response time

Q Average number of requests in the system

X Service center throughput

p0 Steady-state probability that there are no requests in the system.

pK Steady-state probability that there are K requests in the system (i.e.,
probability that the system is full).

lambda, mu, m and K can be either scalars, or vectors of the same size. In this case,
the results will be vectors as well.

See also: qsmm1,qsmminf,qsmmm.

32 queueing

REFERENCES

• G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications,
Wiley, 1998, Section 6.6.

4.9 The Asymmetric M/M/m System

The Asymmetric M/M/m system contains m servers connected to a single queue. Dif-
ferently from the M/M/m system, in the asymmetric M/M/m each server may have a
different service time.

[Function File][U, R, Q, X] = qsammm (lambda, mu)
Compute approximate utilization, response time, average number of requests in ser-
vice and throughput for an asymmetric M/M/m queue. In this system there are
m different servers connected to a single queue. Each server has its own (possibly
different) service rate. If there is more than one server available, requests are routed
to a randomly-chosen one.

INPUTS

lambda Arrival rate (lambda>0).

mu mu(i) is the service rate of server i, 1 ≤ i ≤ m. The system must be
ergodic (lambda < sum(mu)).

OUTPUTS

U Approximate service center utilization, U = λ/(
∑
i µi).

R Approximate service center response time

Q Approximate number of requests in the system

X Approximate system throughput. If the system is ergodic, X = lambda

See also: qsmmm.

REFERENCES

• G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications,
Wiley, 1998

4.10 The M/G/1 System

[Function File][U, R, Q, X, p0] = qsmg1 (lambda, xavg, x2nd)
Compute utilization, response time, average number of requests and throughput for a
M/G/1 system. The service time distribution is described by its mean xavg, and by
its second moment x2nd. The computations are based on results from L. Kleinrock,
Queuing Systems, Wiley, Vol 2, and Pollaczek-Khinchine formula.

INPUTS

lambda Arrival rate.

xavg Average service time

Chapter 4: Single Station Queueing Systems 33

x2nd Second moment of service time distribution

OUTPUTS

U Service center utilization

R Service center response time

Q Average number of requests in the system

X Service center throughput

p0 probability that there is not any request at system

lambda, xavg, t2nd can be vectors of the same size. In this case, the results will be
vectors as well.

See also: qsmh1.

4.11 The M/Hm/1 System

[Function File][U, R, Q, X, p0] = qsmh1 (lambda, mu, alpha)
Compute utilization, response time, average number of requests and throughput for a
M/Hm/1 system. In this system, the customer service times have hyper-exponential
distribution:

B(x) =
m∑
j=1

αj(1− e−µjx), x > 0

where αj is the probability that the request is served at phase j, in which case the
average service rate is µj. After completing service at phase j, for some j, the request
exits the system.

INPUTS

lambda Arrival rate.

mu mu(j) is the phase j service rate. The total number of phases m is
length(mu).

alpha alpha(j) is the probability that a request is served at phase j. alpha
must have the same size as mu.

OUTPUTS

U Service center utilization

R Service center response time

Q Average number of requests in the system

X Service center throughput

Chapter 5: Queueing Networks 35

5 Queueing Networks

5.1 Introduction to QNs

Queueing Networks (QN) are a simple modeling notation that can be used to analyze many
kinds of systems. In its simplest form, a QN is made of K service centers; center k has a
queue connected to mk (usually identical) servers. Arriving customers (requests) join the
queue if there is at least one slot available. Requests are served according to a (de)queueing
policy (e.g., FIFO). After service completes, requests leave the server and can join another
queue or exit from the system.

Service centers where mk = ∞ are called delay centers or infinite servers. In this kind
of centers, there is always one available server, so that queueing never occurs.

Requests join the queue according to a queueing policy, such as:

FCFS First-Come-First-Served

LCFS-PR Last-Come-First-Served, Preemptive Resume

PS Processor Sharing

IS Infinite Server (mk =∞).

Queueing networks can be open or closed. In open networks there is an infinite population
of requests; new customers are generated outside the system, and eventually leave the
network. In closed networks there is a fixed population of request that never leave the
system.

Queueing models can have a single request class (single class models), meaning that all
requests behave in the same way (e.g., they spend the same average time on each particular
server). In multiple class models there are multiple request classes, each with its own pa-
rameters (e.g., with different service times or different routing probabilities). Furthermore,
in multiclass models there can be open and closed chains of requests at the same time.

A particular class of QN models, product-form networks, is of particular interest.
Product-form networks fulfill the following assumptions:

• The network can consist of open and closed job classes.

• The following queueing disciplines are allowed: FCFS, PS, LCFS-PR and IS.

• Service times for FCFS nodes must be exponentially distributed and class-independent.
Service centers at PS, LCFS-PR and IS nodes can have any kind of service time dis-
tribution with a rational Laplace transform. Furthermore, for PS, LCFS-PR and IS
nodes, different classes of customers can have different service times.

• The service rate of an FCFS node is only allowed to depend on the number of jobs at
this node; in a PS, LCFS-PR and IS node the service rate for a particular job class can
also depend on the number of jobs of that class at the node.

• In open networks two kinds of arrival processes are allowed: i) the arrival process is
Poisson, with arrival rate λ that can depend on the number of jobs in the network. ii)
the arrival process consists of C independent Poisson arrival streams where the C job
sources are assigned to the C chains; the arrival rate can be load dependent.

Product-form networks are attractive because steady-state performance measures can
be efficiently computed.

36 queueing

5.2 Single Class Models

In single class models, all requests are indistinguishable and belong to the same class. This
means that every request has the same average service time, and all requests move through
the system with the same routing probabilities.

Model Inputs

λk (Open models only) External arrival rate to service center k.

λ (Open models only) Overall external arrival rate to the system as a whole:
λ =

∑
k λk.

N (Closed models only) Total number of requests in the system.

Sk Average service time. Sk is the average service time at center k. In other words,
Sk is the average time elapsed from service start to service completion at center
k.

Pi,j Routing probability matrix. P = [Pi,j] is a K × K matrix where Pi,j is the
probability that a request completing service at server i will move directly to
server j. The probability that a request leaves the system after being served at
center i is 1−

∑K
j=1 Pi,j.

Vk Mean number of visits to center k (also called visit ratio or relative arrival rate).

Model Outputs

Uk Service center utilization. Uk is center k utilization. The utilization is defined
as the fraction of time in which the resource is busy (i.e., the server is processing
requests). If center k is a single-server or multiserver node, then 0 ≤ Uk ≤ 1.
If center k is an infinite server node (delay center), then Uk denotes the traffic
intensity and is defined as Uk = XkSk; in this case the utilization may be
greater than one.

Rk Average response time. Rk is the average response time of center k. The average
response time is defined as the average time between the arrival of a request in
the queue and service completion of the same request.

Qk Average number of customers. Qk is the average number of requests in center
k. This includes both the requests in the queue, and those being served.

Xk Throughput. Xk is center k throughput. The throughput is the ratio of job
completions over time, i.e., the average number of jobs completed over a fixed
time interval.

Given the output parameters above, additional performance measures can be computed:

X System throughput, X = Xk/Vk for any k for which Vk 6= 0

R System response time, R =
∑K
k=1RkVk

Q Average number of requests in the system, Q =
∑
k=1Qk; for closed systems,

this can be written as Q = N −XZ;

For open, single class models, the scalar λ denotes the external arrival rate of requests
to the system. The average number of visits Vj satisfy the following equation:

Chapter 5: Queueing Networks 37

Vj = P0,j +
K∑
i=1

ViPi,j j = 1, . . . ,K

where P0,j is the probability that an external request goes to center j. If we denote with λj
the external arrival rate to center j, and λ =

∑
j λj the overall external arrival rate, then

P0,j = λj/λ.

For closed models, the visit ratios satisfy the following equation:
Vj =

K∑
i=1

ViPi,j j = 1, . . . ,K

Vr = 1 for a selected reference station r

Note that the set of traffic equations Vj =
∑K
i=1 ViPi,j alone can only be solved up to a

multiplicative constant; to get a unique solution we impose an additional constraint Vr = 1
for some 1 ≤ r ≤ K. This constraint is equivalent to defining station r as the reference
station; the default is r = 1, see [doc-qncsvisits], page 37. A job that returns to the reference
station is assumed to have completed its activity cycle. The network throughput is set to
the throughput of the reference station.

[Function File]V = qncsvisits (P)
[Function File]V = qncsvisits (P, r)

Compute the mean number of visits to the service centers of a single class, closed
network with K service centers.

INPUTS

P(i,j) probability that a request which completed service at center i is routed
to center j (K × K matrix). For closed networks it must hold that
sum(P,2)==1. The routing graph must be strongly connected, meaning
that each node must be reachable from every other node.

r Index of the reference station, r ∈ {1, . . . ,K}; Default r=1. The traf-
fic equations are solved by imposing the condition V(r) = 1. A request
returning to the reference station completes its activity cycle.

OUTPUTS

V(k) average number of visits to service center k, assuming r as the reference
station.

[Function File]V = qnosvisits (P, lambda)
Compute the average number of visits to the service centers of a single class open
Queueing Network with K service centers.

INPUTS

P(i,j) is the probability that a request which completed service at center i is
routed to center j (K ×K matrix).

lambda(k)

external arrival rate to center k.

38 queueing

OUTPUTS

V(k) average number of visits to server k.

EXAMPLE

0.7

0.3

PS

FCFS

FCFS

CPU

Disk1

Disk2

1

2

3

Figure 5.1: Closed network with a single class of requests

Figure 5.1 shows a closed queueing network with a single class of requests. The network
has three service centers, labeled CPU, Disk1 and Disk2, and is known as a central server
model of a computer system. Requests spend some time at the CPU, which is represented
by a PS (Processor Sharing) node. After that, requests are routed to Disk1 with probability
0.3, and to Disk2 with probability 0.7. Both Disk1 and Disk2 are FCFS nodes.

If we label the servers as CPU=1, Disk1=2, Disk2=3, we can define the routing matrix
as follows:

P =

 0 0.3 0.7
1 0 0
1 0 0

The visit ratios V , using station 1 as the reference station, can be computed with:

P = [0 0.3 0.7; ...

1 0 0 ; ...

1 0 0];

V = qncsvisits(P)

⇒ V = 1.00000 0.30000 0.70000

EXAMPLE

Chapter 5: Queueing Networks 39

0.2

0.5

0.3

λ

CPU

Disk1

Disk2

1

2

3

FCFS

FCFS

PS

Figure 5.2: Open Queueing Network with a single class of requests

Figure 5.2 shows a open QN with a single class of requests. The network has the same
structure as the one in Figure 5.1, with the difference that here we have a stream of jobs
arriving from outside the system, at a rate λ. After service completion at the CPU, a
job can leave the system with probability 0.2, or be transferred to other nodes with the
probabilities shown in the figure.

The routing matrix is

P =

 0 0.3 0.5
1 0 0
1 0 0

If we let λ = 1.2, we can compute the visit ratios V as follows:

p = 0.3;

lambda = 1.2

P = [0 0.3 0.5; ...

1 0 0 ; ...

1 0 0];

V = qnosvisits(P,[1.2 0 0])

⇒ V = 5.0000 1.5000 2.5000

Function qnosvisits expects a vector with K elements as a second parameter, for open
networks only. The vector contains the arrival rates at each individual node; since in our
example external arrivals exist only for node S1 with rate λ = 1.2, the second parameter is
[1.2, 0, 0].

5.2.1 Open Networks

Jackson networks satisfy the following conditions:

• There is only one job class in the network; the total number of jobs in the system is
unbounded.

• There are K service centers in the network. Each service center may have Poisson
arrivals from outside the system. A job can leave the system from any node.

40 queueing

• Arrival rates as well as routing probabilities are independent from the number of nodes
in the network.

• External arrivals and service times at the service centers are exponentially distributed,
and in general can be load-dependent.

• Service discipline at each node is FCFS

We define the joint probability vector π(n1, n2, . . . , nK) as the steady-state probability
that there are nk requests at service center k, for all k = 1, 2, . . . , N . Jackson networks have
the property that the joint probability is the product of the marginal probabilities πk:

π(n1, n2, . . . , nK) =
K∏
k=1

πk(nk)

where πk(nk) is the steady-state probability that there are nk requests at service center k.

[Function File][U, R, Q, X] = qnos (lambda, S, V)
[Function File][U, R, Q, X] = qnos (lambda, S, V, m)

Analyze open, single class BCMP queueing networks with K service centers.

This function works for a subset of BCMP single-class open networks satisfying the
following properties:

• The allowed service disciplines at network nodes are: FCFS, PS, LCFS-PR, IS
(infinite server);

• Service times are exponentially distributed and load-independent;

• Center k can consist of m(k) ≥ 1 identical servers.

• Routing is load-independent

INPUTS

lambda Overall external arrival rate (lambda>0).

S(k) average service time at center k (S(k)>0).

V(k) average number of visits to center k (V(k) ≥ 0).

m(k) number of servers at center i. If m(k) < 1, enter k is a delay center (IS);
otherwise it is a regular queueing center with m(k) servers. Default is
m(k) = 1 for all k.

OUTPUTS

U(k) If k is a queueing center, U(k) is the utilization of center k. If k is an IS
node, then U(k) is the traffic intensity defined as X(k)*S(k).

R(k) center k average response time.

Q(k) average number of requests at center k.

X(k) center k throughput.

See also: qnopen,qnclosed,qnosvisits.

Chapter 5: Queueing Networks 41

From the results computed by this function, it is possible to derive other quantities of
interest as follows:

• System Response Time: The overall system response time can be computed as Rs =∑K
k=1 VkRk

• Average number of requests: The average number of requests in the system can be
computed as:

Qavg =
K∑
k=1

Qk

EXAMPLE

lambda = 3;

V = [16 7 8];

S = [0.01 0.02 0.03];

[U R Q X] = qnos(lambda, S, V);

R_s = dot(R,V) # System response time

N = sum(Q) # Average number in system

a R_s = 1.4062

a N = 4.2186

REFERENCES

• G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications,
Wiley, 1998.

5.2.2 Closed Networks

[Function File][U, R, Q, X, G] = qncsmva (N, S, V)
[Function File][U, R, Q, X, G] = qncsmva (N, S, V, m)
[Function File][U, R, Q, X, G] = qncsmva (N, S, V, m, Z)

Analyze closed, single class queueing networks using the exact Mean Value Analysis
(MVA) algorithm.

The following queueing disciplines are supported: FCFS, LCFS-PR, PS and IS (Infi-
nite Server). This function supports fixed-rate service centers or multiple server nodes.
For general load-dependent service centers, use the function qncsmvald instead.

Additionally, the normalization constant G(n), n = 0, . . . , N is computed; G(n) can
be used in conjunction with the BCMP theorem to compute steady-state probabilities.

INPUTS

N Population size (number of requests in the system, N ≥ 0). If N == 0, this
function returns U = R = Q = X = 0

S(k) mean service time at center k (S(k) ≥ 0).

V(k) average number of visits to service center k (V(k) ≥ 0).

Z External delay for customers (Z ≥ 0). Default is 0.

m(k) number of servers at center k (if m is a scalar, all centers have that
number of servers). If m(k) < 1, center k is a delay center (IS); otherwise

42 queueing

it is a regular queueing center (FCFS, LCFS-PR or PS) with m(k) servers.
Default is m(k) = 1 for all k (each service center has a single server).

OUTPUTS

U(k) If k is a FCFS, LCFS-PR or PS node (m(k) ≥ 1), then U(k) is the uti-
lization of center k, 0 ≤ U(k) ≤ 1. If k is an IS node (m(k) < 1), then
U(k) is the traffic intensity defined as X(k)*S(k). In this case the value
of U(k) may be greater than one.

R(k) center k response time. The Residence Time at center k is R(k) * V(k).
The system response time Rsys can be computed either as Rsys = N/Xsys

- Z or as Rsys = dot(R,V)

Q(k) average number of requests at center k. The number of requests in the
system can be computed either as sum(Q), or using the formula N-Xsys*Z.

X(k) center K throughput. The system throughput Xsys can be computed as
Xsys = X(1) / V(1)

G(n) Normalization constants. G(n+1) contains the value of the normalization
constant G(n), n = 0, . . . , N as array indexes in Octave start from 1.
G(n) can be used in conjunction with the BCMP theorem to compute
steady-state probabilities.

Note on numerical stability: In presence of load-dependent servers (i.e.,
if m(k)>1 for some k), the MVA algorithm is known to be numerically
unstable. Generally the issue manifests itself as negative values for the
response times or utilizations. This is not a problem of the queueing tool-
box, but of the MVA algorithm, and therefore has currently no known
workaround (apart from using a different solution technique, if avail-
able). This function prints a warning if numerical problems are de-
tected; the warning can be disabled with the command warning("off",

"qn:numerical-instability").

See also: qncsmvald,qncscmva.

REFERENCES

• M. Reiser and S. S. Lavenberg, Mean-Value Analysis of Closed Multichain
Queuing Networks, Journal of the ACM, vol. 27, n. 2, April 1980, pp. 313–322.
10.1145/322186.322195

This implementation is described in R. Jain , The Art of Computer Systems Performance
Analysis, Wiley, 1991, p. 577. Multi-server nodes are treated according to G. Bolch, S.
Greiner, H. de Meer and K. Trivedi, Queueing Networks and Markov Chains: Modeling
and Performance Evaluation with Computer Science Applications, Wiley, 1998, Section
8.2.1, "Single Class Queueing Networks".

EXAMPLE

S = [0.125 0.3 0.2];

V = [16 10 5];

N = 20;

m = ones(1,3);

http://doi.acm.org/10.1145/322186.322195

Chapter 5: Queueing Networks 43

Z = 4;

[U R Q X] = qncsmva(N,S,V,m,Z);

X_s = X(1)/V(1); # System throughput

R_s = dot(R,V); # System response time

printf("\t Util Qlen RespT Tput\n");

printf("\t-------- -------- -------- --------\n");

for k=1:length(S)

printf("Dev%d\t%8.4f %8.4f %8.4f %8.4f\n", k, U(k), Q(k), R(k), X(k));

endfor

printf("\nSystem\t %8.4f %8.4f %8.4f\n\n", N-X_s*Z, R_s, X_s);

[Function File][U, R, Q, X] = qncsmvald (N, S, V)
[Function File][U, R, Q, X] = qncsmvald (N, S, V, Z)

Mean Value Analysis algorithm for closed, single class queueing networks with K ser-
vice centers and load-dependent service times. This function supports FCFS, LCFS-
PR, PS and IS nodes. For networks with only fixed-rate centers and multiple-server
nodes, the function qncsmva is more efficient.

INPUTS

N Population size (number of requests in the system, N ≥ 0). If N == 0, this
function returns U = R = Q = X = 0

S(k,n) mean service time at center k where there are n requests, 1 ≤ n ≤ N .
S(k,n) = 1/µk(n), where µk(n) is the service rate of center k when there
are n requests.

V(k) average number of visits to service center k (V(k) ≥ 0).

Z external delay ("think time", Z ≥ 0); default 0.

OUTPUTS

U(k) utilization of service center k. The utilization is defined as the probability
that service center k is not empty, that is, Uk = 1− πk(0) where πk(0) is
the steady-state probability that there are 0 jobs at service center k.

R(k) response time on service center k.

Q(k) average number of requests in service center k.

X(k) throughput of service center k.

Note: In presence of load-dependent servers, the MVA algorithm is known
to be numerically unstable. Generally the problem manifests itself as
negative response times or utilization.

REFERENCES

• M. Reiser and S. S. Lavenberg, Mean-Value Analysis of Closed Multichain
Queuing Networks, Journal of the ACM, vol. 27, n. 2, April 1980, pp. 313–322.
10.1145/322186.322195

This implementation is described in G. Bolch, S. Greiner, H. de Meer and K. Trivedi,
Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Com-
puter Science Applications, Wiley, 1998, Section 8.2.4.1, “Networks with Load-Dependent
Service: Closed Networks”.

http://doi.acm.org/10.1145/322186.322195

44 queueing

[Function File][U, R, Q, X] = qncscmva (N, S, Sld, V)
[Function File][U, R, Q, X] = qncscmva (N, S, Sld, V, Z)

Conditional MVA (CMVA) algorithm, a numerically stable variant of MVA. This
function supports a network of M ≥ 1 service centers and a single delay center.
Servers 1, . . . ,M − 1 are load-independent; server M is load-dependent.

INPUTS

N Number of requests in the system, N ≥ 0. If N == 0, this function returns
U = R = Q = X = 0

S(k) mean service time on server k = 1, . . . ,M − 1 (S(k) > 0). If there are no
fixed-rate servers, then S = []

Sld(n) inverse service rate at server M (the load-dependent server) when there
are n requests, n = 1, . . . , N . Sld(n) = 1/µ(n).

V(k) average number of visits to service center k = 1, . . . ,M , where V(k) ≥
0. V(1:M-1) are the visit rates to the fixed rate servers; V(M) is the visit
rate to the load dependent server.

Z External delay for customers (Z ≥ 0). Default is 0.

OUTPUTS

U(k) center k utilization (k = 1, . . . ,M)

R(k) response time of center k (k = 1, . . . ,M). The system response time Rsys
can be computed as Rsys = N/Xsys - Z

Q(k) average number of requests at center k (k = 1, . . . ,M).

X(k) center k throughput (k = 1, . . . ,M).

REFERENCES

• G. Casale. A note on stable flow-equivalent aggregation in closed networks. Queueing
Syst. Theory Appl., 60:193-202, December 2008, 10.1007/s11134-008-9093-6

[Function File][U, R, Q, X] = qncsmvaap (N, S, V)
[Function File][U, R, Q, X] = qncsmvaap (N, S, V, m)
[Function File][U, R, Q, X] = qncsmvaap (N, S, V, m, Z)
[Function File][U, R, Q, X] = qncsmvaap (N, S, V, m, Z, tol)
[Function File][U, R, Q, X] = qncsmvaap (N, S, V, m, Z, tol, iter_max)

Analyze closed, single class queueing networks using the Approximate Mean Value
Analysis (MVA) algorithm. This function is based on approximating the number of
customers seen at center k when a new request arrives as Qk(N)× (N − 1)/N . This
function only handles single-server and delay centers; if your network contains general
load-dependent service centers, use the function qncsmvald instead.

INPUTS

N Population size (number of requests in the system, N > 0).

S(k) mean service time on server k (S(k)>0).

V(k) average number of visits to service center k (V(k) ≥ 0).

http://dx.doi.org/10.1007/s11134-008-9093-6

Chapter 5: Queueing Networks 45

m(k) number of servers at center k (ifm is a scalar, all centers have that number
of servers). If m(k) < 1, center k is a delay center (IS); if m(k) == 1, center
k is a regular queueing center (FCFS, LCFS-PR or PS) with one server
(default). This function does not support multiple server nodes (m(k) >

1).

Z External delay for customers (Z ≥ 0). Default is 0.

tol Stopping tolerance. The algorithm stops when the maximum relative
difference between the new and old value of the queue lengths Q becomes
less than the tolerance. Default is 10−5.

iter_max Maximum number of iterations (iter_max>0. The function aborts if con-
vergenge is not reached within the maximum number of iterations. De-
fault is 100.

OUTPUTS

U(k) If k is a FCFS, LCFS-PR or PS node (m(k) == 1), then U(k) is the
utilization of center k. If k is an IS node (m(k) < 1), then U(k) is the
traffic intensity defined as X(k)*S(k).

R(k) response time at center k. The system response time Rsys can be com-
puted as Rsys = N/Xsys - Z

Q(k) average number of requests at center k. The number of requests in the
system can be computed either as sum(Q), or using the formula N-Xsys*Z.

X(k) center k throughput. The system throughput Xsys can be computed as
Xsys = X(1) / V(1)

See also: qncsmva,qncsmvald.

REFERENCES

This implementation is based on Edward D. Lazowska, John Zahorjan, G. Scott Graham,
and Kenneth C. Sevcik, Quantitative System Performance: Computer System Analysis
Using Queueing Network Models, Prentice Hall, 1984. http://www.cs.washington.

edu/homes/lazowska/qsp/. In particular, see section 6.4.2.2 ("Approximate Solution
Techniques").

According to the BCMP theorem, the state probability of a closed single class queueing
network with K nodes and N requests can be expressed as:

π(n1, n2, . . . , nK) =
1

G(N)

K∏
k=1

Fk(nk)

Here π(n1, n2, . . . , nK) is the joint probability of having nk requests at node k, for all
k = 1, 2, . . . ,K;

∑K
k=1 nk = N

The convolution algorithms computes the normalization constants G =
(G(0), G(1), . . . , G(N)) for single-class, closed networks with N requests. The normaliza-
tion constants are returned as vector G=[G(1), G(2), ... G(N+1)] where G(i+1) is the
value of G(i) (remember that Octave uses 1-base vectors). The normalization constant

http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.cs.washington.edu/homes/lazowska/qsp/

46 queueing

can be used to compute all performance measures of interest (utilization, average response
time and so on).

queueing implements the convolution algorithm, in the function qncsconv and
qncsconvld. The first one supports single-station nodes, multiple-station nodes and IS
nodes. The second one supports networks with general load-dependent service centers.

[Function File][U, R, Q, X, G] = qncsconv (N, S, V)
[Function File][U, R, Q, X, G] = qncsconv (N, S, V, m)

Analyze product-form, single class closed networks with K service centers using the
convolution algorithm.

Load-independent service centers, multiple servers (M/M/m queues) and IS nodes
are supported. For general load-dependent service centers, use qncsconvld instead.

INPUTS

N Number of requests in the system (N>0).

S(k) average service time on center k (S(k) ≥ 0).

V(k) visit count of service center k (V(k) ≥ 0).

m(k) number of servers at center k. If m(k) < 1, center k is a delay center (IS);
if m(k) ≥ 1, center k it is a regular M/M/m queueing center with m(k)

identical servers. Default is m(k) = 1 for all k.

OUTPUT

U(k) center k utilization. For IS nodes, U(k) is the traffic intensity X(k) *

S(k).

R(k) average response time of center k.

Q(k) average number of customers at center k.

X(k) throughput of center k.

G(n) Vector of normalization constants. G(n+1) contains the value of the nor-
malization constant with n requests G(n), n = 0, . . . , N .

See also: qncsconvld.

NOTE

For a network with K service centers and N requests, this implementation of the con-
volution algorithm has time and space complexity O(NK).

REFERENCES

• Jeffrey P. Buzen, Computational Algorithms for Closed Queueing Networks with Expo-
nential Servers, Communications of the ACM, volume 16, number 9, September 1973,
pp. 527–531. 10.1145/362342.362345

This implementation is based on G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queue-
ing Networks and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications, Wiley, 1998, pp. 313–317.

EXAMPLE

http://doi.acm.org/10.1145/362342.362345

Chapter 5: Queueing Networks 47

The normalization constant G can be used to compute the steady-state probabilities
for a closed single class product-form Queueing Network with K nodes and N requests.
Let n=[n1, n2, . . . , nK] be a valid population vector,

∑K
k=1 nk = N . Then, the steady-state

probability p(k) to have n(k) requests at service center k can be computed as:

pk(nk) =
(VkSk)

nk

G(N)
(G(N − nk)− VkSkG(N − nk − 1)) , k = 1, 2, . . . ,K

n = [1 2 0];

N = sum(n); # Total population size

S = [1/0.8 1/0.6 1/0.4];

m = [2 3 1];

V = [1 .667 .2];

[U R Q X G] = qncsconv(N, S, V, m);

p = [0 0 0]; # initialize p

Compute the probability to have n(k) jobs at service center k

for k=1:3

p(k) = (V(k)*S(k))^n(k) / G(N+1) * ...

(G(N-n(k)+1) - V(k)*S(k)*G(N-n(k)));

printf("Prob(n(%d) = %d)=%f\n", k, n(k), p(k));

endfor

a Prob(n(1) = 1) = 0.17975

a Prob(n(2) = 2) = 0.48404

a Prob(n(3) = 0) = 0.52779

(recall that G(N+1) represents G(N), since in Octave array indices start at one).

[Function File][U, R, Q, X, G] = qncsconvld (N, S, V)
Convolution algorithm for product-form, single-class closed queueing networks with
K general load-dependent service centers.

This function computes steady-state performance measures for single-class, closed
networks with load-dependent service centers using the convolution algorithm; the
normalization constants are also computed. The normalization constants are returned
as vector G=[G(1), ..., G(N+1)] where G(i+1) is the value of G(i).

INPUTS

N Number of requests in the system (N>0).

S(k,n) mean service time at center k where there are n requests, 1 ≤ n ≤ N .
S(k,n) = 1/µk,n, where µk,n is the service rate of center k when there
are n requests.

V(k) visit count of service center k (V(k) ≥ 0). The length of V is the number
of servers K in the network.

OUTPUT

U(k) center k utilization.

R(k) average response time at center k.

Q(k) average number of requests in center k.

48 queueing

X(k) center k throughput.

G(n) Normalization constants (vector). G(n+1) corresponds to G(n), as array
indexes in Octave start from 1.

See also: qncsconv.

REFERENCES

• Herb Schwetman, Some Computational Aspects of Queueing Network Models, Techni-
cal Report CSD-TR-354, Department of Computer Sciences, Purdue University, Febru-
ary 1981 (revised).

• M. Reiser, H. Kobayashi, On The Convolution Algorithm for Separable Queueing Net-
works, In Proceedings of the 1976 ACM SIGMETRICS Conference on Computer Per-
formance Modeling Measurement and Evaluation (Cambridge, Massachusetts, United
States, March 29–31, 1976). SIGMETRICS ’76. ACM, New York, NY, pp. 109–117.
10.1145/800200.806187

This implementation is based on G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queue-
ing Networks and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications, Wiley, 1998, pp. 313–317. Function qncsconvld is slightly different
from the version described in Bolch et al. because it supports general load-dependent centers
(while the version in the book does not). The modification is in the definition of function
F() in qncsconvld which has been made similar to function fi defined in Schwetman, Some
Computational Aspects of Queueing Network Models.

5.2.3 Non Product-Form QNs

[Function File][U, R, Q, X] = qncsmvablo (N, S, M, P)
Approximate MVA algorithm for closed queueing networks with blocking.

INPUTS

N number of requests in the system. N must be strictly greater than zero,
and less than the overall network capacity: 0 < N < sum(M).

S(k) average service time on server k (S(k) > 0).

M(k) capacity of center k. The capacity is the maximum number of requests
in a service center, including the request in service (M(k) ≥ 1).

P(i,j) probability that a request which completes service at server i will be
transferred to server j.

OUTPUTS

U(k) center k utilization.

R(k) average response time of service center k.

Q(k) average number of requests in service center k (including the request in
service).

X(k) center k throughput.

See also: qnopen, qnclosed.

http://docs.lib.purdue.edu/cstech/285/
http://doi.acm.org/10.1145/800200.806187

Chapter 5: Queueing Networks 49

REFERENCES

• Ian F. Akyildiz, Mean Value Analysis for Blocking Queueing Networks, IEEE Transac-
tions on Software Engineering, vol. 14, n. 2, april 1988, pp. 418–428. 10.1109/32.4663

[Function File][U, R, Q, X] = qnmarkov (lambda, S, C, P)
[Function File][U, R, Q, X] = qnmarkov (lambda, S, C, P, m)
[Function File][U, R, Q, X] = qnmarkov (N, S, C, P)
[Function File][U, R, Q, X] = qnmarkov (N, S, C, P, m)

Compute utilization, response time, average queue length and throughput for open
or closed queueing networks with finite capacity. Blocking type is Repetitive-Service
(RS). This function explicitly generates and solve the underlying Markov chain, and
thus might require a large amount of memory.

More specifically, networks which can me analyzed by this function have the following
properties:

• There exists only a single class of customers.

• The network has K service centers. Center k has mk > 0 servers, and has a total
(finite) capacity of Ck ≥ mk which includes both buffer space and servers. The
buffer space at service center k is therefore Ck −mk.

• The network can be open, with external arrival rate to center k equal to λk, or
closed with fixed population size N . For closed networks, the population size N
must be strictly less than the network capacity: N <

∑
iCi.

• Average service times are load-independent.

• Pi,j is the probability that requests completing execution at center i are trans-
ferred to center j, i 6= j. For open networks, a request may leave the system
from any node i with probability 1−

∑
j Pi,j.

• Blocking type is Repetitive-Service (RS). Service center j is saturated if the
number of requests is equal to its capacity Cj. Under the RS blocking discipline,
a request completing service at center i which is being transferred to a saturated
server j is put back at the end of the queue of i and will receive service again.
Center i then processes the next request in queue. External arrivals to a saturated
servers are dropped.

INPUTS

lambda(k)

N If the first argument is a vector lambda, it is considered to be the external
arrival rate lambda(k) ≥ 0 to service center k of an open network. If the
first argument is a scalar, it is considered as the population size N of
a closed network; in this case N must be strictly less than the network
capacity: N < sum(C).

S(k) average service time at service center k

C(k) capacity of service center k. The capacity includes both the buffer and
server space m(k). Thus the buffer space is C(k)-m(k).

P(i,j) transition probability from service center i to service center j.

http://dx.doi.org/10.1109/32.4663

50 queueing

m(k) number of servers at service center k. Note that m(k) ≥ C(k) for each
k. If m is omitted, all service centers are assumed to have a single server
(m(k) = 1 for all k).

OUTPUTS

U(k) center k utilization.

R(k) response time on service center k.

Q(k) average number of customers in the service center k, including the request
in service.

X(k) throughput of service center k.

Note: The space complexity of this implementation is O(
∏K
k=1(Ck+1)2).

The time complexity is dominated by the time needed to solve a linear
system with

∏K
k=1(Ck + 1) unknowns.

5.3 Multiple Class Models

In multiple class queueing models, we assume that there exist C different classes of requests.
Each request from class c spends on average time Sc,k in service at center k. For open
models, we denote with λ = λc,k the arrival rates, where λc,k is the external arrival rate of
class c requests at center k. For closed models, we denote with N = (N1, N2, . . . , NC) the
population vector, where Nc is the number of class c requests in the system.

The transition probability matrix for multiple class networks is a C×K×C×K matrix
P = [Pr,i,s,j] where Pr,i,s,j is the probability that a class r request which completes service
at center i will join server j as a class s request.

Model input and outputs can be adjusted by adding additional indexes for the customer
classes.

Model Inputs

λc,k (open networks) External arrival rate of class-c requests to service center k

λ (open networks) Overall external arrival rate to the whole system:
λ =

∑
c

∑
k λc,k

Nc (closed networks) Number of class c requests in the system.

Sc,k Average service time. Sc,k is the average service time on service center k for
class c requests.

Pr,i,s,j Routing probability matrix. P = [Pr,i,s,j] is a C ×K ×C ×K matrix such that
Pr,i,s,j is the probability that a class r request which completes service at server
i will move to server j as a class s request.

Vc,k Mean number of visits of class c requests to center k.

Model Outputs

Uc,k Utilization of service center k by class c requests. The utilization is defined as
the fraction of time in which the resource is busy (i.e., the server is processing
requests). If center k is a single-server or multiserver node, then 0 ≤ Uc,k ≤ 1.

Chapter 5: Queueing Networks 51

If center k is an infinite server node (delay center), then Uc,k denotes the traffic
intensity and is defined as Uc,k = Xc,kSc,k; in this case the utilization may be
greater than one.

Rc,k Average response time experienced by class c requests on service center k. The
average response time is defined as the average time between the arrival of a
customer in the queue, and the completion of service.

Qc,k Average number of class c requests on service center k. This includes both the
requests in the queue, and the request being served.

Xc,k Throughput of service center k for class c requests. The throughput is defined
as the rate of completion of class c requests.

It is possible to define aggregate performance measures as follows:

Uk Utilization of service center k: Uk =
∑C
c=1 Uc,k

Rc System response time for class c requests: Rc =
∑K
k=1Rc,kVc,k

Qc Average number of class c requests in the system: Qc =
∑K
k=1Qc,k

Xc Class c throughput: Xc = Xc,k/Vc,k for any k for which Vc,k 6= 0

For closed networks, we can define the visit ratios Vs,j for class s customers at service
center j as follows:

Vs,j =
C∑
r=1

K∑
i=1

Vr,iPr,i,s,j, s = 1, . . . , C, j = 1, . . . ,K

Vs,rs = 1 s = 1, . . . , C

where rs is the class s reference station. Similarly to single class models, the traffic equation
for closed multiclass networks can be solved up to multiplicative constants unless we choose
one reference station for each closed chain class and set its visit ratio to 1.

For open networks the traffic equations are as follows:

Vs,j = P0,s,j +
C∑
r=1

K∑
i=1

Vr,iPr,i,s,j s = 1, . . . , C, j = 1, . . . ,K

where P0,s,j is the probability that an external arrival goes to service center j as a class-
s request. If λs,j is the external arrival rate of class s requests to service center j, and
λ =

∑
s

∑
j λs,j is the overall external arrival rate, then P0,s,j = λs,j/λ.

[Function File][V ch] = qncmvisits (P)
[Function File][V ch] = qncmvisits (P, r)

Compute the average number of visits to the service centers of a closed multiclass
network with K service centers and C customer classes.

INPUTS

P(r,i,s,j)

probability that a class r request which completed service at center i is
routed to center j as a class s request. Class switching is allowed.

52 queueing

r(c) index of class c reference station, r(c) ∈ {1, . . . ,K}, 1 ≤ c ≤ C. The class
c visit count to server r(c) (V(c,r(c))) is conventionally set to 1. The
reference station serves two purposes: (i) its throughput is assumed to be
the system throughput, and (ii) a job returning to the reference station
is assumed to have completed one cycle. Default is to consider station 1
as the reference station for all classes.

OUTPUTS

V(c,i) number of visits of class c requests at center i.

ch(c) chain number that class c belongs to. Different classes can belong to the
same chain. Chains are numbered sequentially starting from 1 (1, 2, . . .).
The total number of chains is max(ch).

[Function File]V = qnomvisits (P, lambda)
Compute the visit ratios to the service centers of an open multiclass network with K
service centers and C customer classes.

INPUTS

P(r,i,s,j)

probability that a class r request which completed service at center i is
routed to center j as a class s request. Class switching is supported.

lambda(r,i)

external arrival rate of class r requests to center i.

OUTPUTS

V(r,i) visit ratio of class r requests at center i.

5.3.1 Open Networks

[Function File][U, R, Q, X] = qnom (lambda, S, V)
[Function File][U, R, Q, X] = qnom (lambda, S, V, m)
[Function File][U, R, Q, X] = qnom (lambda, S, P)
[Function File][U, R, Q, X] = qnom (lambda, S, P, m)

Exact analysis of open, multiple-class BCMP networks. The network can be made of
single-server queueing centers (FCFS, LCFS-PR or PS) or delay centers (IS). This
function assumes a network with K service centers and C customer classes.

Note: If this function is called specifying the visit ratios V, class switching
is not allowed. If this function is called specifying the routing probability
matrix P, then class switching is allowed; however, in this case all nodes
are restricted to be fixed rate servers or delay centers: multiple-server and
general load-dependent centers are not supported. Note that the meaning
of parameter lambda is different from one case to the other (see below).

INPUTS

lambda(c)

If this function is invoked as qnom(lambda, S, V, ...), then lambda(c)

is the external arrival rate of class c customers (lambda(c) ≥ 0). If this

Chapter 5: Queueing Networks 53

function is invoked as qnom(lambda, S, P, ...), then lambda(c,k) is
the external arrival rate of class c customers at center k (lambda(c,k) ≥
0).

S(c,k) mean service time of class c customers on the service center k (S(c,k)>0).
For FCFS nodes, mean service times must be class-independent.

V(c,k) visit ratio of class c customers to service center k (V(c,k) ≥ 0). If you
pass this argument, class switching is not allowed

P(r,i,s,j)

probability that a class r job completing service at center i is routed
to center j as a class s job. If you pass argument P, class switching is
allowed; however, all servers must be fixed-rate or infinite-server nodes
(m(k) ≤ 1 for all k).

m(k) number of servers at center k. If m(k) < 1, enter k is a delay center (IS);
otherwise it is a regular queueing center with m(k) servers. Default is
m(k) = 1 for all k.

OUTPUTS

U(c,k) If k is a queueing center, then U(c,k) is the class c utilization of center
k. If k is an IS node, then U(c,k) is the class c traffic intensity defined
as X(c,k)*S(c,k).

R(c,k) class c response time at center k. The system response time for class c
requests can be computed as dot(R, V, 2).

Q(c,k) average number of class c requests at center k. The average number of
class c requests in the system Qc can be computed as Qc = sum(Q, 2)

X(c,k) class c throughput at center k.

See also: qnopen,qnos,qnomvisits.

REFERENCES

•
Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, Quan-
titative System Performance: Computer System Analysis Using Queueing Network
Models, Prentice Hall, 1984. http://www.cs.washington.edu/homes/lazowska/

qsp/. In particular, see section 7.4.1 ("Open Model Solution Techniques").

5.3.2 Closed Networks

[Function File]pop_mix = qncmpopmix (k, N)
Return the set of population mixes for a closed multiclass queueing network with
exactly k customers. Specifically, given a closed multiclass QN with C customer
classes, where there are N(c) class c requests, a k-mix mix is a C-dimensional vector
with the following properties:

all(mix >= 0);

all(mix <= N);

sum(mix) == k;

http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.cs.washington.edu/homes/lazowska/qsp/

54 queueing

pop mix is a matrix with C columns, such that each row represents a valid mix.

INPUTS

k Size of the requested mix (scalar, k ≥ 0).

N(c) number of class c requests (k ≤ sum(N)).

OUTPUTS

pop_mix(i,c)

number of class c requests in the i-th population mix. The number of
mixes is rows(pop_mix).

If you are interested in the number of k-mixes only, you can use the funcion qnmvapop.

See also: qncmnpop.

REFERENCES

• Herb Schwetman, Implementing the Mean Value Algorithm for the Solution of Queue-
ing Network Models, Technical Report 80-355, Department of Computer Sciences, Pur-
due University, revised February 15, 1982.

The slightly different problem of enumerating all tuples k1, k2, . . . , kN such that
∑
i ki = k

and ki ≥ 0, for a given k ≥ 0 has been described in S. Santini, Computing the Indices for
a Complex Summation, unpublished report, available at http://arantxa.ii.uam.es/

~ssantini/writing/notes/s668_summation.pdf

[Function File]H = qncmnpop (N)
Given a network with C customer classes, this function computes the number of k-
mixes H(r,k) that can be constructed by the multiclass MVA algorithm by allocating
k customers to the first r classes.

INPUTS

N(c) number of class-c requests in the system. The total number of requests
in the network is sum(N).

OUTPUTS

H(r,k) is the number of k mixes that can be constructed allocating k customers
to the first r classes.

See also: qncmmva,qncmpopmix.

REFERENCES

Zahorjan, J. and Wong, E. The solution of separable queueing network models using mean
value analysis. SIGMETRICS Perform. Eval. Rev. 10, 3 (Sep. 1981), 80-85. DOI
10.1145/1010629.805477

[Function File][U, R, Q, X] = qncmmva (N, S)
[Function File][U, R, Q, X] = qncmmva (N, S, V)
[Function File][U, R, Q, X] = qncmmva (N, S, V, m)
[Function File][U, R, Q, X] = qncmmva (N, S, V, m, Z)
[Function File][U, R, Q, X] = qncmmva (N, S, P)

http://docs.lib.purdue.edu/cstech/286/
http://arantxa.ii.uam.es/~ssantini/writing/notes/s668_summation.pdf
http://arantxa.ii.uam.es/~ssantini/writing/notes/s668_summation.pdf
http://doi.acm.org/10.1145/1010629.805477

Chapter 5: Queueing Networks 55

[Function File][U, R, Q, X] = qncmmva (N, S, P, r)
[Function File][U, R, Q, X] = qncmmva (N, S, P, r, m)

Compute steady-state performance measures for closed, multiclass queueing networks
using the Mean Value Analysys (MVA) algorithm.

Queueing policies at service centers can be any of the following:

FCFS (First-Come-First-Served) customers are served in order of arrival; mul-
tiple servers are allowed. For this kind of queueing discipline, average
service times must be class-independent.

PS (Processor Sharing) customers are served in parallel by a single server,
each customer receiving an equal share of the service rate.

LCFS-PR (Last-Come-First-Served, Preemptive Resume) customers are served in
reverse order of arrival by a single server and the last arrival preempts
the customer in service who will later resume service at the point of
interruption.

IS (Infinite Server) customers are delayed independently of other customers
at the service center (there is effectively an infinite number of servers).

Note: If this function is called specifying the visit ratios V, then class
switching is not allowed.

If this function is called specifying the routing probability matrix P, then
class switching is allowed; however, in this case all nodes are restricted to
be fixed rate servers or delay centers: multiple-server and general load-
dependent centers are not supported.

INPUTS

N(c) number of class c requests; N(c) ≥ 0. If class c has no requests (N(c)
== 0), then for all k, this function returns U(c,k) = R(c,k) = Q(c,k) =

X(c,k) = 0

S(c,k) mean service time for class c requests at center k (S(c,k) ≥ 0). If the
service time at center k is class-dependent, then center k is assumed
to be of type −/G/1–PS (Processor Sharing). If center k is a FCFS
node (m(k)>1), then the service times must be class-independent, i.e., all
classes must have the same service time.

V(c,k) average number of visits of class c requests at center k; V(c,k) ≥ 0,
default is 1. If you pass this argument, class switching is not allowed

P(r,i,s,j)

probability that a class r request completing service at center i is routed
to center j as a class s request; the reference stations for each class are
specified with the paramter r. If you pass argument P, class switching is
allowed; however, you can not specify any external delay (i.e., Z must be
zero) and all servers must be fixed-rate or infinite-server nodes (m(k) ≤
1 for all k).

r(c) reference station for class c. If omitted, station 1 is the reference station
for all classes. See qncmvisits.

56 queueing

m(k) If m(k)<1, then center k is assumed to be a delay center (IS node−/G/∞).
If m(k)==1, then service center k is a regular queueing center (M/M/1–
FCFS, −/G/1–LCFS-PR or −/G/1–PS). Finally, if m(k)>1, center k is
a M/M/m–FCFS center with m(k) identical servers. Default is m(k)=1
for each k.

Z(c) class c external delay (think time); Z(c) ≥ 0. Default is 0. This parame-
ter can not be used if you pass a routing matrix as the second parameter
of qncmmva.

OUTPUTS

U(c,k) If k is a FCFS, LCFS-PR or PS node (m(k) ≥ 1), then U(c,k) is the
class c utilization at center k, 0 ≤ U(c, k) ≤ 1. If k is an IS node, then
U(c,k) is the class c traffic intensity at center k, defined as U(c,k) =

X(c,k)*S(c,k). In this case the value of U(c,k) may be greater than
one.

R(c,k) class c response time at center k. The class c residence time at center k
is R(c,k) * C(c,k). The total class c system response time is dot(R, V,

2).

Q(c,k) average number of class c requests at center k. The total number of
requests at center k is sum(Q(:,k)). The total number of class c requests
in the system is sum(Q(c,:)).

X(c,k) class c throughput at center k. The class c throughput can be computed
as X(c,1) / V(c,1).

Note on numerical stability: In presence of load-dependent servers (e.g.,
if m(i)>1 for some i), the MVA algorithm is known to be numerically
unstable. Generally this problem shows up as negative values for the
computed response times or utilizations. This is not a problem with
the queueing package, but with the MVA algorithm; as such, there is
no known workaround at the moment (aoart from using a different so-
lution technique, if available). This function prints a warning if it de-
tects numerical problems; you can disable the warning with the command
warning("off", "qn:numerical-instability").

See also: qnclosed, qncmmvaapprox, qncmvisits.

NOTE

Given a network with K service centers, C job classes and population vector N =
(N1, N2, . . . , NC), the MVA algorithm requires space O(C

∏
i(Ni+1)). The time complexity

is O(CK
∏
i(Ni + 1)). This implementation is slightly more space-efficient (see details in

the code). While the space requirement can be mitigated by using some optimizations, the
time complexity can not. If you need to analyze large closed networks you should consider
the qncmmvaap function, which implements the approximate MVA algorithm. Note however
that qncmmvaap will only provide approximate results.

REFERENCES

M. Reiser and S. S. Lavenberg, Mean-Value Analysis of Closed Multichain Queuing Net-
works, Journal of the ACM, vol. 27, n. 2, April 1980, pp. 313–322. 10.1145/322186.322195

http://doi.acm.org/10.1145/322186.322195

Chapter 5: Queueing Networks 57

This implementation is based on G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queue-
ing Networks and Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications, Wiley, 1998 and Edward D. Lazowska, John Zahorjan, G. Scott Gra-
ham, and Kenneth C. Sevcik, Quantitative System Performance: Computer System Analysis
Using Queueing Network Models, Prentice Hall, 1984. http://www.cs.washington.edu/
homes/lazowska/qsp/. In particular, see section 7.4.2.1 ("Exact Solution Techniques").

[Function File][U, R, Q, X] = qncmmvaap (N, S, V)
[Function File][U, R, Q, X] = qncmmvaap (N, S, V, m)
[Function File][U, R, Q, X] = qncmmvaap (N, S, V, m, Z)
[Function File][U, R, Q, X] = qncmmvaap (N, S, V, m, Z, tol)
[Function File][U, R, Q, X] = qncmmvaap (N, S, V, m, Z, tol, iter_max)

Approximate Mean Value Analysis (MVA) for closed, multiclass queueing networks
with K service centers and C customer classes.

This implementation uses Bard and Schweitzer approximation. It is based on the
assumption that

Qi(N− 1c) ≈
n− 1

n
Qi(N)

where N is a valid population mix, N − 1c is the population mix N with one class c
customer removed, and n =

∑
cNc is the total number of requests.

This implementation works for networks with infinite server (IS) and single-server
nodes only.

INPUTS

N(c) number of class c requests in the system (N(c) ≥ 0).

S(c,k) mean service time for class c customers at center k (S(c,k) ≥ 0).

V(c,k) average number of visits of class c requests to center k (V(c,k) ≥ 0).

m(k) number of servers at center k. If m(k) < 1, then the service center k
is assumed to be a delay center (IS). If m(k) == 1, service center k is
a regular queueing center (FCFS, LCFS-PR or PS) with a single server
node. If omitted, each service center has a single server. Note that
multiple server nodes are not supported.

Z(c) class c external delay (Z ≥ 0). Default is 0.

tol Stopping tolerance (tol>0). The algorithm stops if the queue length
computed on two subsequent iterations are less than tol. Default is 10−5.

iter_max Maximum number of iterations (iter_max>0. The function aborts if con-
vergenge is not reached within the maximum number of iterations. De-
fault is 100.

OUTPUTS

U(c,k) If k is a FCFS, LCFS-PR or PS node, then U(c,k) is the utilization of
class c requests on service center k. If k is an IS node, then U(c,k) is the
class c traffic intensity at device k, defined as U(c,k) = X(c)*S(c,k)

R(c,k) response time of class c requests at service center k.

http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.cs.washington.edu/homes/lazowska/qsp/

58 queueing

Q(c,k) average number of class c requests at service center k.

X(c,k) class c throughput at service center k.

See also: qncmmva.

REFERENCES

Y. Bard, Some Extensions to Multiclass Queueing Network Analysis, proc. 4th Int. Symp.
on Modelling and Performance Evaluation of Computer Systems, Feb 1979, pp. 51–62.

P. Schweitzer, Approximate Analysis of Multiclass Closed Networks of Queues, Proc. Int.
Conf. on Stochastic Control and Optimization, jun 1979, pp. 25–29.

This implementation is based on Edward D. Lazowska, John Zahorjan, G. Scott Graham,
and Kenneth C. Sevcik, Quantitative System Performance: Computer System Analysis
Using Queueing Network Models, Prentice Hall, 1984. http://www.cs.washington.

edu/homes/lazowska/qsp/. In particular, see section 7.4.2.2 ("Approximate Solution
Techniques"). This implementation is slightly different from the one described above, as it
computes the average response times R instead of the residence times.

5.3.3 Mixed Networks

[Function File][U, R, Q, X] = qnmix (lambda, N, S, V, m)
Mean Value Analysis for mixed queueing networks. The network consists of K service
centers (single-server or delay centers) and C independent customer chains. Both open
and closed chains are possible. lambda is the vector of per-chain arrival rates (open
classes); N is the vector of populations for closed chains.

Note: In this implementation class switching is not allowed. Each cus-
tomer class must correspond to an independent chain.

If the network is made of open or closed classes only, then this function calls qnom or
qncmmva respectively, and prints a warning message.

INPUTS

lambda(c)

N(c) For each customer chain c:

• if c is a closed chain, then N(c)>0 is the number of class c requests
and lambda(c) must be zero;

• If c is an open chain, lambda(c)>0 is the arrival rate of class c re-
quests and N(c) must be zero;

In other words, for each class c the following must hold:

(lambda(c)>0 && N(c)==0) || (lambda(c)==0 && N(c)>0)

S(c,k) mean class c service time at center k, S(c,k) ≥ 0. For FCFS nodes,
service times must be class-independent.

V(c,k) average number of visits of class c customers to center k (V(c,k) ≥ 0).

m(k) number of servers at center k. Only single-server (m(k)==1) or IS (Infinite
Server) nodes (m(k)<1) are supported. If omitted, each center is assumed
to be of type M/M/1-FCFS. Queueing discipline for single-server nodes
can be FCFS, PS or LCFS-PR.

http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.cs.washington.edu/homes/lazowska/qsp/

Chapter 5: Queueing Networks 59

OUTPUTS

U(c,k) class c utilization at center k.

R(c,k) class c response time at center k.

Q(c,k) average number of class c requests at center k.

X(c,k) class c throughput at center k.

See also: qncmmva, qncm.

REFERENCES

• Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, Quan-
titative System Performance: Computer System Analysis Using Queueing Network
Models, Prentice Hall, 1984. http://www.cs.washington.edu/homes/lazowska/

qsp/. In particular, see section 7.4.3 ("Mixed Model Solution Techniques"). Note that
in this function we compute the mean response time R instead of the mean residence
time as in the reference.

• Herb Schwetman, Implementing the Mean Value Algorithm for the Solution of Queue-
ing Network Models, Technical Report CSD-TR-355, Department of Computer Sci-
ences, Purdue University, revised Feb 15, 1982.

5.4 Generic Algorithms

The queueing package provides a high-level function qnsolve for analyzing QN models.
qnsolve takes as input a high-level description of the queueing model, and delegates the
actual solution of the model to one of the lower-level function. qnsolve supports single or
multiclass models, but at the moment only product-form networks can be analyzed. For
non product-form networks See [Non Product-Form QNs], page 48.

qnsolve accepts two input parameters. The first one is the list of nodes, encoded as an
Octave cell array. The second parameter is the vector of visit ratios V, which can be either
a vector (for single-class models) or a two-dimensional matrix (for multiple-class models).

Individual nodes in the network are structures build using the qnmknode function.

[Function File]Q = qnmknode ("m/m/m-fcfs", S)
[Function File]Q = qnmknode ("m/m/m-fcfs", S, m)
[Function File]Q = qnmknode ("m/m/1-lcfs-pr", S)
[Function File]Q = qnmknode ("-/g/1-ps", S)
[Function File]Q = qnmknode ("-/g/1-ps", S, s2)
[Function File]Q = qnmknode ("-/g/inf", S)
[Function File]Q = qnmknode ("-/g/inf", S, s2)

Creates a node; this function can be used together with qnsolve. It is possible to
create either single-class nodes (where there is only one customer class), or multiple-
class nodes (where the service time is given per-class). Furthermore, it is possible
to specify load-dependent service times. String literals are case-insensitive, so for
example "-/g/inf", "-/G/inf" and "-/g/INF" are all equivalent.

INPUTS

S Mean service time.

http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.cs.washington.edu/homes/lazowska/qsp/
http://docs.lib.purdue.edu/cstech/286/

60 queueing

• If S is a scalar, it is assumed to be a load-independent,
class-independent service time.

• If S is a column vector, then S(c) is assumed to the the load-
independent service time for class c customers.

• If S is a row vector, then S(n) is assumed to be the class-independent
service time at the node, when there are n requests.

• Finally, if S is a two-dimensional matrix, then S(c,n) is assumed to
be the class c service time when there are n requests at the node.

m Number of identical servers at the node. Default is m=1.

s2 Squared coefficient of variation for the service time. Default is 1.0.

The returned struct Q should be considered opaque to the client.

See also: qnsolve.

After the network has been defined, it is possible to solve it using qnsolve.

[Function File][U, R, Q, X] = qnsolve ("closed", N, QQ, V)
[Function File][U, R, Q, X] = qnsolve ("closed", N, QQ, V, Z)
[Function File][U, R, Q, X] = qnsolve ("open", lambda, QQ, V)
[Function File][U, R, Q, X] = qnsolve ("mixed", lambda, N, QQ, V)

High-level function for analyzing QN models.

• For closed networks, the following server types are supported: M/M/m–FCFS,
−/G/∞, −/G/1–LCFS-PR, −/G/1–PS and load-dependent variants.

• For open networks, the following server types are supported: M/M/m–FCFS,
−/G/∞ and −/G/1–PS. General load-dependent nodes are not supported. Mul-
ticlass open networks do not support multiple server M/M/m nodes, but only
single server M/M/1–FCFS.

• For mixed networks, the following server types are supported: M/M/1–FCFS,
−/G/∞ and −/G/1–PS. General load-dependent nodes are not supported.

INPUTS

N

N(c) Number of requests in the system for closed networks. For single-class
networks, N must be a scalar. For multiclass networks, N(c) is the pop-
ulation size of closed class c.

lambda

lambda(c)

External arrival rate (scalar) for open networks. For single-class networks,
lambda must be a scalar. For multiclass networks, lambda(c) is the class
c overall arrival rate.

QQ{i} List of queues in the network. This must be a cell array with N elements,
such that QQ{i} is a struct produced by the qnmknode function.

Z External delay ("think time") for closed networks. Default 0.

OUTPUTS

Chapter 5: Queueing Networks 61

U(k) If k is a FCFS node, then U(k) is the utilization of service center k. If k
is an IS node, then U(k) is the traffic intensity defined as X(k)*S(k).

R(k) average response time of service center k.

Q(k) average number of customers in service center k.

X(k) throughput of service center k.

Note that for multiclass networks, the computed results are per-class utilization, re-
sponse time, number of customers and throughput: U(c,k), R(c,k), Q(c,k), X(c,k).

String literals are case-insensitive, so "closed", "Closed" and "CLoSEd" are all equiv-
alent.

EXAMPLE

Let us consider a closed, multiclass network with C = 2 classes and K = 3 service center.
Let the population be M = (2, 1) (class 1 has 2 requests, and class 2 has 1 request). The
nodes are as follows:

• Node 1 is a M/M/1–FCFS node, with load-dependent service times. Service times are
class-independent, and are defined by the matrix [0.2 0.1 0.1; 0.2 0.1 0.1]. Thus,
S(1,2) = 0.2 means that service time for class 1 customers where there are 2 requests
in 0.2. Note that service times are class-independent;

• Node 2 is a −/G/1–PS node, with service times S1,2 = 0.4 for class 1, and S2,2 = 0.6
for class 2 requests;

• Node 3 is a −/G/∞ node (delay center), with service times S1,3 = 1 and S2,3 = 2 for
class 1 and 2 respectively.

After defining the per-class visit count V such that V(c,k) is the visit count of class c
requests to service center k. We can define and solve the model as follows:

QQ = { qnmknode("m/m/m-fcfs", [0.2 0.1 0.1; 0.2 0.1 0.1]), ...

qnmknode("-/g/1-ps", [0.4; 0.6]), ...

qnmknode("-/g/inf", [1; 2]) };

V = [1 0.6 0.4; ...

1 0.3 0.7];

N = [2 1];

[U R Q X] = qnsolve("closed", N, QQ, V);

[Function File][U, R, Q, X] = qnclosed (N, S, V, . . .)
This function computes steady-state performance measures of closed queueing net-
works using the Mean Value Analysis (MVA) algorithm. The qneneing network is
allowed to contain fixed-capacity centers, delay centers or general load-dependent
centers. Multiple request classes are supported.

This function dispatches the computation to one of qncsemva, qncsmvald or qncmmva.

• If N is a scalar, the network is assumed to have a single class of requests; in this
case, the exact MVA algorithm is used to analyze the network. If S is a vector,
then S(k) is the average service time of center k, and this function calls qncsmva

62 queueing

which supports load-independent service centers. If S is a matrix, S(k,i) is the
average service time at center k when i = 1, . . . , N jobs are present; in this case,
the network is analyzed with the qncmmvald function.

• If N is a vector, the network is assumed to have multiple classes of requests,
and is analyzed using the exact multiclass MVA algorithm as implemented in the
qncmmva function.

See also: qncsmva, qncsmvald, qncmmva.

EXAMPLE

P = [0 0.3 0.7; 1 0 0; 1 0 0]; # Transition probability matrix

S = [1 0.6 0.2]; # Average service times

m = ones(size(S)); # All centers are single-server

Z = 2; # External delay

N = 15; # Maximum population to consider

V = qncsvisits(P); # Compute number of visits

X_bsb_lower = X_bsb_upper = X_ab_lower = X_ab_upper = X_mva = zeros(1,N);

for n=1:N

[X_bsb_lower(n) X_bsb_upper(n)] = qncsbsb(n, S, V, m, Z);

[X_ab_lower(n) X_ab_upper(n)] = qncsaba(n, S, V, m, Z);

[U R Q X] = qnclosed(n, S, V, m, Z);

X_mva(n) = X(1)/V(1);

endfor

close all;

plot(1:N, X_ab_lower,"g;Asymptotic Bounds;", ...

1:N, X_bsb_lower,"k;Balanced System Bounds;", ...

1:N, X_mva,"b;MVA;", "linewidth", 2, ...

1:N, X_bsb_upper,"k", 1:N, X_ab_upper,"g");

axis([1,N,0,1]); legend("location","southeast"); legend("boxoff");

xlabel("Number of Requests n"); ylabel("System Throughput X(n)");

[Function File][U, R, Q, X] = qnopen (lambda, S, V, . . .)
Compute utilization, response time, average number of requests in the system, and
throughput for open queueing networks. If lambda is a scalar, the network is consid-
ered a single-class QN and is solved using qnopensingle. If lambda is a vector, the
network is considered as a multiclass QN and solved using qnopenmulti.

See also: qnos, qnom.

5.5 Bounds Analysis

[Function File][Xl, Xu, Rl, Ru] = qnosaba (lambda, D)
[Function File][Xl, Xu, Rl, Ru] = qnosaba (lambda, S, V)
[Function File][Xl, Xu, Rl, Ru] = qnosaba (lambda, S, V, m)

Compute Asymptotic Bounds for open, single-class networks with K service centers.

INPUTS

lambda Arrival rate of requests (scalar, lambda ≥ 0).

Chapter 5: Queueing Networks 63

D(k) service demand at center k. (vector of length K, D(k) ≥ 0).

S(k) mean service time at center k. (vector of length K, S(k) ≥ 0).

V(k) mean number of visits to center k. (vector of length K, V(k) ≥ 0).

m(k) number of servers at center k. This function only supports M/M/1
queues, therefore m must be ones(size(S)).

OUTPUTS

Xl

Xu Lower and upper bounds on the system throughput. Xl is always set to
0 since there can be no lower bound on the throughput of open networks
(scalar).

Rl

Ru Lower and upper bounds on the system response time. Ru is always set
to +inf since there can be no upper bound on the throughput of open
networks (scalar).

See also: qnomaba.

[Function File][Xl, Xu, Rl, Ru] = qnomaba (lambda, D)
[Function File][Xl, Xu, Rl, Rl] = qnomaba (lambda, S, V)

Compute Asymptotic Bounds for open, multiclass networks with K service centers
and C customer classes.

INPUTS

lambda(c)

class c arrival rate to the system (vector of length C, lambda(c) > 0).

D(c, k) class c service demand at center k (C ×K matrix, D(c, k) ≥ 0).

S(c, k) mean service time of class c requests at center k (C ×K matrix, S(c, k)

≥ 0).

V(c, k) mean number of visits of class c requests at center k (C×K matrix, V(c,
k) ≥ 0).

OUTPUTS

Xl(c)

Xu(c) lower and upper bounds of class c throughput. Xl(c) is always 0 since
there can be no lower bound on the throughput of open networks (vector
of length C).

Rl(c)

Ru(c) lower and upper bounds of class c response time. Ru(c) is always +inf
since there can be no upper bound on the response time of open networks
(vector of length C).

See also: qnombsb.

64 queueing

[Function File][Xl, Xu, Rl, Ru] = qncsaba (N, D)
[Function File][Xl, Xu, Rl, Ru] = qncsaba (N, S, V)
[Function File][Xl, Xu, Rl, Ru] = qncsaba (N, S, V, m)
[Function File][Xl, Xu, Rl, Ru] = qncsaba (N, S, V, m, Z)

Compute Asymptotic Bounds for the system throughput and response time of closed,
single-class networks with K service centers.

Single-server and infinite-server nodes are supported. Multiple-server nodes and gen-
eral load-dependent servers are not supported.

INPUTS

N number of requests in the system (scalar, N>0).

D(k) service demand at center k (D(k) ≥ 0).

S(k) mean service time at center k (S(k) ≥ 0).

V(k) average number of visits to center k (V(k) ≥ 0).

m(k) number of servers at center k (if m is a scalar, all centers have that
number of servers). If m(k) < 1, center k is a delay center (IS); if m(k)
= 1, center k is a M/M/1-FCFS server. This function does not support
multiple-server nodes. Default is 1.

Z External delay (scalar, Z ≥ 0). Default is 0.

OUTPUTS

Xl

Xu Lower and upper bounds on the system throughput.

Rl

Ru Lower and upper bounds on the system response time.

See also: qncmaba.

[Function File][Xl, Xu, Rl, Ru] = qncmaba (N, D)
[Function File][Xl, Xu, Rl, Ru] = qncmaba (N, S, V)
[Function File][Xl, Xu, Rl, Ru] = qncmaba (N, S, V, m)
[Function File][Xl, Xu, Rl, Ru] = qncmaba (N, S, V, m, Z)

Compute Asymptotic Bounds for closed, multiclass networks with K service cen-
ters and C customer classes. Single-server and infinite-server nodes are supported.
Multiple-server nodes and general load-dependent servers are not supported.

INPUTS

N(c) number of class c requests in the system (vector of length C, N(c) ≥ 0).

D(c, k) class c service demand at center k (C ×K matrix, D(c,k) ≥ 0).

S(c, k) mean service time of class c requests at center k (C ×K matrix, S(c,k)
≥ 0).

V(c,k) average number of visits of class c requests to center k (C × K matrix,
V(c,k) ≥ 0).

Chapter 5: Queueing Networks 65

m(k) number of servers at center k (if m is a scalar, all centers have that
number of servers). If m(k) < 1, center k is a delay center (IS); if m(k)
= 1, center k is a M/M/1-FCFS server. This function does not support
multiple-server nodes. Default is 1.

Z(c) class c external delay (vector of length C, Z(c) ≥ 0). Default is 0.

OUTPUTS

Xl(c)

Xu(c) Lower and upper bounds for class c throughput.

Rl(c)

Ru(c) Lower and upper bounds for class c response time.

See also: qncsaba.

REFERENCES

Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, Quanti-
tative System Performance: Computer System Analysis Using Queueing Network Models,
Prentice Hall, 1984. http://www.cs.washington.edu/homes/lazowska/qsp/. In partic-
ular, see section 5.2 ("Asymptotic Bounds").

[Function File][Xl, Xu, Rl, Ru] = qnosbsb (lambda, D)
[Function File][Xl, Xu, Rl, Ru] = qnosbsb (lambda, S, V)

Compute Balanced System Bounds for single-class, open networks with K service
centers.

INPUTS

lambda overall arrival rate to the system (scalar, lambda ≥ 0).

D(k) service demand at center k (D(k) ≥ 0).

S(k) service time at center k (S(k) ≥ 0).

V(k) mean number of visits at center k (V(k) ≥ 0).

m(k) number of servers at center k. This function only supports M/M/1
queues, therefore m must be ones(size(S)).

OUTPUTS

Xl

Xu Lower and upper bounds on the system throughput. Xl is always set to
0, since there can be no lower bound on open networks throughput.

Rl

Ru Lower and upper bounds on the system response time.

See also: qnosaba.

[Function File][Xl, Xu, Rl, Ru] = qncsbsb (N, D)
[Function File][Xl, Xu, Rl, Ru] = qncsbsb (N, S, V)
[Function File][Xl, Xu, Rl, Ru] = qncsbsb (N, S, V, m)

http://www.cs.washington.edu/homes/lazowska/qsp/

66 queueing

[Function File][Xl, Xu, Rl, Ru] = qncsbsb (N, S, V, m, Z)
Compute Balanced System Bounds on system throughput and response time for
closed, single-class networks with K service centers.

INPUTS

N number of requests in the system (scalar, N ≥ 0).

D(k) service demand at center k (D(k) ≥ 0).

S(k) mean service time at center k (S(k) ≥ 0).

V(k) average number of visits to center k (V(k) ≥ 0). Default is 1.

m(k) number of servers at center k. This function supports m(k) = 1 only
(single-eserver FCFS nodes); this parameter is only for compatibility with
qncsaba. Default is 1.

Z External delay (Z ≥ 0). Default is 0.

OUTPUTS

Xl

Xu Lower and upper bound on the system throughput.

Rl

Ru Lower and upper bound on the system response time.

See also: qncmbsb.

REFERENCES

• Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, Quan-
titative System Performance: Computer System Analysis Using Queueing Network
Models, Prentice Hall, 1984. http://www.cs.washington.edu/homes/lazowska/

qsp/. In particular, see section 5.4 ("Balanced Systems Bounds").

[Function File][Xl, Xu, Rl, Ru] = qncmbsb (N, D)
[Function File][Xl, Xu, Rl, Ru] = qncmbsb (N, S, V)

Compute Balanced System Bounds for closed, multiclass networks with K service
centers and C customer classes. Only single-server nodes are supported.

INPUTS

N(c) number of class c requests in the system (vector of length C).

D(c, k) class c service demand at center k (C ×K matrix, D(c,k) ≥ 0).

S(c, k) mean service time of class c requests at center k (C ×K matrix, S(c,k)
≥ 0).

V(c,k) average number of visits of class c requests to center k (C × K matrix,
V(c,k) ≥ 0).

OUTPUTS

Xl(c)

Xu(c) Lower and upper class c throughput bounds (vector of length C).

http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.cs.washington.edu/homes/lazowska/qsp/

Chapter 5: Queueing Networks 67

Rl(c)

Ru(c) Lower and upper class c response time bounds (vector of length C).

See also: qncsbsb.

[Function File][Xl, Xu, Rl, Ru] = qncmcb (N, D)
[Function File][Xl, Xu, Rl, Ru] = qncmcb (N, S, V)

Composite Bound (CB) on throughput and response time for closed multiclass net-
works.

This function implements the Composite Bound Method described in T. Kerola, The
Composite Bound Method (CBM) for Computing Throughput Bounds in Multiple
Class Environments, Technical Report CSD-TR-475, Purdue University, march 13,
1984 (revised august 27, 1984).

INPUTS

N(c) number of class c requests in the system.

D(c, k) class c service demand at center k (S(c,k) ≥ 0).

S(c, k) mean service time of class c requests at center k (S(c,k) ≥ 0).

V(c,k) average number of visits of class c requests to center k (V(c,k) ≥ 0).

OUTPUTS

Xl(c)

Xu(c) Lower and upper class c throughput bounds.

Rl(c)

Ru(c) Lower and upper class c response time bounds.

REFERENCES

• Teemu Kerola, The Composite Bound Method (CBM) for Computing Throughput
Bounds in Multiple Class Environments, Performance Evaluation Vol. 6, Issue 1,
March 1986, DOI 10.1016/0166-5316(86)90002-7. Also available as Technical Report
CSD-TR-475, Department of Computer Sciences, Purdue University, mar 13, 1984
(Revised Aug 27, 1984).

[Function File][Xl, Xu, Rl, Ru] = qncspb (N, D)
[Function File][Xl, Xu, Rl, Ru] = qncspb (N, S, V)
[Function File][Xl, Xu, Rl, Ru] = qncspb (N, S, V, m)
[Function File][Xl, Xu, Rl, Ru] = qncspb (N, S, V, m, Z)

Compute PB Bounds (C. H. Hsieh and S. Lam, 1987) for single-class, closed networks
with K service centers.

INPUTS

number of requests in the system (scalar, N > 0).

D(k) service demand of service center k (D(k) ≥ 0).

S(k) mean service time at center k (S(k) ≥ 0).

V(k) visit ratio to center k (V(k) ≥ 0).

http://dx.doi.org/10.1016/0166-5316(86)90002-7
http://docs.lib.purdue.edu/cstech/395/
http://docs.lib.purdue.edu/cstech/395/

68 queueing

m(k) number of servers at center k. This function only supports M/M/1
queues, therefore m must be ones(size(S)).

Z external delay (think time, Z ≥ 0). Default 0.

OUTPUTS

Xl

Xu Lower and upper bounds on the system throughput.

Rl

Ru Lower and upper bounds on the system response time.

See also: qncsaba, qbcsbsb, qncsgb.

REFERENCES

• C. H. Hsieh and S. Lam, Two classes of performance bounds for closed queueing
networks, Performance Evaluation, Vol. 7 Issue 1, pp. 3–30, February 1987, DOI
10.1016/0166-5316(87)90054-X. Also available as Technical Report TR-85-09, Depart-
ment of Computer Science, University of Texas at Austin, June 1985

This function implements the non-iterative variant described in G. Casale, R. R. Muntz,
G. Serazzi, Geometric Bounds: a Non-Iterative Analysis Technique for Closed Queueing
Networks, IEEE Transactions on Computers, 57(6):780-794, June 2008.

[Function File][Xl, Xu, Rl, Ru, Ql, Qu] = qncsgb (N, D)
[Function File][Xl, Xu, Rl, Ru, Ql, Qu] = qncsgb (N, S, V)
[Function File][Xl, Xu, Rl, Ru, Ql, Qu] = qncsgb (N, S, V, m)
[Function File][Xl, Xu, Rl, Ru, Ql, Qu] = qncsgb (N, S, V, m, Z)

Compute Geometric Bounds (GB) on system throughput, system response time and
server queue lenghts for closed, single-class networks with K service centers and N
requests.

INPUTS

N number of requests in the system (scalar, N > 0).

D(k) service demand of service center k (vector of length K, D(k) ≥ 0).

S(k) mean service time at center k (vector of length K, S(k) ≥ 0).

V(k) visit ratio to center k (vector of length K, V(k) ≥ 0).

m(k) number of servers at center k. This function only supports M/M/1
queues, therefore m must be ones(size(S)).

Z external delay (think time, Z ≥ 0, scalar). Default is 0.

OUTPUTS

Xl

Xu Lower and upper bound on the system throughput. If Z>0, these bounds
are computed using Geometric Square-root Bounds (GSB). If Z==0, these
bounds are computed using Geometric Bounds (GB)

http://dx.doi.org/10.1016/0166-5316(87)90054-X
ftp://ftp.cs.utexas.edu/pub/techreports/tr85-09.pdf

Chapter 5: Queueing Networks 69

Rl

Ru Lower and upper bound on the system response time. These bounds are
derived from Xl and Xu using Little’s Law: Rl = N / Xu - Z, Ru = N / Xl

- Z

Ql(k)

Qu(k) lower and upper bounds of center K queue length.

REFERENCES

• G. Casale, R. R. Muntz, G. Serazzi, Geometric Bounds: a Non-Iterative Analysis
Technique for Closed Queueing Networks, IEEE Transactions on Computers, 57(6):780-
794, June 2008. 10.1109/TC.2008.37

In this implementation we set X+ and X− as the upper and lower Asymptotic Bounds
as computed by the qncsab function, respectively.

5.6 QN Analysis Examples

In this section we illustrate with a few examples how the queueing package can be used to
analyze queueing network models. Further examples can be found in the functions demo
blocks, and can be inspected with the demo function Octave command.

5.6.1 Closed, Single Class Network

Let us consider again the network shown in Figure 5.1. We denote with Sk the average
service time at center k, k = 1, 2, 3. Let the service times be S1 = 1.0, S2 = 2.0 and
S3 = 0.8. The routing of jobs within the network is described with a routing probability
matrix P: a request completing service at center i is enqueued at center j with probability
Pi,j. We use the following routing matrix:

P =

 0 0.3 0.7
1 0 0
1 0 0

The network above can be analyzed with the qnclosed function see [doc-qnclosed],

page 61. qnclosed requires the following parameters:

N Number of requests in the network (since we are considering a closed network,
the number of requests is fixed)

S Array of average service times at the centers: S(k) is the average service time
at center k.

V Array of visit ratios: V(k) is the average number of visits to center k.

We can compute Vk from the routing probability matrix Pi,j using the qncsvisits

function see [doc-qncsvisits], page 37. Therefore, we can analyze the network for a given
population size N (e.g., N = 10) as follows:

http://doi.ieeecomputersociety.org/10.1109/TC.2008.37

70 queueing

N = 10;

S = [1 2 0.8];

P = [0 0.3 0.7; 1 0 0; 1 0 0];

V = qncsvisits(P);

[U R Q X] = qnclosed(N, S, V)

⇒ U = 0.99139 0.59483 0.55518

⇒ R = 7.4360 4.7531 1.7500

⇒ Q = 7.3719 1.4136 1.2144

⇒ X = 0.99139 0.29742 0.69397

The output of qnclosed includes the vectors of utilizations Uk at center k, response time
Rk, average number of customers Qk and throughput Xk. In our example, the throughput
of center 1 is X1 = 0.99139, and the average number of requests in center 3 is Q3 = 1.2144.
The utilization of center 1 is U1 = 0.99139, which is the highest among the service centers.
Thus, center 1 is the bottleneck device.

This network can also be analyzed with the qnsolve function see [doc-qnsolve], page 60.
qnsolve can handle open, closed or mixed networks, and allows the network to be described
in a very flexible way. First, let Q1, Q2 and Q3 be the variables describing the service
centers. Each variable is instantiated with the qnmknode function.

Q1 = qnmknode("m/m/m-fcfs", 1);

Q2 = qnmknode("m/m/m-fcfs", 2);

Q3 = qnmknode("m/m/m-fcfs", 0.8);

The first parameter of qnmknode is a string describing the type of the node;
"m/m/m-fcfs" denotes a M/M/m–FCFS center (this parameter is case-insensitive). The
second parameter gives the average service time. An optional third parameter can be used
to specify the number m of service centers. If omitted, it is assumed m = 1 (single-server
node).

Now, the network can be analyzed as follows:

N = 10;

V = [1 0.3 0.7];

[U R Q X] = qnsolve("closed", N, { Q1, Q2, Q3 }, V)

⇒ U = 0.99139 0.59483 0.55518

⇒ R = 7.4360 4.7531 1.7500

⇒ Q = 7.3719 1.4136 1.2144

⇒ X = 0.99139 0.29742 0.69397

5.6.2 Open, Single Class Network

Let us consider an open network with K = 3 service centers and the following routing
probabilities:

P =

 0 0.3 0.5
1 0 0
1 0 0

In this network, requests can leave the system from center 1 with probability 1− (0.3 +

0.5) = 0.2. We suppose that external jobs arrive at center 1 with rate λ1 = 0.15; there are
no arrivals at centers 2 and 3.

Chapter 5: Queueing Networks 71

Similarly to closed networks, we first compute the visit counts Vk to center k, k = 1, 2, 3.
We use the qnosvisits function as follows:

P = [0 0.3 0.5; 1 0 0; 1 0 0];

lambda = [0.15 0 0];

V = qnosvisits(P, lambda)

⇒ V = 5.00000 1.50000 2.50000

where lambda(k) is the arrival rate at center k, and P is the routing matrix. Assuming
the same service times as in the previous example, the network can be analyzed with the
qnopen function see [doc-qnopen], page 62, as follows:

S = [1 2 0.8];

[U R Q X] = qnopen(sum(lambda), S, V)

⇒ U = 0.75000 0.45000 0.30000

⇒ R = 4.0000 3.6364 1.1429

⇒ Q = 3.00000 0.81818 0.42857

⇒ X = 0.75000 0.22500 0.37500

The first parameter of the qnopen function is the (scalar) aggregate arrival rate.

Again, it is possible to use the qnsolve high-level function:

Q1 = qnmknode("m/m/m-fcfs", 1);

Q2 = qnmknode("m/m/m-fcfs", 2);

Q3 = qnmknode("m/m/m-fcfs", 0.8);

lambda = [0.15 0 0];

[U R Q X] = qnsolve("open", sum(lambda), { Q1, Q2, Q3 }, V)

⇒ U = 0.75000 0.45000 0.30000

⇒ R = 4.0000 3.6364 1.1429

⇒ Q = 3.00000 0.81818 0.42857

⇒ X = 0.75000 0.22500 0.37500

5.6.3 Closed Multiclass Network/1

The following example is taken from Herb Schwetman, Implementing the Mean Value Al-
gorithm for the Solution of Queueing Network Models, Technical Report CSD-TR-355,
Department of Computer Sciences, Purdue University, Feb 15, 1982.

Let us consider the following multiclass QN with three servers and two classes

72 queueing

APL

IMS

SYS

1

2

3

PS

IS

IS

Figure 5.3

Servers 1 and 2 (labeled APL and IMS, respectively) are infinite server nodes; server
3 (labeled SYS) is Processor Sharing (PS). Mean service times are given in the following
table:

APL IMS SYS
Class 1 1 - 0.025
Class 2 - 15 0.500

There is no class switching. If we assume a population of 15 requests for class 1, and 5
requests for class 2, then the model can be analyzed as follows:

S = [1 0 .025; 0 15 .5];

P = zeros(2,3,2,3);

P(1,1,1,3) = P(1,3,1,1) = 1;

P(2,2,2,3) = P(2,3,2,2) = 1;

V = qncmvisits(P,[3 3]); # reference station is station 3

N = [15 5];

m = [-1 -1 1];

[U R Q X] = qncmmva(N,S,V,m)

⇒
U =

14.32312 0.00000 0.35808

0.00000 4.70699 0.15690

R =

1.00000 0.00000 0.04726

0.00000 15.00000 0.93374

Q =

14.32312 0.00000 0.67688

Chapter 5: Queueing Networks 73

0.00000 4.70699 0.29301

X =

14.32312 0.00000 14.32312

0.00000 0.31380 0.31380

5.6.4 Closed Multiclass Network/2

The following example is from M. Marzolla, The qnetworks Toolbox: A Software Package for
Queueing Networks Analysis, Technical Report UBLCS-2010-04, Department of Computer
Science, University of Bologna, Italy, February 2010.

1

3

2

App. Servers

6

5

4

DB Server

Class 1

Class 2

Web Server

Figure 5.4: Three-tier enterprise system model

The model shown in Figure 5.4 shows a three-tier enterprise system with K = 6 service
centers. The first tier contains the Web server (node 1), which is responsible for generating
Web pages and transmitting them to clients. The application logic is implemented by nodes
2 and 3, and the storage tier is made of nodes 4–6.The system is subject to two workload
classes, both represented as closed populations of N1 and N2 requests, respectively. Let Dc,k

denote the service demand of class c requests at center k. We use the parameter values:

Serv. no. Name Class
1

Class
2

1 Web Server 12 2
2 App. Server 1 14 20
3 App. Server 2 23 14
4 DB Server 1 20 90
5 DB Server 2 80 30
6 DB Server 3 31 33

We set the total number of requests to 100, that is N1 +N2 = N = 100, and we study
how different population mixes (N1, N2) affect the system throughput and response time.
Let 0 < β1 < 1 denote the fraction of class 1 requests: N1 = β1N , N2 = (1 − β1)N . The
following Octave code defines the model for β1 = 0.1:

http://www.informatica.unibo.it/it/ricerca/technical-report/2010/UBLCS-2010-04

74 queueing

N = 100; # total population size

beta1 = 0.1; # fraction of class 1 reqs.

S = [12 14 23 20 80 31; \

2 20 14 90 30 33];

V = ones(size(S));

pop = [fix(beta1*N) N-fix(beta1*N)];

[U R Q X] = qncmmva(pop, S, V);

The qncmmva(pop, S, V) function invocation uses the multiclass MVA algorithm to com-
pute per-class utilizations Uc,k, response times Rc,k, mean queue lengths Qc,k and through-
puts Xc,k at each service center k, given a population vector pop, mean service times S
and visit ratios V. Since we are given the service demands Dc,k = Sc,kVc,k, but function
qncmmva requires separate service times and visit ratios, we set the service times equal to
the demands, and all visit ratios equal to one. Overall class and system throughputs and
response times can also be computed:

X1 = X(1,1) / V(1,1) # class 1 throughput

⇒ X1 = 0.0044219

X2 = X(2,1) / V(2,1) # class 2 throughput

⇒ X2 = 0.010128

XX = X1 + X2 # system throughput

⇒ XX = 0.014550

R1 = dot(R(1,:), V(1,:)) # class 1 resp. time

⇒ R1 = 2261.5

R2 = dot(R(2,:), V(2,:)) # class 2 resp. time

⇒ R2 = 8885.9

RR = N / XX # system resp. time

⇒ RR = 6872.7

dot(X,Y) computes the dot product of two vectors. R(1,:) is the first row of matrix R
and V(1,:) is the first row of matrix V, so dot(R(1,:), V(1,:)) computes

∑
kR1,kV1,k.

Chapter 5: Queueing Networks 75

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02
T

h
ro

u
g

h
p

u
t

Throughput and response time vs population mix

Class 1 Class 2 System

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

Class 1 population mix

R
e

s
p

o
n

s
e

 T
im

e

Class 1 Class 2 System

Figure 5.5: Throughput and Response Times as a function of the population mix

We can also compute the system power Φ = X/R, which defines how efficiently resources
are being used: high values of Φ denote the desirable situation of high throughput and low
response time. Figure 5.6 shows Φ as a function of β1. We observe a “plateau” of the
global system power, corresponding to values of β1 which approximately lie between 0.3
and 0.7. The per-class power exhibits an interesting (although not completely surprising)
pattern, where the class with higher population exhibits worst efficiency as it produces
higher contention on the resources.

76 queueing

0 0.2 0.4 0.6 0.8 1
5e-07

1e-06

1.5e-06

2e-06

2.5e-06

3e-06

3.5e-06

Class 1 population mix

P
o
w

e
r

Power as a function of the population mix

Class 1 Class 2 System

Figure 5.6: System Power as a function of the population mix

5.6.5 Closed Multiclass Network/3

We now consider an example of multiclass network with class switching. The example is
taken from [Sch82], page 80, and is shown in Figure Figure 5.7.

3

1

2

.3

.7

.2

.5

.2

.1

Class 1

Class 2

CPU

I/O

I/O

PS

FCFS

FCFS

Figure 5.7: Multiclass Model with Class Switching

Chapter 5: Queueing Networks 77

The system consists of three devices and two job classes. The CPU node is a PS server,
while the two nodes labeled I/O are FCFS. Class 1 mean service time at the CPU is 0.01;
class 2 mean service time at the CPU is 0.05. The mean service time at node 2 is 0.1, and
is class-independent. Similarly, the mean service time at node 3 is 0.07. Jobs in class 1
leave the CPU and join class 2 with probability 0.1; jobs of class 2 leave the CPU and join
class 1 with probability 0.2. There are N = 3 jobs, which are initially allocated to class 1.
However, note that since class switching is allowed, the total number of jobs in each class
does not remain constant; however the total number of jobs does.

C = 2; K = 3;

S = [.01 .07 .10; ...

.05 .07 .10];

P = zeros(C,K,C,K);

P(1,1,1,2) = .7; P(1,1,1,3) = .2; P(1,1,2,1) = .1;

P(2,1,2,2) = .3; P(2,1,2,3) = .5; P(2,1,1,1) = .2;

P(1,2,1,1) = P(2,2,2,1) = 1;

P(1,3,1,1) = P(2,3,2,1) = 1;

N = [3 0];

[U R Q X] = qncmmva(N, S, P)

⇒
U =

0.12609 0.61784 0.25218

0.31522 0.13239 0.31522

R =

0.014653 0.133148 0.163256

0.073266 0.133148 0.163256

Q =

0.18476 1.17519 0.41170

0.46190 0.25183 0.51462

X =

12.6089 8.8262 2.5218

6.3044 1.8913 3.1522

Chapter 6: References 79

6 References

[Aky88] Ian F. Akyildiz, Mean Value Analysis for Blocking Queueing Networks, IEEE
Transactions on Software Engineering, vol. 14, n. 2, april 1988, pp. 418–428.
DOI 10.1109/32.4663

[Bar79] Y. Bard, Some Extensions to Multiclass Queueing Network Analysis, proc. 4th
Int. Symp. on Modelling and Performance Evaluation of Computer Systems,
feb. 1979, pp. 51–62.

[BCMP75] F. Baskett, K. Mani Chandy, R. R. Muntz, and F. G. Palacios. 1975. Open,
Closed, and Mixed Networks of Queues with Different Classes of Customers. J.
ACM 22, 2 (April 1975), 248260, DOI 10.1145/321879.321887

[BGMT98]
G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing Networks and
Markov Chains: Modeling and Performance Evaluation with Computer Science
Applications, Wiley, 1998.

[Buz73] J. P. Buzen, Computational Algorithms for Closed Queueing Networks with Ex-
ponential Servers, Communications of the ACM, volume 16, number 9, septem-
ber 1973, pp. 527–531. DOI 10.1145/362342.362345

[C08] G. Casale, A note on stable flow-equivalent aggregation in closed net-
works. Queueing Syst. Theory Appl., 60:193-202, December 2008, DOI
10.1007/s11134-008-9093-6

[CMS08] G. Casale, R. R. Muntz, G. Serazzi, Geometric Bounds: a Non-Iterative Analy-
sis Technique for Closed Queueing Networks, IEEE Transactions on Computers,
57(6):780-794, June 2008. DOI 10.1109/TC.2008.37

[GrSn97] C. M. Grinstead, J. L. Snell, (July 1997). Introduction to Probability. Amer-
ican Mathematical Society. ISBN 978-0821807491; this excellent textbook is
available in PDF format and can be used under the terms of the GNU Free
Documentation License (FDL)

[Jac04] J. R. Jackson, Jobshop-Like Queueing Systems, Vol. 50, No. 12, Ten Most
Influential Titles of "Management Science’s" First Fifty Years (Dec., 2004),
pp. 1796-1802, available online

[Jai91] R. Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991, p.
577.

[HsLa87] C. H. Hsieh and S. Lam, Two classes of performance bounds for closed queueing
networks, PEVA, vol. 7, n. 1, pp. 3–30, 1987

[Ker84] T. Kerola, The Composite Bound Method (CBM) for Computing Throughput
Bounds in Multiple Class Environments, Performance Evaluation, Vol. 6 Isue
1, March 1986, DOI 10.1016/0166-5316(86)90002-7; also available as Technical
Report CSD-TR-475, Department of Computer Sciences, Purdue University,
mar 13, 1984 (Revised aug 27, 1984).

[LZGS84] E. D. Lazowska, J. Zahorjan, G. Scott Graham, and K. C. Sevcik, Quantita-
tive System Performance: Computer System Analysis Using Queueing Network
Models, Prentice Hall, 1984. available online.

http://dx.doi.org/10.1109/32.4663
http://doi.acm.org/10.1145/321879.321887
http://doi.acm.org/10.1145/362342.362345
http://dx.doi.org/10.1007/s11134-008-9093-6
http://doi.ieeecomputersociety.org/10.1109/TC.2008.37
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.jstor.org/stable/30046149
http://dx.doi.org/10.1016/0166-5316(86)90002-7
http://docs.lib.purdue.edu/cstech/395/
http://docs.lib.purdue.edu/cstech/395/
http://www.cs.washington.edu/homes/lazowska/qsp/

80 queueing

[ReKo76] M. Reiser, H. Kobayashi, On The Convolution Algorithm for Separable Queue-
ing Networks, In Proceedings of the 1976 ACM SIGMETRICS Conference on
Computer Performance Modeling Measurement and Evaluation (Cambridge,
Massachusetts, United States, March 29–31, 1976). SIGMETRICS ’76. ACM,
New York, NY, pp. 109–117. DOI 10.1145/800200.806187

[ReLa80] M. Reiser and S. S. Lavenberg, Mean-Value Analysis of Closed Multichain
Queuing Networks, Journal of the ACM, vol. 27, n. 2, April 1980, pp. 313–322.
DOI 10.1145/322186.322195

[Sch79] P. Schweitzer, Approximate Analysis of Multiclass Closed Networks of Queues,
Proc. Int. Conf. on Stochastic Control and Optimization, jun 1979, pp. 2529

[Sch80] H. D. Schwetman, Testing Network-of-Queues Software, Technical Report
CSD-TR 330, Department of computer Sciences, Purdue University, 1980

[Sch81] H. D. Schwetman, Some Computational Aspects of Queueing Network Mod-
els, Technical Report CSD-TR-354, Department of Computer Sciences, Purdue
University, feb, 1981 (revised).

[Sch82] H. D. Schwetman, Implementing the Mean Value Algorithm for the Solution
of Queueing Network Models, Technical Report CSD-TR-355, Department of
Computer Sciences, Purdue University, feb 15, 1982.

[Sch84] T. Kerola, H. D. Schwetman, Performance Bounds for Multiclass Models,
Technical Report CSD-TR-479, Department of Computer Sciences, Purdue
University, 1984.

[Tij03] H. C. Tijms, A first course in stochastic models, John Wiley and Sons, 2003,
ISBN 0471498807, ISBN 9780471498803, DOI 10.1002/047001363X

[ZaWo81] J. Zahorjan and E. Wong, The solution of separable queueing network models
using mean value analysis. SIGMETRICS Perform. Eval. Rev. 10, 3 (Sep.
1981), 80-85. DOI 10.1145/1010629.805477

[Zeng03] G. Zeng, Two common properties of the erlang-B function, erlang-C
function, and Engset blocking function, Mathematical and Computer
Modelling, Volume 37, Issues 12-13, June 2003, Pages 1287-1296 DOI
10.1016/S0895-7177(03)90040-9

http://doi.acm.org/10.1145/800200.806187
http://doi.acm.org/10.1145/322186.322195
http://docs.lib.purdue.edu/cstech/259/
http://docs.lib.purdue.edu/cstech/259/
http://docs.lib.purdue.edu/cstech/285/
http://docs.lib.purdue.edu/cstech/286/
http://docs.lib.purdue.edu/cstech/399/
http://dx.doi.org/10.1002/047001363X
http://doi.acm.org/10.1145/1010629.805477
http://dx.doi.org/10.1016/S0895-7177(03)90040-9

Appendix A: GNU GENERAL PUBLIC LICENSE 81

Appendix A GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

82 queueing

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

Appendix A: GNU GENERAL PUBLIC LICENSE 83

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

84 queueing

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

Appendix A: GNU GENERAL PUBLIC LICENSE 85

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

86 queueing

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

Appendix A: GNU GENERAL PUBLIC LICENSE 87

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

88 queueing

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

Appendix A: GNU GENERAL PUBLIC LICENSE 89

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

90 queueing

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

Appendix A: GNU GENERAL PUBLIC LICENSE 91

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

Concept Index 93

Concept Index

A
absorption probabilities, DTMC 15
approximate MVA . 44
asymmetric M/M/m system 32
asymptotic bounds . 64

B
balanced system bounds . 66
BCMP network . 40
birth-death process, CTMC . 19
birth-death process, DTMC . 13
blocking queueing network 48, 49
bounds, asymptotic . 62, 63, 64
bounds, balanced system 65, 66
bounds, composite . 67
bounds, geometric . 68
bounds, PB . 67

C
closed multiclass network 64, 66, 67
closed network . 47, 64, 68
closed network, approximate analysis 44
closed network, finite capacity 48, 49
closed network, multiple classes 49, 53, 54, 55,

57, 61
closed network, single class . . 41, 43, 44, 46, 61, 64,

66, 67
CMVA . 44
composite bounds . 67
conditional MVA (CMVA) . 44
continuous time Markov chain 18, 19, 21, 22
convolution algorithm . 46, 47
copyright . 81
CTMC . 18, 19, 21, 22

D
deprecated functions . 8
discrete time Markov chain . . 11, 12, 13, 14, 15, 17
DTMC . 11, 12, 13, 14, 15, 17

E
Engset loss formula . 28
Erlang-B formula . 27
Erlang-C formula . 28
expected sojourn time, CTMC 20
expected sojourn times, DTMC 14

F
first passage times . 17
first passage times, CTMC . 22
fundamental matrix . 15

G
geometric bounds . 68

L
load-dependent service center 43, 47

M
M/G/1 system . 32
M/Hm/1 system . 33
M/M/1 system . 25
M/M/1/K system . 30
M/M/inf system . 29
M/M/m system . 26
M/M/m/K system . 31
Markov chain, continuous time . . 17, 18, 19, 20, 21,

22
Markov chain, discrete time . . 11, 12, 13, 14, 15, 17
Markov chain, state occupancy probabilities 18
Markov chain, stationary probabilities 12
Markov chain, transient probabilities 12
mean recurrence times . 17
mean time to absorption, CTMC 22
mean time to absorption, DTMC 15
Mean Value Analysis, conditional (CMVA) 44
Mean Value Analysys (MVA) 41, 43, 55, 58
Mean Value Analysys (MVA), approximate 44,

57
mixed network . 58
multiclass network, closed 55, 57, 64, 66, 67
multiclass network, open 52, 63
MVA . 43
MVA, approximate . 44, 57
MVABLO . 48

N
normalization constant 41, 46, 47

O
open network . 62, 63, 65
open network, multiple classes 52
open network, single class . 40

94 queueing

P
PB bounds . 67
population mix . 53, 54

Q
queueing network with blocking 48
queueing networks . 35

R
RS blocking . 49

S
stationary probabilities . 18

T
time-alveraged sojourn time, CTMC 21
time-alveraged sojourn time, DTMC 15
traffic intensity . 29

W
warranty . 81

Function Index 95

Function Index

C
ctmc . 18
ctmcbd . 19
ctmcchkQ . 17
ctmcexps . 20
ctmcfpt . 22
ctmcmtta . 22
ctmctaexps . 21

D
dtmc . 12
dtmcbd . 13
dtmcchkP . 11
dtmcexps . 14
dtmcfpt . 17
dtmcmtta . 15
dtmctaexps . 15

E
engset . 28
erlangb . 27
erlangc . 28

Q
qnclosed . 61
qncmaba . 64
qncmbsb . 66
qncmcb . 67
qncmmva . 54, 55
qncmmvaap . 57
qncmnpop . 54

qncmpopmix . 53
qncmvisits . 51
qncsaba . 64
qncsbsb . 65
qncscmva . 44
qncsconv . 46
qncsconvld . 47
qncsgb . 68
qncsmva . 41
qncsmvaap . 44
qncsmvablo . 48
qncsmvald . 43
qncspb . 67
qncsvisits . 37
qnmarkov . 49
qnmix . 58
qnmknode . 59
qnom . 52
qnomaba . 63
qnomvisits . 52
qnopen . 62
qnos . 40
qnosaba . 62
qnosbsb . 65
qnosvisits . 37
qnsolve . 60
qsammm . 32
qsmg1 . 32
qsmh1 . 33
qsmm1 . 25
qsmm1k . 30
qsmminf . 29
qsmmm . 26
qsmmmk . 31

Author Index 97

Author Index

A
Akyildiz, I. F. 49

B
Bard, Y. 58
Bolch, G. . . 22, 26, 27, 29, 32, 41, 42, 43, 46, 48, 57
Buzen, J. P. 46

C
Casale, G. 44, 68, 69

D
de Meer, H. . . 22, 26, 27, 29, 32, 41, 42, 43, 46, 48,

57

G
Graham, G. S. 45, 53, 57, 58, 59, 65, 66
Greiner, S. . . . 22, 26, 27, 29, 32, 41, 42, 43, 46, 48,

57

H
Hsieh, C. H. 68

J
Jain, R. 42

K
Kerola, T. 67
Kobayashi, H. 48

L
Lam, S. 68
Lavenberg, S. S. 42, 43, 56
Lazowska, E. D. 45, 53, 57, 58, 59, 65, 66

M
Muntz, R. R. 68, 69

R
Reiser, M. 42, 43, 48, 56

S
Santini, S. 54
Schweitzer, P. 58
Schwetman, H. 48, 54, 59
Serazzi, G. 68, 69
Sevcik, K. C. 45, 53, 57, 58, 59, 65, 66

T
Trivedi, K. . . . 22, 26, 27, 29, 32, 41, 42, 43, 46, 48,

57

W
Wong, E. 54

Z
Zahorjan, J. 45, 53, 54, 57, 58, 59, 65, 66
Zeng, G. 27

	Summary
	About the Queueing Package
	Contributing Guidelines
	Acknowledgments

	Installation and Getting Started
	Installation through Octave package management system
	Manual installation
	Development sources
	Naming Conventions
	Quick start Guide

	Markov Chains
	Discrete-Time Markov Chains
	State occupancy probabilities
	Birth-death process
	Expected Number of Visits
	Time-averaged expected sojourn times
	Mean Time to Absorption
	First Passage Times

	Continuous-Time Markov Chains
	State occupancy probabilities
	Birth-Death Process
	Expected Sojourn Times
	Time-Averaged Expected Sojourn Times
	Mean Time to Absorption
	First Passage Times

	Single Station Queueing Systems
	The M/M/1 System
	The M/M/m System
	The Erlang-B Formula
	The Erlang-C Formula
	The Engset Formula
	The M/M/inf System
	The M/M/1/K System
	The M/M/m/K System
	The Asymmetric M/M/m System
	The M/G/1 System
	The M/H_m/1 System

	Queueing Networks
	Introduction to QNs
	Single Class Models
	Open Networks
	Closed Networks
	Non Product-Form QNs

	Multiple Class Models
	Open Networks
	Closed Networks
	Mixed Networks

	Generic Algorithms
	Bounds Analysis
	QN Analysis Examples
	Closed, Single Class Network
	Open, Single Class Network
	Closed Multiclass Network/1
	Closed Multiclass Network/2
	Closed Multiclass Network/3

	References
	GNU GENERAL PUBLIC LICENSE
	Concept Index
	Function Index
	Author Index

