Octave Instrument Control Toolkit 0.8.0

Low level instrumentation functions for GNU Octave.

John Donoghue

Copyright (©) 2019-2022 John Donoghue

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the same conditions as for modified versions.

Distribution

The GNU Octave Instrument Control Toolkit is free software. Free software is a matter of the
users’ freedom to run, copy, distribute, study, change and improve the software. This means
that everyone is free to use it and free to redistribute it on certain conditions. The GNU Octave
Instrument Control toolkit is not, however, in the public domain. It is copyrighted and there
are restrictions on its distribution, but the restrictions are designed to ensure that others will
have the same freedom to use and redistribute Octave that you have. The precise conditions
can be found in the GNU General Public License that comes with the GNU Octave Instrument
Control toolkit and that also appears in Appendix A [Copying], page 64.

To download a copy of the GNU Octave Instrument Control Toolkit, please visit http://octave.
sourceforge.net/instrument-control/.

http://octave.sourceforge.net/instrument-control/
http://octave.sourceforge.net/instrument-control/

Table of Contents

1

Installing and loading 1
1.1 Requirementso e e 1
1.2 Windows Install. 1
1.3 Online Direct install 1
1.4 Off-line nstallo 1
1.5 Loadingottt 1

Basic Usage Overview i .. 2
2.1 AULNOTS oo 2
2.2 Available Interfaces 2
2.3 Basic Serial. 2

2.3. 1 Serial . ..o 2
2.3.2 SerialPort . ..o 3
2.4 Basic T O P . ..o 3
241 TC P . 4
2.4.2 TCOP CHENG . .ot 4
2.5 Basic UD P ... 5
2.0, 1 U P . 5
2.5.2 UDP PoOrt. ... 5

Function Reference.......... 7

3.1 Common FUunctionst e 7
311 flushinput. ..o e 7
3.1.2 flushoutputo 7
3.1.3 readbinbloCKt 7
3.1.4 readline.o 7
3.1.5 writebinblocKo 8
3.1.6 WIItElINeo 8
317 WrItereado 8

3.2 Gl . .. 9
3.2.1 dnstrhelp . .o 9
3.2.2 INStTRWINTO. . oo 9
3.2.3 TeSOIVENOSt . . oo 10

3.3 GPIB . o 10
3.3.1 @octave_gpib/fclose. 10
3.3.2 @octave_gpib/fopen.t 10
3.3.3 @octave_gpib/fprintf. 10
3.3.4 @Qoctave_gpib/fread 11
3.3.5 @octave_gpib/fscant 11
3.3.6 @octave_gpib/fwrite 11
3.3.7 CIrdeviCeo 11
3.3 G D 11
3.3.9 gPIb_CloSe. . oo 11
3.3.10 gpiboread . ..o e 12
3.3. 11 gpib_timeout e 12
3.3.12 gpIb_WIIbe . ..o 12
3.3 03 SPOll. .o 12

B T S) 12
B 20 . 12
3.4.1 Qoctave_i2¢/fCloSeo 12
3.4.2 Qoctave_i2¢/fopem 13
3.4.3 Q@octave_i2c/fread. 13
3.4.4 Qoctave_i2¢/TWIIte oot 13
345 @QOCHAVE_I2C/BOb . . o v e et 13
3.4.6 QOCEAVE_I2C/SEb . ..o\ e ettt 14
R A 7 ¢ 14
3.4.8 i2c_addr. ... 15
349 120_ClOSE . o oo 15
3400 32c_read ..o 15
3411 120 WIIte. o oo 15
3.5 Modbus ..o 16
3.5.1 @octave_modbus/get. 16
3.5.2 @octave_modbus/maskWrite 16
3.5.3 @octave_modbus/read 16
3.5.4 @Qoctave_modbus/seto 17
3.5.5 @octave-modbus/Write. 17
3.5.6 @octave_modbus/writeRead............... 18
3.5.7 mOdbUS . .o 18
3.6 Parallel.o 19
3.6.1 @octave_parallel/fclose. 19
3.6.2 @octave_parallel/fopen. 19
3.6.3 @octave_parallel/fread 20
3.6.4 Q@octave_parallel/fwrite 20
3.6.5 parallel 20
3.6.6 PP-ClOSE . ..ot e 20
36,7 DD-CTL. e 21
3.6.8 PP-data. ..o 21
3.6.9 pp-datadir. 21
3.6.10 pD_Stat . 22
3.7 Serial (Deprecated) 22
3.7.1 @octave_serial /fclose. 22
3.7.2 @octave_serial /flushinput i 22
3.7.3 @octave_serial /flushoutput o i 22
3.7.4 Qoctave_serial /fopen 22
3.7.5 @octave_serial /fprintf.... 22
3.7.6 Q@octave_serial/fread 23
3.7.7 Qoctave_serial /fWrite 23
3.7.8 Q@octave_serial/get 23
3.7.9 @octave_serial/serialbreak............ 24
3.7.10 @octave_serial/set 24
3.7.11 @octave_serial/srl_baudrate.......... 25
3.7.12 @octave_serial /ST DYtesize 25
3.7.13 Q@octave_serial/srl_close.......... i 25
3.7.14 @octave_serial/srl_flush....... 26
3.7.15 @octave_serial /STLparityo 26
3.7.16 @octave_serial/srl_stopbits......... i 26
3.7.17 @octave_serial /Srl_timeout 27
B.TA8 serial . oo 27
3.7.19 seriallist ..o 28
3.7.20 srlread.o 28
3721 sTLLwribe. ..o 28

3.8 Serial Port.o 28
3.8.1 @octave_serialport/configureTerminatorcoooiiiiiinininann... 28
3.8.2 @octave_serialport/flush 29
3.8.3 @octave_serialport/fprintf. 29
3.8.4 @octave_serialport/fread......... 29
3.8.5 @octave_serialport/fwrite 30
3.8.6 Q@octave_serialport/get 30
3.8.7 @octave_serialport /getpinstatiusouue it 30
3.8.8 @octave_serialport/read. 31
3.8.9 @octave_serialport/serialbreak i 31
3.8.10 Q@octave_serialport/set 31
3.8.11 @octave_serialport/setDTRo 32
3.8.12 @octave_serialport /setRTS.o 32
3.8.13 @octave_serialport /wWrite. 33
3.8.14 SerialpOrt . o oo 33
3.8.15 serialportlist 34

3.0 S P 34
3.9.1 Q@octave_spi/feloSeo.iu i 34
3.9.2 @QOCtave_SPI/IOPEIL . ..o\ttt 34
3.9.3 @octave_spi/fread. 34
3.9.4 Qoctave_spi/fwrite. 35
3.9.5 @OCEAVE_SPI/GEl. ..\ttt 35
3.9.6 Qoctave_Spi/Teadt 36
3.9.7 @QOCtAVE_SPI/SEt . ..o\t 36
3.9.8 @octave_spi/Write. i 36
3.9.9 @octave_spi/writeAndRead i 37
31010 SDo. et e 37
3.9 11 SPI_ClOSE . .ottt 38
3.9.12 SpI_Tead ..ot 38
3.9.13 S Wb . o oottt 38
3.9.14 spiwriteAndRead 38

3.10 TCP (Deprecated) 39
3.10.1 @octave_tep/fClose. 39
3.10.2 @octave_tep/flush ... 39
3.10.3 @octave_tep/flushinput 39
3.10.4 @octave_tep/flushoutput. ... 39
3.10.5 Qoctave_tep/fOPem.t 40
3.10.6 @octave_tep/fprintf. 40
3.10.7 @octave_tep/fread 40
3.10.8 @octave_tep/fWriteo 40
3.10.9 @octave_tep/Eeto 41
3.10.10 @octave_tep/read.ouiu i 41
3.10.11 @OCEAVE_TCD/SEt . .« . e et 41
3.10.12 @octave_tep/WITte 42
B L0, 18 B D et 42
31014 BCP_ClOSE 43
3.10.15 B Tead . . oo et e 43
3.10.16 tep-_timeoutttt e 43
3.10.17 BCp-WIIbe . ..o 43
31018 ECPAD «« v e et e e e e 44

BT TCOP ClHenb . oottt e e e e e e 44
3.11.1 @octave_tcpclient/configureTerminator. ... 44
3.11.2 @octave_tepelient/flush o 44
3.11.3 @octave_tepelient/get. 45

3.11.4 @octave_tepelient/readouiu it
3.11.5 @octave_tepClient/Sett
3.11.6 Q@octave_tepclient/WIite.ouiu it
BAL.T tepClient . ..o e
312 TOP SeIVET .ttt
3.12.1 @octave_tcpserver/configure Terminatorooveiiiiiiiiiiiienan...
3.12.2 @octave_tepserver/flush. ...
3.12.3 @QOCtave_tCPSEIVET/BOY . .ottt et e
3.12.4 @octave_tepserver/read
3.12.5 @QOCtave_tCPSEIVEr /SEb. .. .ottt
3.12.6 @Qoctave_tCPSEIVEr/WITHe\ttt
B 12,7 BCPSEIVET . ettt e e e e e e e
3.13 UDP (Deprecated).ouuininii i
3.13.1 @octave_udp/felose
3.13.2 @octave_udp/flush.
3.13.3 @octave_udp/flushinput.
3.13.4 @octave_udp/flushoutput i
3.13.5 @octave_udp/fOPeno
3.13.6 @octave_udp/fprintfo
3.13.7 @octave_udp/fread
3.13.8 @octave_udp/fwrite.
3.13.9 @octave_udp/Eet
3.13.10 @octave_udp/reado
3.13.11 @octave_udp/Set.t
3.13.12 @octave_udp/WIiteou e
31313 UAD « oo
31314 udp_Close. .o
3.13.15 udp-demo . ..o
313,16 udporeado
31317 udp_timeout. . ..o
31318 UAP_WIIEE - o
314 UDP Port . oo
3.14.1 @octave_udpport/configureMulticasto
3.14.2 @octave_udpport/configureTerminatorcooiiiiiiiiiiiinn...
3.14.3 @octave_udpport/flush........ ...
3.14.4 @octave_udpport/fprintf........ .. .
3.14.5 @octave_udpport/fread
3.14.6 Qoctave_udpport /fWribe.
3.14.7 @Qoctave_udpport /et
3.14.8 @octave_udpport /read
3.14.9 @octave_udpport /SEt
3.14.10 Qoctave_udpport /WIibeo.in i
314011 wdpport . oo e
315 USB IO ..o e
3.15.1 @octave_usbtme/felose.o
3.15.2 @octave_usbtme/fopen.
3.15.3 @octave_usbtme/fread
3.15.4 @octave_usbtme/fwrite
3155 USDUINC . oo
3.15.6 UShtMC_CloSe. ..o
3.15.7 usbtme_read
3.15.8 UShUIMC_WITte . . ot
3.6 VXL .
3.16.1 @octave_vxill/fclose.

3.16.2 @octave_vxill/fopen. 62
3.16.3 Q@octave_vxill/fread.......... ..o i 62
3.16.4 @octave_vxill/fwrite 62
316,80 VXKILL 62
3.16.6 vxill_close 63
3.16.7 vxilloread . ..o e 63
3.16.8 VKILL WIIte . .o oo 63
Appendix A GNU General Public License 64

1 Installing and loading

The Instrument Control toolkit must be installed and then loaded to be used.

It can be installed in GNU Octave directly from octave-forge, or can be installed in an off-line
mode via a downloaded tarball.

The toolkit must be then be loaded once per each GNU Octave session in order to use its
functionality.

1.1 Requirements

For GPIB support (Linux only), linux-gpib must be installed before installing instrument-
control. GPIB support is also available for windows by following the information from the
wiki: https://wiki.octave.org/Instrument_control_package#Requirements

For VXI11 support, rpcgen, and libtirpc-devel must be installed before installing instrument-
control.

For MODBUS support, the libmodbus-devel must be installed before installing instrument-
control.

1.2 Windows install

If using the GNU Octave installer in Windows, the toolkit will have already been installed, and
does not need to be re-installed unless a newer version is available.

Run the following command to verify if the toolkit is available:

pkg list instrument-control

1.3 Online Direct install
With an internet connection available, toolkit can be installed from octave-forge using the fol-
lowing command within GNU Octave:

pkg install -forge instrument-control

The latest released version of the toolkit will be downloaded, compiled and installed.

1.4 Off-line install
With the toolkit package already downloaded, and in the current directory when running GNU
Octave, the package can be installed using the following command within GNU Octave:

pkg install instrument-control-0.8.0.tar.gz

1.5 Loading
Regardless of the method of installing the toolkit, in order to use its functions, the toolkit must
be loaded using the pkg load command:
pkg load instrument-control
The toolkit must be loaded on each GNU Octave session.

2 Basic Usage Overview

2.1 Authors

The Instrument control package provides low level I/O functions for serial, i2¢, spi, parallel, tcp,
gpib, vxill, udp and usbtmc interfaces.

It was written mainly by the following developers:
e Andrius Sutas <andrius.sutasg at mail.com>
e Stefan Mahr <dac922 at gmx.de>

e John Donoghue <john.donoghue at ieee.org>

2.2 Available Interfaces

The ability to use each interface is dependent on OS and what libraries were available during
the toolkit install.

To verify the available interfaces, run the following command in octave:
instrhwinfo

The function will return information on the supported interfaces that are available, similar to
below:

ToolboxVersion = 0.7.0
ToolboxName = octave instrument control package
SupportedInterfaces =
{
[1,1] = gpib
[1,2] = i2c
[1,3] = parallel
[1,4] = serial
[1,5] = serialport

[1,6] = tcp
[1,7] = tcpclient
[1,8] = udp

[1,9] = udpport
[1,10] = usbtmc
[1,11] = vxill
}
Most interfaces have two types of functions:
e somewhat compatible matlab functions such as fread, fwrite

e interface specific lower level functions such as udp_read, udp_write

2.3 Basic Serial

2.3.1 Serial

NOTE: The serial object has been deprecated and may not appear in newer versions of the
instrument-control toolbox. Instead new code should use the serialport object.

The serial port can be opened using the serial function:
s = serial("/dev/ttyUSB1", 115200)

Chapter 2: Basic Usage Overview 3

The first parameter is the device name and is OS specific. The second parameter is the baudrate.
A list of available serial ports can be retrieved using the function:
seriallist

After creating the interface object, properties of the device can be set or retrieved using get or
set functions or as property access.

s = serial("/dev/ttyUSB1", 115200)
br = get(s, "baudrate") # gets the baudrate
br s.baudrate # also gets the baudrate

set(s, "baudrate", 9600) # set the baudrate
s.baudrate = 9600 # also sets the baudrate

The device can be written and read from using fread, fwrite and srl_read and slr_write functions.

srl_write(s, "hello world") # write hello world
fprintf(s, "hello again")

val
val

srl_read(s, 10) # attempt to read
fread(s, 10)

The device can be closed using fclose or srl_close.

fclose(s)

2.3.2 SerialPort
The recommended method of accessing serial ports is through the serialport object.
The serial port can be opened using the serialport function:
s = serialport("/dev/ttyUSB1", 115200)
The first parameter is the device name and is OS specific. The second parameter is the baudrate.
A list of available serial ports can be retrieved using the function:
serialportlist

After creating the interface object, properties of the device can be set or retrieved using get or
set functions or as property access.

s = serialport("/dev/ttyUSB1", 115200)
br = get(s, "BaudRate") # gets the baudrate
br = s.BaudRate # also gets the baudrate

set(s, "BaudRate", 9600) # set the baudrate
s.BaudRate = 9600 # also sets the baudrate

The device can be written and read from using read and write functions.

write(s, "hello world") # write hello world

val = read(s, 10)
The device can be closed by clearing the serialport object.

clear s

2.4 Basic TCP

Chapter 2: Basic Usage Overview 4

2.4.1 TCP

NOTE: The TCP object has been deprecated and may not appear in newer versions of the
instrument-control toolbox. Instead new code should use the tcpclient object.

A TCP connection can be opened using the tcp or tepip function:
s = tcp("127.0.0.1", 80)

The first parameter is the IP address to connect to. The second parameter is the port number.
And optional timeout value can be also be provided.

A more matlab compatible function is available as tcpip to also open a tcp port:

s = tcpip("gnu.org", 80)
The first parameter is a hostname or ip address, the second the port number. Additional
parameter/value pairs can be provided after the port.

After creating the interface object, properties of the device can be set or retrieved using get or
set functions or as property access.

s = tcp("127.0.0.1", 80)
oldtimeout = get(s, "timeout") # get timeout

set(s, "timeout", 10) # set the timeout
s.timeout = oldtimeout # also sets the timeout

The device can be written and read from using fread, fwrite and tcp_read and tcp_write functions.
tcp_write(s, "HEAD / HTTP/1.1\r\n\r\n")

val = tcp_read(s, 100, 500) # attempt to read 100 bytes
The device can be closed using fclose or tcp_close.
fclose(s)

2.4.2 TCP Client

The recommended method of creating a tcp connection is through the tcpclient object.
A TCP connection can be opened using the tcpclient function:
s = tcpclient("127.0.0.1", 80)

The first parameter is the IP address or hostname to connect to. The second parameter is the
port number.

Additional parameter/value pairs can be provided after the port.

After creating the interface object, properties of the device can be set or retrieved using get or
set functions or as property access.

s = tcpclient("127.0.0.1", 80)
oldtimeout = get(s, "Timeout") # get timeout

set(s, "Timeout", 10) # set the timeout
s.Timeout = oldtimeout # also sets the timeout

The device can be written and read from using read and write functions.
write(s, "HEAD / HTTP/1.1\r\n\r\n")

val = read(s, 100) # attempt to read 100 bytes
The device can be closed by clearing the object variable.

clear s

Chapter 2: Basic Usage Overview 5

2.5 Basic UDP
2.5.1 UDP

NOTE: The UDP object has been deprecated and may not appear in newer versions of the
instrument-control toolbox. Instead new code should use the udpport object.

A UDP connection can be opened using the udp function:

s = udp("127.0.0.1", 80)
The first parameter is the IP address data will be to. The second parameter is the port number.
If and ip address and port is not provides, it will default to "127.0.0.1" and 23.

The address and port can be changed after creation using the remotehost and remoteport prop-
erties.

s = udpQ)
s.remotehost = "127.0.0.1";
s.remoteport = 100;

After creating the interface object, other properties of the device can be set or retrieved using
get or set functions or as property access.

s = udp("127.0.0.1", 80)
oldtimeout = get(s, "timeout") # get timeout

set(s, "timeout", 10) # set the timeout
s.timeout = oldtimeout # also sets the timeout

The device can be written and read from using fread, fwrite and udp_read and udp_write func-
tions.

udp_write(s, "test")

val = udp_read(s, 5)
The device can be closed using fclose or udp_close.
fclose(s)

2.5.2 UDP Port

The recommended method of creating a udp socket is through the udpport object.
A udpport object can be created using the udpport function:

s = udpport()
Additional parameter/value pairs can be provided during creation of the object.

After creating the interface object, properties of the device can be set or retrieved using get or
set functions or as property access.

s = udpport()
oldtimeout = get(s, "Timeout") # get timeout

set(s, "Timeout", 10) # set the timeout
s.Timeout = oldtimeout # also sets the timeout

The device can be written and read from using read and write functions.

The destination address and port to send data to must be specified at least on the first time
write is used.

write(s, "test", "127.0.0.1", s.LocalPort)

Chapter 2: Basic Usage Overview

val = read(s)
The device can be closed by clearing the object variable.

clear s

3 Function Reference
The functions currently available in the toolkit are described below.

3.1 Common Functions

3.1.1 flushinput

flushinput (dev)
Flush the instruments input buffers
Inputs

dev - connected device or array of devices

Outputs
None

See also: flushoutput.

3.1.2 flushoutput

flushoutput (dev)
Flush the instruments output buffers
Inputs

dev - connected device or array of devices

Outputs
None

See also: flushinput.

3.1.3 readbinblock

data = readbinblock (dev)
data = readbinblock (dev, datatype)
read a binblock of data from a instrument device

Inputs
dev - connected device

datatype - optional data type to read data as (default "uint8’)

Outputs
data - data read

See also: flushoutput.
3.1.4 readline

data = readline (dev, data)
read data from a instrument device excluding terminator value

Inputs

dev - connected device

Chapter 3: Function Reference

Outputs
data - ASCII data read

See also: flushoutput.
3.1.5 writebinblock

writebinblock (dev, data, datatype)
Write a IEEE 488.2 binblock of data to a instrument device

binblock formatted data is defined as:

#<A><C>

where: <A> ASCII number containing the length of part
 ASCII number containing the number of bytes of <C>
<C> Binary data block

Inputs

dev - connected device

data - binary data to send

datatype - datatype to send data as

Outputs
None

See also: flushoutput.
3.1.6 writeline

writeline (dev, data)
Write data to a instrument device inclding terminator value
Inputs

dev - connected device
data - ASCII data to write

Outputs
None

See also: flushoutput.
3.1.7 writeread

data = writeread (dev, command)
write a ASCII command and read data from a instrument device.
Inputs

dev - connected device

command - ASCII command

Outputs
data - ASCII data read

See also: readline, writeline.

Chapter 3: Function Reference 9

3.2 General

3.2.1 instrhelp

instrhelp ()

instrhelp (funcname)

instrhelp (obj)
Display instrument help

Inputs

funcname - function to display help about.
obj - object to display help about.

If no input is provided, the function will display and overview of the package functionality.

Outputs

None

3.2.2 instrhwinfo

[1ist] = instrhwinfo () [Function File]
list = instrhwinfo (interface) [Function File]
Query available hardware for instrument-control

When run without any input parameters, instrhwinfo will provide the toolbox information
and a list of supported interfaces.

Inputs

interface is the instrument interface to query. When provided, instrhwinfo will provide infor-
mation on the specified interface.

Currently only interface "serialport","i2¢" and "spi" and is supported, which will provide a
list of available serial ports or i2c ports.

Outputs

If an output variable is provided, the function will store the information to the variable,
otherwise it will be displayed to the screen.

Example

instrhwinfo
scalar structure containing the fields:

ToolboxVersion = 0.4.0
ToolboxName = octave instrument control package
SupportedInterfaces =
{

[1,1] = i2¢c

[1,2] = parallel

[1,3] = serialport

[1,4] = tcp

[1,5] = udp

[1,6] = usbtmc

[1,7] = vxil1

Chapter 3: Function Reference 10

3.2.3 resolvehost

name = resolvehost (host) [Loadable Function]
[name, address] = resolvehost (host) [Loadable Function]
out = resolvehost (host, returntype) [Loadable Function]

Resolve a network host name or address to network name and address

Inputs

host - Host name or IP address string to resolve.

name - Resolved IP host name.

returntype - 'name’ to get host name, ’address’ to get IP address.
Outputs

name - Resolved IP host name.
address - Resolved IP host address.
out - host name if returntype is 'name’, ipaddress if returntype is ’address’

Example

%% get resolved ip name and address pf www.gnu.org
[name, address] = resolvehost ('www.gnu.org');

%h get ip address of www.gnu.org
ipaddress = resolvehost ('www.gnu.org', 'address');

See also: tcp, udp.

3.3 GPIB
3.3.1 @octave_gpib/fclose

res = fclose (obj) [Function File]
Closes connection to GPIB device obj

3.3.2 @Qoctave_gpib/fopen

res = fopen (obj) (dummy) [Function File]
Opens connection to GPIB device obj This currently is a dummy function to improve com-
patibility to MATLAB

3.3.3 @Qoctave_gpib/fprintf

fprintf (obj, cmd) [Function File]
fprintf (obj, format, cmd) [Function File]
[Function File]
[Function File]

fprintf (obj, cmd, mode)

fprintf (obj, format, cmd, mode)
Writes string cmd to GPIB instrument
obj is a GPIB object

cmd String format Format specifier mode sync

Chapter 3: Function Reference

3.3.4 @Qoctave_gpib/fread

data = fread (obj)

data = fread (obj, size)

data = fread (obj, size, precision)

[data, count] = fread (obj, ...)

[data, count,errmsg] = fread (obj, ...)
Reads data from GPIB instrument

obj is a GPIB object
size Number of values to read. (Default: 100) precision precision of data

count values read errmsg read operation error message
3.3.5 @octave_gpib/fscanf

res = fscanf (obj)
res = fscanf (obj, format)
res = fscanf (obj, format, size)
[res,count] = fscanf (obj, ...)
[res, count,errmsg] = fscanf (obj, ...)
Reads data res from GPIB instrument
obj is a GPIB object

format Format specifier size number of values

count values read errmsg read operation error message
3.3.6 Qoctave_gpib/fwrite

fwrite (obj, data)
fwrite (obj, data, precision)
fwrite (obj, data, mode)
fwrite (obj, data, precision, mode)
Writes data to GPIB instrument
obj is a GPIB object

data data to write precision precision of data mode sync
3.3.7 clrdevice

clrdevice (obj)
Send clear command to Clear GPIB instrument.

obj is a GPIB object
3.3.8 gpib

gpib = gpib ([gpibid], [timeout])
Open gpib interface.
gpibid - the interface number.

timeout - the interface timeout value. If omitted defaults to blocking call.

The gpib() shall return instance of octave_gpib class as the result gpib.
3.3.9 gpib_close

gpib_close (gpib)
Close the interface and release a file descriptor.

gpib - instance of octave_gpib class.

11

[Function File]
[Function File]
[Function File]
[Function File]
[Function File]

[Function File]
[Function File]
[Function File]
[Function File]
[Function File]

[Function File]
[Function File]
[Function File]
[Function File]

[Function File]

[Loadable Function)]

[Loadable Function]

Chapter 3: Function Reference 12

3.3.10 gpib_read

[data, count, eoi]l = gpib_read (gpib, n) [Loadable Function)]
Read from gpib interface.

gpib - instance of octave_gpib class.
n - number of bytes to attempt to read of type Integer.

The gpib_read() shall return number of bytes successfully read in count as Integer and the
bytes themselves in data as uint8 array. eoi indicates read operation complete

3.3.11 gpib_timeout

gpib_timeout (gpib, timeout) [Loadable Function)]

t = gpib_timeout (gpib) [Loadable Function]
Set new or get existing gpib interface timeout parameter. The timeout value is valid from 0
to 17.

gpib - instance of octave_gpib class.
timeout - Value of 0 means never timeout, 11 means one second and 17 means 1000 seconds
(see GPIB documentation (ibtmo) for further details)

If timeout parameter is omitted, the gpib_timeout() shall return current timeout value as the
result t.

3.3.12 gpib_write

n = gpib_write (gpib, data) [Loadable Function)]
Write data to a gpib interface.

gpib - instance of octave_gpib class.
data - data to be written to the gpib interface. Can be either of String or uint8 type.

Upon successful completion, gpib_write() shall return the number of bytes written as the
result n.

3.3.13 spoll

out = spoll (obj) [Function File]
[out,statusByte] = spoll (obj) [Function File]
Serial polls GPIB instruments.

obj is a GPIB object or a cell array of GPIB objects
out GPIB objects ready for service statusByte status Byte

3.3.14 trigger

trigger (obj) [Function File]
Triggers GPIB instrument.

obj is a GPIB object

3.4 12C

3.4.1 @octave_i2c/fclose

res = fclose (obj) [Function File]
Closes 12C connection obj

Chapter 3: Function Reference

3.4.2 Qoctave_i2c/fopen

res = fopen (obj) (dummy)
Opens 12C connection obj

This currently is a dummy function to improve compatibility to MATLAB

3.4.3 @octave_i2c/fread

data = fread (obj)

data = fread (obj, size)

data = fread (obj, size, precision)

[data,count] = fread (obj, ...)

[data, count,errmsg] = fread (obj, ...)
Reads data from I2C instrument

Inputs

obj is a 12C object.
size Number of values to read. (Default: 100).
precision precision of data.

Outputs

data data values.
count number of values read.
errmsg read operation error message.

3.4.4 @octave_i2c/fwrite

numbytes = fwrite (obj, data)
numbytes = fwrite (obj, data, precision)
Writes data to I2C instrument

Inputs

obj is a 12C object.
data data to write.
precision precision of data.

Outputs

returns number of bytes written.
3.4.5 Qoctave_i2c/get

struct = get (i2c)
field = get (i2c, property)
Get the properties of i2¢ object.

Inputs

i2¢ - instance of octave_i2c class.

property - name of property.

13

[Function File]

[Function File]
[Function File]
[Function File]
[Function File]
[Function File]

[Function File]
[Function File]

[Function File]
[Function File]

Chapter 3: Function Reference 14

Outputs

When property was specified, return the value of that property.
otherwise return the values of all properties as a structure.

See also: @Qoctave_i2c/set.
3.4.6 Qoctave_i2c/set

set (obj, property,value) [Function File]
set (obj, property,value,...) [Function File]
Set the properties of i2c object.

Inputs

obj - instance of octave_i2c class.
property - name of property.

If property is a cell so must be value, it sets the values of all matching properties.

The function also accepts property-value pairs.
Properties

‘name’ Set the name for the i2¢ socket.

remoteaddress’
Set the remote address for the i2¢ socket.

Outputs

None

See also: @Qoctave_i2c/get.

3.4.7 i2c

i2¢ = 1i2c ([port_path|, [address]) [Loadable Function]
Open i2c interface.

Inputs

port_path - the interface device port/path of type String. If omitted defaults to ’/dev/i2c-0’.
address - the slave device address. If omitted must be set using i2c_addr() call.

Outputs

i2¢ - An instance of octave_i2c class.
Properties

The i2c object has the following properties:
name Name of the object

remoteaddress
the slave device address

port The interface driver port (readonly)

Chapter 3: Function Reference 15

3.4.8 12c_addr

i2c_addr (i2c, address) [Loadable Function]
addr = 1i2c_addr (i2c) [Loadable Function]

Set new or get existing i2c¢ slave device address.

Inputs

i2¢ - instance of octave_i2c class.
address - i2c slave device address of type Integer. The address is passed in the 7 or 10 lower
bits of the argument.

Outputs

addr - If address parameter is omitted, the i2c_addr() shall return current i2c slave device
address.

3.4.9 i2c_close

i2c_close (i2c¢) [Loadable Function]

Close the interface and release a file descriptor.

Inputs

i2c - instance of octave_i2c class.

Outputs

None

3.4.10 i2c_read

[data, count] = i2c_read (i2c, n) [Loadable Function)]

Read from i2c¢ slave device.

Inputs

i2c¢ - instance of octave_i2c class.

n - number of bytes to attempt to read of type Integer.
Outputs

The i2c_read() shall return number of bytes successfully read in count as Integer and the
bytes themselves in data as uint8 array.

3.4.11 i2c_write

n

= 1i2c_write (i2c, data) [Loadable Function]
Write data to a i2c slave device.

Inputs

i2c - instance of octave_i2c class.

data - data, of type uint8, to be written to the slave device.

Outputs

Upon successful completion, i2c_write() shall return the number of bytes written as the result
1.

Chapter 3: Function Reference 16

3.5 Modbus

3.5.1 @Qoctave_modbus/get

struct = get (dev) [Function File]
field = get (dev, property) [Function File]
Get the properties of modbus object.

Inputs

dev - instance of octave_modbus class.
property - name of property.

Outputs

When property was specified, return the value of that property.
otherwise return the values of all properties as a structure.

See also: @octave_modbus/set.

3.5.2 @octave_modbus/maskWrite

data = maskWrite (dev, address, andmask, ormask)

data = maskWrite (dev, address, andmask, ormask, serverid)
Read holding register at address from modbus device dev apply masking and write the change
data.

writeregister value = (readregister value AND andMask) OR (orMask AND (NOT andMask))

Inputs

dev - connected modbus device

address - address to read from.

andmask - AND mask to apply to the register

ormask - OR mask to apply to the register

serverld - address to send to (0-247). Default of 1 is used if not specified.

Outputs
data - data read from the device

See also: modbus.

3.5.3 @octave_modbus/read

data = read (dev, target, address)

data = read (dev, target, address, count)

data = read (dev, target, address, count, serverId, precision)
Read data from modbus device dev target target starting at address address.

Inputs

dev - connected modbus device

target - target type to read. One of ’coils’, 'inputs’, ’inputregs’ or "holdingregs’
address - address to start reading from.

count - number of elements to read. If not provided, count is 1.

Chapter 3: Function Reference 17

serverld - address to send to (0-247). Default of 1 is used if not specified.

precision - Optional precision for how to interpret the read data. Currently known precision
values are uint16 (default), int16, uint32, int32, uint64, uint64, single, double.

Outputs

data - data read from the device

See also: modbus.
3.5.4 @octave_modbus/set

set (obj, property,value) [Function File]
set (obj, property,value,...) [Function File]
Set the properties of modbus object.
Inputs

obj - instance of octave_modbus class.
property - name of property.

If property is a cell so must be value, it sets the values of all matching properties.

The function also accepts property-value pairs.

Properties

"Name’ Set the stored string name of the object.
"T'imeout’ Set the timeout value.

‘Numretries’
Set the numretries value.

'ByteOrder’
Set the byteorder value

"WordOrder’

Set the wordorder value
"UserData’

Set the userdata value
Outputs
None

See also: @octave_modbus/get.
3.5.5 @octave_modbus/write

write (dev, target, address, values)
read (dev, target, address, values, serverld, precision)
Write data data to modbus device dev target target starting at address address.

Inputs

dev - connected modbus device
target - target type to read. One of ’coils’ or ’holdingregs’
address - address to start reading from.

data - data to write.

Chapter 3: Function Reference

18

serverld - address to send to (0-247). Default of 1 is used if not specified.

precision - Optional precision for how to interpret the write data. Currently known precision
values are uint16 (default), int16, uint32, int32, uint64, uint64, single, double.

Outputs

None

See also: modbus.

3.5.6 @Qoctave_modbus/writeRead

data
data

data

writeRead (dev, writeAddress, values, readAddress, readcount)
writeRead (dev, writeAddress, values, readAddress, readcount,
serverId)
writeRead (dev, writeAddress, values, writePrecision, readAddress,
readCount, readPrecision)
Write data values to the modbus device dev holding registers starting at address writeAddress
and then read readCount register values starting at address readAddress.

Inputs

dev - connected modbus device

writeAddress - address to start writing to.

values - data to write to the device.

readAddress - address to start reading from.

readCount - number of elements to read.

serverld - address to send to (0-247). Default of 1 is used if not specified.

precision - Optional precision for how to interpret the read data. Currently known precision
values are uint16 (default), int16, uint32, int32, uint64, uint64, single, double.

Outputs

data - data read from the device

See also: modbus.

(’tcpip’, deviceaddress)

('tcpip’, deviceaddress, remoteport)
(’tcpip’, deviceaddress, name, value)
(

'serialrtu’, serialport)

3.5.7 modbus
dev = modbus
dev = modbus
dev = modbus
dev = modbus
dev = modbus

(’serialrtu’, serialport, name, value)

[Loadable Function]
[Loadable Function]
[Loadable Function]
[Loadable Function]
[Loadable Function]

Open modbus interface using a specified transaport of *tcpip’ or ’'serialrtu’.

Inputs

deviceaddress - the device ip address of type String.
remoteport - the device remote port number. If not specified, a default of 502 will be used.
name, value - Optional name value pairs for setting properties of the object.

serialport - the name of the serial port to connect to. It must be specified when transport is
"serialrtu’.

Chapter 3: Function Reference

Common Input Name, Value pairs
Timeout timeout value used for waiting for data

NumRetries
number of retries after a timeout

UserData Additional data to attach to the object

Serial RTU Input Name, Value pairs
BaudRate Baudrate for the serial port

DataBits number of databits for serial port

Parity Parity for serial port (odd’, ’even’ or 'none’)

StopBits number of stopbits for serial port

Outputs

19

The modbus() shall return instance of octave_modbus class as the result modbus.

Properties
The modbus object has the following public properties:

Name name assigned to the modbus object

Type instrument type 'modbus’ (readonly)

Port Remote port number or serial port name (readonly)
DeviceAddress

Device address if transport was "tcpip’ (readonly)
Status status of the object ’open’ or ’closed’ (readonly)
Timeout timeout value used for waiting for data

NumRetries
number of retries after a timeout

UserData Additional data to attach to the object

3.6 Parallel
3.6.1 @Qoctave_parallel/fclose

res = fclose (obj)
Closes parallel connection obj

3.6.2 @octave_parallel /fopen

res = fopen (obj) (dummy)
Opens parallel interface obj

This currently is a dummy function to improve compatibility to MATLAB

[Function File]

[Function File]

Chapter 3: Function Reference 20

3.6.3 @octave_parallel/fread

data = fread (obj) [Function File]
data = fread (obj, size) [Function File]
data = fread (obj, size, precision) [Function File]
[]
[]

[data, count] = fread (obj, ...) Function File
[data, count,errmsg] = fread (obj, ...) Function File
Reads data from parallel instrument

Inputs

obj is a parallel object.
size Number of values to read. (Default: 1).
precision precision of data.

Outputs

data The read data.
count values read.
errmsg read operation error message.

3.6.4 @octave_parallel/fwrite

numbytes = fwrite (obj, data) [Function File]
numbytes = fwrite (obj, data, precision) [Function File]
Writes data to parallel instrument

Inputs

obj is a parallel object.
data data to write.
precision precision of data.

Outputs

returns number of bytes written.

3.6.5 parallel

parallel = parallel ([path], [direction]) [Loadable Function]
Open Parallel interface.

Inputs

path - the interface path of type String. If omitted defaults to ’/dev/parport0’.
direction - the direction of interface drivers of type Integer, see: PP_DATADIR for more info.
If omitted defaults to 1 (Input).

Outputs

The parallel() shall return instance of octave_parallel class as the result parallel.
3.6.6 pp_close

pp_close (parallel) [Loadable Function)]
Close the interface and release a file descriptor.

Chapter 3: Function Reference 21

Inputs

parallel - instance of octave_serial class.

Outputs

None

3.6.7 pp-ctrl

pp_ctrl (parallel, ctrl) [Loadable Function]

C

= pp_ctrl (parallel) [Loadable Function]
Sets or Read the Control lines.

Inputs

parallel - instance of octave_parallel class.

ctrl - control parameter to be set of type Byte.

Outputs

If ctrl parameter is omitted, the pp_ctrl() shall return current Control lines state as the result
C.

3.6.8 pp_data

pp_data (parallel, data) [Loadable Function)]

d

= pp_data (parallel) [Loadable Function]
Sets or Read the Data lines.

Inputs

parallel - instance of octave_parallel class.

data - data parameter to be set of type Byte.

Outputs

If data parameter is omitted, the pp_data() shall return current Data lines state as the result
d.

3.6.9 pp_datadir

pp_datadir (parallel, direction) [Loadable Function]
dir = pp_datadir (parallel) [Loadable Function)]

Controls the Data line drivers.

Normally the computer’s parallel port will drive the data lines, but for byte-wide transfers
from the peripheral to the host it is useful to turn off those drivers and let the peripheral drive
the signals. (If the drivers on the computer’s parallel port are left on when this happens, the
port might be damaged.)

Inputs

parallel - instance of octave_parallel class.
direction - direction parameter of type Integer. Supported values: 0 - the drivers are turned
on (Output/Forward direction); 1 - the drivers are turned off (Input/Reverse direction).

Outputs

If direction parameter is omitted, the pp_datadir() shall return current Data direction as the
result dir.

Chapter 3: Function Reference 22

3.6.10 pp_stat

stat = pp_stat (parallel) [Loadable Function]
Reads the Status lines.

Inputs

parallel - instance of octave_parallel class.

Outputs

The pp-_stat() shall return current Status lines state as the result stat.

3.7 Serial (Deprecated)

3.7.1 @octave_serial/fclose

res = fclose (obj) [Function File]
Closes SERIAL connection obj

3.7.2 @octave_serial /flushinput

flushinput (serial) [Loadable Function]
Flush the pending input, which will also make the BytesAvailable property be 0.

Inputs

serial - instance of octave_serial class.

Outputs
None

See also: srl_flush, flushoutput.
3.7.3 @octave_serial /flushoutput

flushoutput (serial) [Loadable Function]
Flush the output buffer.

Inputs

serial - instance of octave_serial class.

Outputs
None

See also: srl_flush, flushinput.
3.7.4 @octave_serial/fopen

res = fopen (obj) (dummy) [Function File]
Opens SERIAL interface obj

This currently is a dummy function to improve compatibility to MATLAB
3.7.5 @octave_serial/fprintf

numbytes = fprintf (obj, template ...) [Function File]
Writes formatted string template using optional parameters to serial instrument

Chapter 3: Function Reference 23

Inputs

obj is a serial object.
template Format template string

Outputs

numbytes - number of bytes written to the serial device.
3.7.6 @octave_serial/fread

data = fread (obj) [Function File]

data = fread (obj, size) [Function File]

data = fread (obj, size, precision) [Function File]

[data, count] = fread (obj, ...) [Function File]

[data, count,errmsg] = fread (obj, ...) [Function File]
Reads data from serial instrument

Inputs

obj is a serial object.
size Number of values to read. (Default: 100).
precision precision of data.

Outputs

data The read data.
count values read.
errmsg read operation error message.

3.7.7 @octave_serial/fwrite

numbytes = fwrite (obj, data) [Function File]
numbytes = fwrite (obj, data, precision) [Function File]
Writes data to serial instrument

Inputs

obj is a serial object.
data data to write.
precision precision of data.

Outputs

returns number of bytes written.
3.7.8 @octave_serial/get

struct = get (serial) [Function File]
field = get (serial, property) [Function File]
Get the properties of serial object.

Inputs

serial - instance of octave_serial class.
property - name of property.

Chapter 3: Function Reference 24

Outputs

When property was specified, return the value of that property.
otherwise return the values of all properties as a structure.

See also: @octave_serial/set.
3.7.9 @octave_serial /serialbreak

serialbreak (serial) [Function File]
serialbreak (serial, time) [Function File]
Send a break to the serial port
Inputs
serial - serial object
time - number of milliseconds to break for. If not specified a value of 10 will be used.
Outputs
None

See also: serial.
3.7.10 @Qoctave_serial/set

set (obj, property,value) [Function File]
set (obj, property,value,...) [Function File]
Set the properties of serial object.
Inputs

serial - instance of octave_serial class.
property - name of property.

If property is a cell so must be value, it sets the values of all matching properties.

The function also accepts property-value pairs.

Properties

’baudrate’ Set the baudrate of serial port. Supported values by instrument-control: 0, 50,
75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400,
57600, 115200 and 230400. The supported baudrate of your serial port may be
different.

'bytesize’ Set the bytesize. Supported values: 5, 6, 7 and 8.
'name’ Set the stored string name of the serial object.

‘parity’ Set the parity value. Supported values: Even/Odd/None. This Parameter must
be of type string. It is case insensitive and can be abbreviated to the first letter
only

'stopbits’ Set the number of stopbits. Supported values: 1, 2.

‘timeout’ Set the timeout value in tenths of a second. Value of -1 means a blocking call.
Maximum value of 255 (i.e. 25.5 seconds).

requesttosend’
Set the requesttosend (RTS) line.

Chapter 3: Function Reference 25

‘dataterminalready’

Set the dataterminalready (DTR) line.
Outputs
None

See also: @octave_serial/get.
3.7.11 @octave_serial/srl_baudrate

srl_baudrate (serial, baudrate)\ [Loadable Function]

br = srl_baudrate (serial) [Loadable Function]
Set new or get existing serial interface baudrate parameter. Only standard values are sup-
ported.

Inputs

serial - instance of octave_serial class.
baudrate - the baudrate value used. Supported values: 0, 50, 75, 110, 134, 150, 200, 300,
600, 1200, 1800, 2400, 4800, 9600 19200, 38400, 57600, 115200 and 230400.

If baudrate parameter is omitted, the srl_baudrate() shall return current baudrate value as
the result br.

Outputs

br - The currently set baudrate

This function is obsolete. Use get and set method instead.
3.7.12 @octave_serial/srl_bytesize

srl_bytesize (serial, bsize) [Loadable Function]
bs = srl_bytesize (serial) [Loadable Function]
Set new or get existing serial interface byte size parameter.
Inputs

serial - instance of octave_serial class.
bsize - byte size of type Integer. Supported values: 5/6/7/8.

If bsize parameter is omitted, the srl_bytesize() shall return current byte size value or in case
of unsupported setting -1, as the result bs.

This function is obsolete. Use get and set method instead.

Outputs
bs -the currently set byte size.

3.7.13 @octave_serial/srl_close

srl_close (serial) [Loadable Function]
Close the interface and release a file descriptor.
Inputs

serial - instance of octave_serial class.

This function is obsolete. Use fclose() method instead.

Chapter 3: Function Reference 26

Outputs

None
3.7.14 @octave_serial/srl_flush

srl_flush (serial, [q]) [Loadable Function]
Flush the pending input/output.
Inputs

serial - instance of octave_serial class.
q - queue selector of type Integer. Supported values:

0 flush untransmitted output
1 flush pending input
2 flush both pending input and untransmitted output.

If q parameter is omitted, the srl_flush() shall flush both, input and output buffers.

Outputs

None
3.7.15 @octave_serial/srl_parity

srl_parity (serial, parity) [Loadable Function)]

p = srl_parity (serial) [Loadable Function]
Set new or get existing serial interface parity parameter. Even/Odd/None values are sup-
ported.

Inputs

serial - instance of octave_serial class.
parity - parity value of type String. Supported values: Even/Odd/None (case insensitive,
can be abbreviated to the first letter only)

If parity parameter is omitted, the srl_parity() shall return current parity value as the result
p-

This function is obsolete. Use get and set method instead.

Outputs

p - The currently set parity

3.7.16 @octave_serial/srl_stopbits

srl_stopbits (serial, stopb) [Loadable Function]

sb = srl_stopbits (serial) [Loadable Function]
Set new or get existing serial interface stop bits parameter. Only 1 or 2 stop bits are sup-
ported.

Inputs

serial - instance of octave_serial class.
stopb - number of stop bits used. Supported values: 1, 2.

Chapter 3: Function Reference 27

Outputs

If stopb parameter is omitted, the srl_stopbits() shall return current stop bits value as the
result sb.

This function is obsolete. Use get and set method instead.
3.7.17 @octave_serial/srl_timeout

srl_timeout (serial, timeout) [Loadable Function]

t = srl_timeout (serial) [Loadable Function]
Set new or get existing serial interface timeout parameter used for srl_read() requests. The
timeout value is specified in tenths of a second.

Inputs

serial - instance of octave_serial class.
timeout - srl_read() timeout value in tenths of a second. A value of -1 means a blocking call.
Maximum value of 255 (i.e. 25.5 seconds).

Outputs

If timeout parameter is omitted, the srl_timeout() shall return current timeout value as the
result t.

This function is obsolete. Use get and set method instead.

3.7.18 serial

serial = serial ([path], [baudrate|, [timeout]) [Loadable Function]
Open serial interface.
Inputs

path - the interface path of type String.
baudrate - the baudrate of interface. If omitted defaults to 115200.
timeout - the interface timeout value. If omitted defaults to blocking call.

Outputs

The serial() shall return an instance of octave_serial class as the result serial.

Properties
The serial object has the following public properties:

name name assigned to the object

type instrument type ’serial’ (readonly)

port OS specific port name (readonly)

status status of the object ’open’ or ’closed’ (readonly)
timeout timeout value used for waiting for data
bytesavailable

number of bytes currently available to read (readonly)
stopbits number of stopbits to use

requesttosend
request to send state - on’ or ’off’

Chapter 3: Function Reference 28

parity Parity setting 'none’, ’even’, ’odd’
bytesize ~ Number of bits to a byte (7 or 8)
baudrate Baudrate setting

dataterminalready
state of dataterminal ready - ’on’ or ’off’

pinstatus current state of pins (readonly)

3.7.19 seriallist

list = seriallist () [Function File]

Returns a list of all serial ports detected in the system.

Inputs

None

Outputs
list is a string cell array of serial ports names detected in the system.

See also: instrhwinfo("serial").

3.7.20 srl_read

[data, count] = srl_read (serial, n) [Loadable Function]

Read from serial interface.

Inputs

serial - instance of octave_serial class.
n - number of bytes to attempt to read of type Integer.

Outputs

The srl_read() shall return number of bytes successfully read in count as Integer and the
bytes themselves in data as uint8 array.

3.7.21 srl_write

n

= srl_write (serial, data) [Loadable Function]
Write data to a serial interface.

Inputs

serial - instance of octave_serial class.
data - data to be written to the serial interface. Can be either of String or uint8 type.

Outputs

Upon successful completion, srl_write() shall return the number of bytes written as the result
1.

3.8 Serial Port

3.8.1 @octave_serialport/configureTerminator

configureTerminator (serial, term) [Function File]
configureTerminator (serial, readterm, writeterm) [Function File]

Set terminator for ASCII string manipulation

Chapter 3: Function Reference 29

Inputs

serial - serialport object

term - terminal value for both read and write
readterm = terminal value type for read data
writeterm = terminal value for written data

The terminal can be either strings "cr", "If" (default), "1f/cr" or an integer between 0 to 255.
Outputs
None

See also: serialport.
3.8.2 @octave_serialport/flush

data = flush (dev)

data = flush (dev, "input")

data = flush (dev, "output")
Flush the serial port buffers

Inputs
dev - connected serialport device
If an additional parameter is provided of "input" or "output", then only the input or output

buffer will be flushed

Outputs

None

See also: serialport.
3.8.3 @octave_serialport /fprintf

numbytes = fprintf (obj, template ...) [Function File]
Writes formatted string template using optional parameters to serialport instrument
Inputs
obj is a serialport object.
template Format template string
Outputs

numbytes - number of bytes written to the serial device.
3.8.4 Q@octave_serialport /fread
data = fread (obj) Function File

([]
data = fread (obj, size) [Function File]
data fread (obj, size, precision) [Function File]

[]
[]

[data, count] = fread (obj, ...) Function File
[data, count,errmsg] = fread (obj, ...) Function File
Reads data from serial port instrument

Chapter 3: Function Reference 30

Inputs

obj is a serialport object.
size Number of values to read.
precision precision of data.

Outputs

data The read data.
count number of values read.
errmsg read operation error message.

3.8.5 @octave_serialport/fwrite

numbytes = fuwrite (obj, data) [Function File]
numbytes = fwrite (obj, data, precision) [Function File]
Writes data to serial port instrument
Inputs

obj is a serial port object.
data data to write.
precision precision of data.

Outputs

returns number of bytes written.
3.8.6 @octave_serialport/get

struct = get (serial) [Function File]
field = get (serial, property) [Function File]
Get the properties of serialport object.

Inputs

serial - instance of octave_serialport class.
property - name of property.

Outputs
When property was specified, return the value of that property.

otherwise return the values of all properties as a structure.
See also: @octave_serial /set.
3.8.7 @octave_serialport/getpinstatus

status getpinstatus (serial) [Function File]
Get status of serial pins

Inputs

serial - serial object

Chapter 3: Function Reference 31

Outputs

status - a structure with the logic names of ClearToSend, DataSetReady, CarrierDetect, and
RinglIndicator

See also: serialport.

3.8.8 @octave_serialport/read

data = read (dev, count)
data = read (dev, count, precision)
Read a specified number of values from a serialport using optional precision for valuesize.

Inputs

dev - connected serialport device

count - number of elements to read

precision - Optional precision for the output data read data. Currently known precision
values are uint8 (default), int8, uint16, int16, uint32, int32, uint64, uint64

Outputs

data - data read from the device

See also: serialport.
3.8.9 @octave_serialport /serialbreak

serialbreak (serial) [Function File]
serialbreak (serial, time) [Function File]
Send a break to the serial port
Inputs
serial - serialport object

time - number of milliseconds to break for. If not specified a value of 10 will be used.

Outputs

None

See also: serial.
3.8.10 @octave_serialport/set

set (obj, property,value) [Function File]
set (obj, property,value,...) [Function File]
Set the properties of serialport object.

Inputs

serial - instance of octave_serialport class.
property - name of property.

If property is a cell so must be value, it sets the values of all matching properties.

The function also accepts property-value pairs.

Chapter 3: Function Reference 32

Properties

’baudrate’ Set the baudrate of serial port. Supported values by instrument-control: 0, 50,
75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400,
57600, 115200 and 230400. The supported baudrate of your serial port may be
different.

'bytesize’ Set the bytesize. Supported values: 5, 6, 7 and 8.
‘name’ Set the stored string name of the serial object.

'parity’ Set the parity value. Supported values: Even/Odd/None. This Parameter must
be of type string. It is case insensitive and can be abbreviated to the first letter
only

'stopbits’ Set the number of stopbits. Supported values: 1, 2.

‘timeout’ Set the timeout value in tenths of a second. Value of -1 means a blocking call.
Maximum value of 255 (i.e. 25.5 seconds).

requesttosend’
Set the requesttosend (RTS) line.

‘dataterminalready’
Set the dataterminalready (DTR) line.

Outputs
None

See also: @octave_serialport/-get.
3.8.11 @octave_serialport/setDTR

setDTR (dev, true_false)
Set the state of the DTR line

Inputs

dev - connected serial device.
true_false - state to set the line.

Outputs
None

See also: serialport, getpinstatus, setRTS.

3.8.12 @octave_serialport/setRTS

setRTS (dev, true_false)
Set the state of the RTS line
Inputs

dev - connected serial device.
true_false - state to set the line.

Outputs
None

See also: serialport, getpinstatus.

Chapter 3: Function Reference 33

3.8.13 @octave_serialport/write

numbytes = write (obj, data) [Function File]
numbytes = write (obj, data, precision) [Function File]
Writes data to serialport instrument

Inputs

obj is a serialport object.
data data to write.
precision precision of data.

Outputs

returns number of bytes written.
3.8.14 serialport

serial = serialport ([path], [baudrate]) [Loadable Function]
serial serialport ([path], [propname, propvalue]) [Loadable Function]
Open serial port interface.

Inputs

path - the interface path of type String.
baudrate - the baudrate of interface.
propname,propvalue - property name/value pairs.

Known input properties:

BaudRate Numeric baudrate value

Timeout Numeric timeout value in seconds or -1 to wait forever
StopBits number of stopbits to use

Parity Parity setting 'none’, ’even’, ’odd’

DataBits Number of bits to a byte (5 to 8)

FlowControl

Number of bits to a byte 'none’, "hardware’, ’software’

Outputs

The serialport() shall return an instance of octave_serialport class as the result serial.

Properties

The serial object has the following public properties:

Name name assigned to the object

Type instrument type ’serial’ (readonly)

Port OS specific port name (readonly)

Status status of the object 'open’ or ’closed’ (readonly)

Timeout timeout value used for waiting for data

NumBytesAvailable
number of bytes currently available to read (readonly)

Chapter 3: Function Reference 34

NumBytesWritten
number of bytes written (readonly)

StopBits number of stopbits to use

Parity Parity setting 'none’, ’even’, ’odd’
DataBits Number of bits to a byte (5 to 8)
BaudRate Baudrate setting

FlowControl
Number of bits to a byte 'none’, hardware’, ’software’

PinStatus current state of pins (readonly)

UserData user defined data

3.8.15 serialportlist

list = serialportlist () [Function File]
list = serialportlist ("all") [Function File]
list = serialportlist ("available") [Function File]

Returns a list of all serial ports detected in the system.

Inputs

‘all’ - show all serial ports (same as providing no arguments) ’available’ - show only serial
ports that are available for use

Outputs

list is a string cell array of serial ports names detected in the system.

See also: instrhwinfo("serialport").

3.9 SPI

3.9.1 @octave_spi/fclose

res = fclose (obj) [Function File]
Closes SPI connection obj

3.9.2 @octave_spi/fopen

res = fopen (obj) (dummy) [Function File]
Opens SPI connection obj

This currently is a dummy function to improve compatibility to MATLAB
3.9.3 @octave_spi/fread

data = fread (obj) [Function File]
data = fread (obj, size) [Function File]
data = fread (obj, size, precision) [Function File]
[]
[]

[data, count] = fread (obj, ...) Function File
[data, count,errmsg] = fread (obj, ...) Function File
Reads data from a SPI instrument

Chapter 3: Function Reference 35

Inputs

obj is a SPI object.
size Number of values to read. (Default: 10).
precision precision of data.

Outputs

data data values.
count number of values read.
errmsg read operation error message.

3.9.4 Q@octave_spi/fwrite

numbytes = fwrite (obj, data) [Function File]
numbytes = fwrite (obj, data, precision) [Function File]
Writes data to SPI instrument

Inputs

obj is a SPI object.
data data to write.
precision precision of data.

Outputs

returns number of bytes written.

3.9.5 Q@octave_spi/get

struct = get (spi) [Function File]
field = get (spi, property) [Function File]
Get the properties of spi object.

Inputs

spi - instance of octave_spi class.

property - name of property.

Properties

‘name’ Name for the spi socket.
'bitrate’ The bitrate for the spi object.

‘clockpolarity’
The clock polarity for the spi object of ’idlehigh’ or ’idlelow’.

‘clockphase’
The clock phase for the spi object of ’firstedge’ or ’secondedge’.

‘port’ The device port name.

'status’ The device status of ’open’ or ’closed’

Chapter 3: Function Reference 36

Outputs

When property was specified, return the value of that property.
otherwise return the values of all properties as a structure.

See also: @octave_spi/set.

3.9.6 @octave_spi/read

data = read (obj) [Function File]
data = read (obj, size) [Function File]
Reads data from SPI instrument

Inputs

obj is a SPI object.
size Number of values to read. (Default: 10).

Outputs

data data values.

3.9.7 Q@octave_spi/set

set (obj, property,value) [Function File]
set (obj, property,value,...) [Function File]
Set the properties of spi object.
Inputs

obj - instance of octave_spi class.
property - name of property.

If property is a cell so must be value, it sets the values of all matching properties.
The function also accepts property-value pairs.

Properties

‘name’ Set the name for the spi socket.

’bitrate’ Set the bitrate for the spi object.

"clockpolarity’
Set the clock polarity for the spi object of ’idlehigh’ or ’idlelow’.

‘clockphase’
Set the clock phase for the spi object of 'firstedge’ or ’secondedge’.

Outputs
None

See also: @Qoctave_spi/get.
3.9.8 @Qoctave_spi/write

numbytes = fuwrite (obj, data) [Function File]
Writes data to SPI instrument

Chapter 3: Function Reference 37

Inputs

obj is a SPI object.
data data to write.

Outputs

returns number of bytes written.
3.9.9 @octave_spi/writeAndRead

data = writeAndRead (obj, wrdata) [Function File]
Writes and reads data from SPI instrument

Inputs

obj is a SPI object.
wrdata Data to write.

Outputs

data data values read.

3.9.10 spi
spi = spi ([port_path]) [Loadable Function]
spi = spi ([port_path|, [propname, propvaluel) [Loadable Function]

Open a spi interface.

Inputs

port_path - the interface device port/path of type String. If omitted defaults to ’/dev/spi-0’.
propname,propvalue - property name/value pairs.

Known input properties:

name Name of the object
bitrate Numeric bitrate value
clockpolarity

Clock polarity: idlehigh or idlelow.

clockphase
Clock phase value: firstedge or secondedge

Outputs

spi - An instance of octave_spi class.

Properties

The spi object has the following properties:
name Name of the object
status Open or closed status of object (readonly).

bitrate Numeric bitrate value

Chapter 3: Function Reference 38

clockpolarity
Clock polarity: idlehigh or idlelow.

clockphase
Clock phase value: firstedge or secondedge

port The interface driver port (readonly)

3.9.11 spi_close

spi_close (spi) [Loadable Function]
Close the interface and release a file descriptor.

Inputs

spi - instance of octave_spi class.

Outputs

None

3.9.12 spi_read

[data, count] = spi_read (spi, n) [Loadable Function]
Read from spi slave device.

Inputs

spi - instance of octave_spi class.
n - number of bytes to attempt to read of type Integer.

Outputs

The spi-read() shall return number of bytes successfully read in count as Integer and the
bytes themselves in data as uint8 array.

3.9.13 spi_write

n = spi_write (spi, data) [Loadable Function]
Write data to a spi slave device.

Inputs

spi - instance of octave_spi class.
data - data, of type uint8, to be written to the slave device.

Outputs

Upon successful completion, spi_write() shall return the number of bytes written as the result
1.

3.9.14 spi_writeAndRead

rddata = spi_writeAndRead (spi, wrdata) [Loadable Function]
Write data to a spi slave device and then read same number of values.

Inputs

spi - instance of octave_spi class.
wrdata - data, of type uint8, to be written to the slave device.

Chapter 3: Function Reference 39

Outputs

Upon successful completion, spi_writeAndRead() shall return the bytes read.

3.10 TCP (Deprecated)

3.10.1 @octave_tcp/fclose

res = fclose (obj) [Function File]
Closes TCP connection obj

3.10.2 @octave_tcp/flush

data = flush (dev)

data = flush (dev, "input")

data = flush (dev, "output")
Flush the tcp socket buffers

Inputs
dev - connected tcp device

If an additional parameter is provided of "input" or "output", then only the input or output
buffer will be flushed

Outputs

None

See also: serialport.
3.10.3 @octave_tcp/flushinput

flushinput (tcp) [Loadable Function]
Flush the pending input, which will also make the BytesAvailable property be 0.

Inputs

tcp - instance of octave_tcp class.
Outputs

None.

See also: flushoutput.
3.10.4 @octave_tcp/flushoutput

flushoutput (tcp) [Loadable Function)]
Flush the output buffer.

Inputs

tcp - instance of octave_tcp class.

Outputs

None.

See also: flushinput.

Chapter 3: Function Reference 40

3.10.5 @octave_tcp/fopen

res = fopen (obj) (dummy) [Function File]
Opens TCP connection obj

This currently is a dummy function to improve compatibility to MATLAB
3.10.6 @Qoctave_tcp/fprintf

numbytes = fprintf (obj, template ...) [Function File]
Writes formatted string template using optional parameters to TCP instrument

Inputs

obj is a TCP object.
template Format template string

Outputs

Number of characters written

3.10.7 @octave_tcp/fread

data = fread (obj) Function File
data = fread (obj, size) Function File
data = (

Function File
Function File

[data,count] = fread (obj, ...)
[data, count,errmsg] = fread (obj, ...)
Reads data from TCP instrument

[}
[}
fread (obj, size, precision) [Function File]
[]
[]

Inputs

obj is a TCP object.
size Number of values to read. (Default: 100).
precision precision of data.

Outputs

data data read.
count values read.
errmsg read operation error message.

3.10.8 @octave_tcp/fwrite

numbytes = fuwrite (obj, data) [Function File]
numbytes = fwrite (obj, data, precision) [Function File]
Writes data to TCP instrument

Inputs

obj is a TCP object.
data data to write.
precision precision of data.

Outputs

returns number of bytes written.

Chapter 3: Function Reference 41

3.10.9 Q@octave_tcp/get

struct = get (tcp) [Function File]
field = get (tcp, property) [Function File]
Get the properties of tcp object.

Inputs

tcp - instance of octave_tcp class.
property - name of property.

Outputs

When property was specified, return the value of that property.
otherwise return the values of all properties as a structure.

See also: @octave_tcp/set.

3.10.10 @octave_tcp/read

data = read (obj) [Function File]
data = read (obj, size) [Function File]
data = read (obj, size, datatype) [Function File]

Reads data from TCP instrument

Inputs

obj is a TCP object.
size Number of values to read. (Default: 100).
datatype datatype of data.

Outputs
data data read.

3.10.11 Qoctave_tcp/set

set (obj, property,value) [Function File]
set (obj, property,value,...) [Function File]
Set the properties of tcp object.
Inputs

If property is a cell so must be value, it sets the values of all matching properties.

The function also accepts property-value pairs.

Properties

‘name’ Set the name for the tcp socket.

‘remotehost’
Set the remote host name for the tcp socket.

‘remoteport’
Set the remote port for the tcp socket.

‘timeout’ Set the timeout value in seconds. Value of -1 means a blocking call.

Chapter 3: Function Reference 42

Outputs
None

See also: @Qoctave_tcp/get.
3.10.12 @octave_tcp/write

numbytes = write (obj, data) [Function File]
numbytes = write (obj, data, datatype) [Function File]
Writes data to TCP instrument

Inputs

obj is a TCP object.
data data to write.
datatype datatype of data. If not specified, it defaults to "uint8".

Loadable Function

Outputs

returns number of bytes written.
3.10.13 tcp
tcp = tcp () [Loadable Function]
tcp = tcp (ipaddress) [Loadable Function]
tcp = tcp (ipaddress, port) [Loadable Function]
tcp = tcp (ipaddress, port, timeout) [Loadable Function]
tcp = tcp (ipaddress, [propertyname, propertyvalue|) [Loadable Function]

[]

tcp = tcp (ipaddress, port, [propertyname,
propertyvaluel)
Open tcp interface.

Inputs

ipaddress - the ip address of type String. If omitted defaults to ’127.0.0.1".
port - the port number to connect. If omitted defaults to 23.

timeout - the interface timeout value. If omitted defaults to blocking call.
propname,propvalue - property name/value pairs.

Known input properties:

name name value
timeout Numeric timeout value or -1 to wait forever
Outputs

The tep() shall return instance of octave_tcp class as the result tep.

Properties

The tcp object has the following public properties:
name name assigned to the tcp object

type instrument type 'tcp’ (readonly)
localport local port number (readonly)

remoteport
remote port number

Chapter 3: Function Reference 43

remotehost
remote host

status status of the object ’open’ or ’closed’ (readonly)
timeout timeout value in seconds used for waiting for data

bytesavailable
number of bytes currently available to read (readonly)

3.10.14 tcp_close

tcp_close (tcp) [Loadable Function)]

Close the interface and release a file descriptor.

Inputs

tcp - instance of octave_tcp class.

Outputs

None

3.10.15 tcp_read

[data, count] = tcp_read (tcp, n, timeout) [Loadable Function]

Read from tcp interface.

Inputs

tep - instance of octave_tcp class.
n - number of bytes to attempt to read of type Integer
timeout - timeout in ms if different from default of type Integer

Outputs

count - number of bytes successfully read as an Integer
data - data bytes themselves as uint8 array.

3.10.16 tcp_timeout
tcp_timeout (tcp, timeout) [Loadable Function]
t = tcp_timeout (tcp) [Loadable Function)]

3.

n

Set new or get existing tcp interface timeout parameter used for tcp_read() requests. The
timeout value is specified in milliseconds.

Inputs

tcp - instance of octave_tep class.
timeout - tcp_read() timeout value in milliseconds. Value of -1 means a blocking call.

Outputs

If timeout parameter is omitted, the tcp_timeout() shall return current timeout value as the
result ¢.

10.17 tcp_write

= tcp_write (tcp, data) [Loadable Function]
Write data to a tcp interface.

Chapter 3: Function Reference 44

Inputs

tcp - instance of octave_tcp class.

data - data to be written to the tcp interface. Can be either of String or uint8 type.
Outputs

Upon successful completion, tcp_write() shall return the number of bytes written as the result
1.

3.10.18 tcpip

tcp = tcpip (host, [port], [PropertyName, PropertyValue...|) [Function File]
Matlab compatible wrapper to the tcp interface.

NOTE: tcpip has been deprecated. Use tcpclient instead

Inputs

host - the host name or ip.
port - the port number to connect. If omitted defaults to 80.
PropertyName, Property Value - Optional property name, value pairs to set on the tcp object.

Properties

Currently the only known properties are "timeout" and "name".

Outputs

tepip will return an instance of octave_tcp class as the result.

3.11 TCP Client

3.11.1 @octave_tcpclient/configureTerminator

configureTerminator (tcp, term) [Function File]
configureTerminator (tcp, readterm, writeterm) [Function File]
Set terminator on a tcpclient object for ASCII string manipulation

Inputs

tcp - tepcelient object

term - terminal value for both read and write
readterm = terminal value type for read data
writeterm = terminal value for written data

The terminal can be either strings "cr", "1f" (default), "1f/cr" or an integer between 0 to 255.

Outputs
None

See also: tcpport.

3.11.2 @octave_tcpclient/flush

data = flush (dev)

data = flush (dev, "input")

data = flush (dev, "output")
Flush the tcpclient socket buffers

Chapter 3: Function Reference 45

Inputs

dev - connected tcpclient device
If an additional parameter is provided of "input" or "output", then only the input or output

buffer will be flushed
Outputs
None

See also: serialport.
3.11.3 @octave_tcpclient/get

struct = get (tcpclient) [Function File]
field = get (tcpclient, property) [Function File]
Get the properties of tcpcelient object.
Inputs

tepclient - instance of octave_tcpclient class.
property - name of property.

Outputs

When property was specified, return the value of that property.
otherwise return the values of all properties as a structure.

See also: @octave_tcpclient /set.

3.11.4 @octave_tcpclient/read

data = read (obj) [Function File]
data = read (obj, size) [Function File]
data = read (obj, size, datatype) [Function File]

Reads data from TCP instrument

Inputs

obj is a TCP object.
size Number of values to read. (Default: NumBytesAvailable).
datatype datatype of data.

Outputs
data data read.

3.11.5 @octave_tcpclient/set

set (obj, property,value) [Function File]
set (obj, property,value,...) [Function File]
Set the properties of tcpclient object.

Inputs

If property is a cell so must be value, it sets the values of all matching properties.

The function also accepts property-value pairs.

Chapter 3: Function Reference 46

Properties

"Name’ Set the name for the tcpclient socket.

"UserData’
Set user data for the tcpclient socket.

"T'imeout’ Set the timeout value in seconds. Value of -1 means a blocking call.

Outputs
None

See also: @octave_tcpclient/get.
3.11.6 @octave_tcpclient/write

numbytes = write (obj, data) [Function File]
numbytes = write (obj, data, datatype) [Function File]
Writes data to TCP instrument

Inputs

obj is a TCPclient object.
data data to write.
datatype datatype of data. If not specified, it defaults to "uint8".

Outputs

returns number of bytes written.
3.11.7 tcpclient

tcpclient = tcpclient (ipaddress, port) [Loadable Function]
tcpclient = tcpclient (ipaddress, port, [propertyname, [Loadable Function)]
propertyvaluel)
Open tcpclient interface.

Inputs

ipaddress - the ip address of type String.
port - the port number to connect.
propname,propvalue - property name/value pairs.

Known input properties:
Name name value
Timeout Numeric timeout value or -1 to wait forever

UserData User data value.

Outputs

The tepclient() shall return instance of octave_tcpclient class as the result tcpclient.

Properties
The tcpclient object has the following public properties:
Name name assigned to the tcpclient object

Type instrument type 'tcpclient’ (readonly)

Chapter 3: Function Reference 47

Port remote port number (Readonly)

Address remote host address (Readonly)

Status status of the object ’open’ or ’closed’ (readonly)
Timeout timeout value in seconds used for waiting for data

NumBytesAvailable
number of bytes currently available to read (readonly)

NumBytesWritten
number of bytes currently available to read (readonly)

ByteOrder
Byte order for data (currently not used)

Terminator
Terminator value used for string data (currently not used)

UserData User data
3.12 TCP Server

3.12.1 @octave_tcpserver/configureTerminator

configureTerminator (tcp, term) [Function File]
configureTerminator (tcp, readterm, writeterm) [Function File]
Set terminator on a tcpserver object for ASCII string manipulation

Inputs

tcp - tepserver object

term - terminal value for both read and write
readterm = terminal value type for read data
writeterm = terminal value for written data

The terminal can be either strings "cr", "If" (default), "1f/cr" or an integer between 0 to 255.

Outputs
None

See also: tcpport.

3.12.2 @octave_tcpserver/flush

data = flush (dev)

data = flush (dev, "input")

data = flush (dev, "output")
Flush the tcpserver socket buffers

Inputs

dev - connected tcpserver device
If an additional parameter is provided of "input" or "output", then only the input or output

buffer will be flushed
Outputs
None

See also: serialport.

Chapter 3: Function Reference 48

3.12.3 @octave_tcpserver/get

struct = get (tcpserver) [Function File]
field = get (tcpserver, property) [Function File]
Get the properties of tcpserver object.
Inputs

tepserver - instance of octave_tcpserver class.
property - name of property.

Outputs

When property was specified, return the value of that property.
otherwise return the values of all properties as a structure.

See also: @octave_tcpserver/set.

3.12.4 @octave_tcpserver/read

data = read (obj) [Function File]
data = read (obj, size) [Function File]
data = read (obj, size, datatype) [Function File]

Reads data from TCP instrument

Inputs

obj is a TCP Server object.
size Number of values to read. (Default: NumBytesAvailable).
datatype datatype of data.

Outputs
data data read.

3.12.5 @octave_tcpserver/set

set (obj, property,value) [Function File]
set (obj, property,value,...) [Function File]
Set the properties of tcpserver object.

Inputs

If property is a cell so must be value, it sets the values of all matching properties.
The function also accepts property-value pairs.
Properties

"Name’ Set the name for the tcpserver socket.

"UserData’
Set user data for the tcpserver socket.

"T'imeout’ Set the timeout value in seconds. Value of -1 means a blocking call.

Chapter 3: Function Reference 49

Outputs
None

See also: @octave_tcpserver/get.
3.12.6 @octave_tcpserver/write

numbytes = write (obj, data) [Function File]
numbytes = write (obj, data, datatype) [Function File]
Writes data to TCP instrument

Inputs

obj is a TCPServer object.
data data to write.
datatype datatype of data. If not specified, it defaults to "uint8".

Outputs

returns number of bytes written.

3.12.7 tcpserver

tcpserver = tcpserver (ipaddress, port) [Loadable Function]
tcpserver = tcpserver (port) [Loadable Function)]
tcpserver = tcpserver (..., [propertyname, [Loadable Function)]

propertyvaluel)
Open tcpserver interface.

Inputs

ipaddress - the ip address of type String.
port - the port number to bind.
propname,propvalue - property name/value pairs.

Known input properties:
Name name value
Timeout Numeric timeout value or -1 to wait forever

UserData User data value.

Outputs

The tcpserver() shall return instance of octave_tcpserver class as the result tcpserver.

Properties

The tcpserver object has the following public properties:
Connected boolean flag for when connected to a client (Readonly)
ClientPort connected client port number (Readonly)

ClientAddress
connected client address (Readonly)

Name name assigned to the tcpserver object

Type instrument type 'tcpserver’ (readonly)

Chapter 3: Function Reference 50

ServerPort
server port number (Readonly)

ServerAddress
server address (Readonly)

Status status of the object ’open’ or ’closed’ (readonly)
Timeout timeout value in seconds used for waiting for data

NumBytesAvailable
number of bytes currently available to read (readonly)

NumBytesWritten
number of bytes currently available to read (readonly)

ByteOrder
Byte order for data (currently not used)

Terminator
Terminator value used for string data (currently not used)

UserData User data

3.13 UDP (Deprecated)

3.13.1 @octave_udp/fclose

res = fclose (obj) [Function File]
Closes UDP connection obj

3.13.2 @octave_udp/flush

data = flush (dev)

data = flush (dev, "input")

data = flush (dev, "output")
Flush the udp socket buffers

Inputs
dev - open udp device

If an additional parameter is provided of "input" or "output", then only the input or output
buffer will be flushed

Outputs

None

See also: udp.
3.13.3 @octave_udp/flushinput

flushinput (udp) [Loadable Function]
Flush the pending input, which will also make the BytesAvailable property be 0.

Inputs

udp - instance of octave_udp class.

Chapter 3: Function Reference 51

Outputs

None

See also: flushoutput.
3.13.4 @octave_udp/flushoutput

flushoutput (udp) [Loadable Function]
Flush the output buffer.

Inputs

udp - instance of octave_udp class.

Outputs

None

See also: flushinput.
3.13.5 @Qoctave_udp/fopen

res = fopen (obj) (dummy) [Function File]
Opens UDP connection obj This currently is a dummy function to improve compatibility to
MATLAB

3.13.6 @Qoctave_udp/fprintf

numbytes = fprintf (obj, template ...) [Function File]
Writes formatted string template using optional parameters to UDP instrument

Inputs

obj is a UDP object.
template Format template string.

Outputs

numbytes is the number of bytes written to the device

3.13.7 @octave_udp/fread

data = fread (obj) Function File
data = fread (obj, size) Function File
data = (

[data,count] = fread (obj, ...)
[data, count,errmsg] = fread (obj, ...)
Reads data from UDP instrument

Function File

[|
[}
fread (obj, size, precision) [Function File]
[}
[Function File]

Inputs

obj is a UDP object.
size Number of values to read. (Default: 100).
precision precision of data.

Chapter 3: Function Reference

Outputs

data data values.
count number of values read.
errmsg read operation error message.

3.13.8 @octave_udp/fwrite

numbytes fwrite (obj, data)

numbytes = fwrite (obj, data, precision)

Writes data to UDP instrument

Inputs

obj is a UDP object.
data data to write.
precision precision of data.

Outputs

returns number of bytes written.
3.13.9 @octave_udp/get
struct = get (udp)
field = get (udp, property)
Get the properties of udp object.
Inputs

udp - instance of octave_udp class.

property - name of property.

Outputs

When property was specified, return the value of that property.
otherwise return the values of all properties as a structure.

See also: @octave_udp/set.

3.13.10 @octave_udp/read

data = read (obj)

data = read (obj, size)

data = read (obj, size, datatype)
Reads data from UDP instrument

Inputs
obj is a UDP object.

size Number of values to read. (Default: BytesAvailable).

datatype datatype of data.

52

[Function File]
[Function File]

[Function File]
[Function File]

[Function File]
[Function File]
[Function File]

Chapter 3: Function Reference 53

Outputs
data data read.

3.13.11 @octave_udp/set

set (obj, property,value) [Function File]
set (obj, property,value,...) [Function File]
Set the properties of udp object.

Inputs

obj - instance of octave_udp class.
property - name of property.

If property is a cell so must be value, it sets the values of all matching properties.
The function also accepts property-value pairs.

Properties

‘name’ Set the name for the udp socket.

remotehost’
Set the remote host name for the udp socket.

‘remoteport’
Set the remote port for the udp socket.

‘timeout’ Set the timeout value in seconds. Value of -1 means a blocking call.

Outputs
None

See also: @Qoctave_udp/get.

3.13.12 @octave_udp/write

numbytes = write (obj, data) [Function File]

numbytes = write (obj, data, destinationAddress, [Function File]
destinationPort))

numbytes = write (obj, data, datatype) [Function File]

numbytes = write (obj, data, datatype, destinationAddress, [Function File]
destinationPort)

Writes data to UDP instrument

Inputs

obj is a UDP object.

data data to write.

datatype datatype of data. If not specified defaults to uintS.

destinationAddress ipaddress to send to. If not specified, use the remote address.
destinationPort port to send to. If not specified, use the remote port.

Outputs

returns number of bytes written.

Chapter 3: Function Reference

3.13.13 udp
udp = udp ()
udp = udp (remoteipaddress, remoteport)

udp (remoteipaddress, remoteport, [propertyname,
propertyvalue ...])
Open udp interface.

udp

Inputs

remoteipaddress - the ip address of type String. If omitted defaults to
remoteport - the port number to connect. If omitted defaults to 23.
localport - the local port number to bind. If omitted defaults to 0
propertyname, propertyvalue - property name/value pair

Outputs

The udp() shall return instance of octave_udp class as the result udp.

Properties

The udp object has the following public properties:
name name assigned to the udp object

type instrument type 'udp’ (readonly)
localport local port number (readonly)

localhost local host address (readonly)

remoteport
remote port number

remotehost
remote host

status status of the object 'open’ or ’closed’ (readonly)
timeout timeout value in seconds used for waiting for data
bytesavailable

number of bytes currently available to read (readonly)
3.13.14 udp_close

udp_close (udp)
Close the interface and release a file descriptor.

Inputs

udp - instance of octave_udp class.

Inputs

None
3.13.15 udp_demo

result = udp_demo ()
Run test SNTP demonstration for udp class

See also: udp.

54

[Loadable Function]
[Loadable Function]
[Loadable Function]

’127.0.0.1°.

[Loadable Function]

[Function File]

Chapter 3: Function Reference 55

3.13.16 udp_read

[data, count] = wudp_read (udp, n, timeout) [Loadable Function]

Read from udp interface.

Inputs

udp - instance of octave_udp class.
n - number of bytes to attempt to read of type Integer
timeout - timeout in ms if different from default of type Integer

Outputs

The udp_read() shall return number of bytes successfully read in count as Integer and the
bytes themselves in data as uint8 array.

3.13.17 udp_timeout

udp_timeout (udp, timeout) [Loadable Function]

t

= udp_timeout (udp) [Loadable Function]
Set new or get existing udp interface timeout parameter used for udp_read() requests. The
timeout value is specified in milliseconds.

Inputs

udp - instance of octave_udp class.

timeout - udp_read() timeout value in milliseconds. Value of -1 means a blocking call.
Outputs

If timeout parameter is omitted, the udp-timeout() shall return current timeout value as the
result ¢.

3.13.18 udp_write

n

= udp_write (udp, data) [Loadable Function]
Write data to a udp interface.

Inputs

udp - instance of octave_udp class.

data - data to be written to the udp interface. Can be either of String or uint8 type.
Outputs

Upon successful completion, udp_write() shall return the number of bytes written as the
result n.

3.14 UDP Port

3.14.1 @octave_udpport/configureMulticast

data = configureMulticast((dev, address)
data = configureMulticast((dev, "off")

Configure udpport device to receive multicast data

Inputs

dev - open udpport device
If address is ’off” disable udp multicast. Otherwise it is the multicast address to use.

Chapter 3: Function Reference 56

Outputs
None

See also: udpport.
3.14.2 @octave_udpport/configureTerminator

configureTerminator (udp, term) [Function File]
configureTerminator (udp, readterm, writeterm) [Function File]
Set terminator for ASCII string manipulation

Inputs

udp - udpport object

term - terminal value for both read and write
readterm = terminal value type for read data
writeterm = terminal value for written data

The terminal can be either strings "cr", "If" (default), "lf/cr" or an integer between 0 to 255.

Outputs
None

See also: udpport.
3.14.3 @octave_udpport/flush

data = flush (dev)

data = flush (dev, "input")

data = flush (dev, "output")
Flush the udpport socket buffers

Inputs

dev - open udpport device

If an additional parameter is provided of "input" or "output", then only the input or output
buffer will be flushed

Outputs
None

See also: udpport.
3.14.4 @octave_udpport/fprintf

numbytes = fprintf (obj, template ...) [Function File]
Writes formatted string template using optional parameters to UDP instrument
Inputs

obj is a UDPPort object.
template Format template string.

Outputs

numbytes is the number of bytes written to the device

Chapter 3: Function Reference

3.14.5 @octave_udpport/fread

data = fread (obj)

data = fread (obj, size)

data = fread (obj, size, precision)

[data, count] = fread (obj, ...)

[data, count,errmsg]l = fread (obj, ...)
Reads data from UDP instrument
Inputs

obj is a UDP port object.
size Number of values to read. (Default: 100).
precision precision of data.

Outputs

data data values.
count number of values read.
errmsg read operation error message.

3.14.6 @octave_udpport/fwrite

numbytes = fwrite (obj, data)

numbytes = fwrite (obj, data, precision)
Writes data to UDP instrument
Inputs

obj is a UDP port object.
data data to write.
precision precision of data.

Outputs

returns number of bytes written.
3.14.7 @octave_udpport/get

struct = get (udpport)
field = get (udpport, property)
Get the properties of udpport object.

Inputs

udpport - instance of octave_udpport class.

property - name of property.

Outputs

When property was specified, return the value of that property.
otherwise return the values of all properties as a structure.

See also: @octave_udpport/set.

57

[Function File]
[Function File]
[Function File]
[Function File]
[Function File]

[Function File]
[Function File]

[Function File]
[Function File]

Chapter 3: Function Reference

3.14.8 @octave_udpport/read

data = read (obj)

data = read (obj, size)

data = read (obj, size, datatype)
Reads data from UDP instrument

Inputs

obj is a UDP object.
size Number of values to read. (Default: BytesAvailable).
datatype datatype of data.

Outputs
data data read.

3.14.9 @octave_udpport/set

set (obj, property,value)
set (obj, property,value,...)
Set the properties of udpport object.

Inputs

obj - instance of octave_udpport class.
property - name of property.

58

[Function File]
[Function File]
[Function File]

[Function File]
[Function File]

If property is a cell so must be value, it sets the values of all matching properties.

The function also accepts property-value pairs.

Properties
"Name’ Set the name for the udpport socket.

"UserData’
Set the user data of the object.

"T'imeout’ Set the timeout value in seconds. Value of -1 means a blocking call.

Outputs

None

See also: @octave_udpport/get.

3.14.10 @octave_udpport/write

write (obj, data)
write (obj, data, destinationAddress,
destinationPort))
numbytes = write (obj, data, datatype)
numbytes = write (obj, data, datatype, destinationAddress,
destinationPort)
Writes data to UDP instrument

numbytes
numbytes

[Function File]
[Function File]

[Function File]
[Function File]

Chapter 3: Function Reference 59

Inputs

obj is a UDPPort object.

data data to write.

datatype datatype of data. If not specified defaults to uint8.

destinationAddress ipaddress to send to. If not specified, use the previously used remote
address.

destinationPort port to send to. If not specified, use the remote port.

Outputs

returns number of bytes written.
3.14.11 udpport

udp = udpport () [Loadable Function]
udp udpport (propertyname, propertyvalue ...) [Loadable Function)]
Open udpport interface.

Inputs

propertyname, propertyvalue - property name/value pair

Known input properties:
Name name assigned to the udp object
LocalPort local port number
LocalHost local host address
Timeout timeout value in seconds used for waiting for data
EnablePortSharing
Boolean if the socket has port sharing enabled (readonly)

Outputs

The udpport() shall return instance of octave_udp class as the result udp.

Properties

The udp object has the following public properties:

Name name assigned to the udp object

Type instrument type 'udpport’ (readonly)

LocalPort local port number (readonly)

LocalHost local host address (readonly)

Status status of the object open’ or ’closed’ (readonly)
Timeout timeout value in seconds used for waiting for data

NumBytesAvailable
number of bytes currently available to read (readonly)

Multicast Group
multicast group socket is subscribed to (readonly)

EnableMultcast
Boolean if the socket has any multicast group it is subscribed to (readonly)

Chapter 3: Function Reference 60

EnablePortSharing
Boolean if the socket has port sharing enabled (readonly)

Terminator
Terminator value used for string data (currently not used)

3.15 USBTMC

3.15.1 @octave_usbtmc/fclose

res = fclose (obj) [Function File]
Closes USBTMC connection obj

Inputs

obj is a usbtmc object.

3.15.2 @octave_usbtmc/fopen

res = fopen (obj) (dummy) [Function File]

Opens USBTMC connection obj This currently is a dummy function to improve compatibility
to MATLAB

3.15.3 @octave_usbtmc/fread

data = fread (obj) [Function File]
data = fread (obj, size) [Function File]
data = fread (obj, size, precision) [Function File]
[]
[]

[data, count] = fread (obj, ...) Function File
[data, count,errmsg] = fread (obj, ...) Function File
Reads data from usbtmc instrument

Inputs

obj is a usbtmc object.
size Number of values to read. (Default: 100).
precision precision of data.

Outputs

data The read data.
count values read.
errmsg read operation error message.

3.15.4 @octave_usbtmc/fwrite

numbytes = fwrite (obj, data) [Function File]
numbytes = fwrite (obj, data, precision) [Function File]
Writes data to an usbtmc instrument

Inputs

obj is a usbtmc object.
data data to write.
precision precision of data.

Chapter 3: Function Reference 61

Outputs

returns number of bytes written.

3.15.5 usbtmc

usbtmc = usbtmc (path) [Loadable Function)]

Open usbtmc interface.

Inputs
path - the interface path of type String. If omitted defaults to ’/dev/usbtmc0’.

Outputs

The usbtmc() shall return instance of octave_usbtmec class as the result usbtme.

3.15.6 usbtmc_close

usbtmc_close (usbtmc) [Loadable Function)]

Close the interface and release a file descriptor.

Inputs

usbtme - instance of octave_usbtmec class.

Outputs

None

3.15.7 usbtmc_read

[data, count] = usbtmc_read (usbtmc, n) [Loadable Function]

Read from usbtme slave device.

Inputs

usbtmec - instance of octave_usbtmc class.

n - number of bytes to attempt to read of type Integer.
Outputs

count - the number of bytes successfully read as an Integer.
data - the read bytes as a uint8 array.

3.15.8 usbtmc_write

n

= usbtmc_write (usbtmc, data) [Loadable Function]
Write data to a usbtmc slave device.

Inputs

usbtmec - instance of octave_usbtmc class.

data - data, of type uint8, to be written to the slave device.

Outputs

Upon successful completion, usbtme_write() shall return the number of bytes written as the
result n.

Chapter 3: Function Reference 62

3.16 VXI11

3.16.1 @octave_vxill/fclose

res = fclose (obj) [Function File]
Closes VXI11 connection obj

3.16.2 @octave_vxill/fopen

res = fopen (obj) (dummy) [Function File]
Opens VXI11 connection obj This currently is a dummy function to improve compatibility
to MATLAB

3.16.3 @octave_vxill/fread

data = fread (obj) [Function File]
data = fread (obj, size) [Function File]
data = fread (obj, size, precision) [Function File]
[}
[]

[data, count] = fread (obj, ...) Function File
[data, count,errmsg] = fread (obj, ...) Function File
Reads data from vxill instrument

Inputs

obj is a vxill object.
size Number of values to read. (Default: 100).
precision precision of data.

Outputs

data The read data.
count values read.
errmsg read operation error message.

3.16.4 Q@octave_vxill/fwrite

numbytes = fwrite (obj, data) [Function File]
numbytes = fwrite (obj, data, precision) [Function File]
Writes data to vxill instrument

Inputs

obj is a vxill object.
data data to write.
precision precision of data.

Outputs

returns number of bytes written.
3.16.5 vxill

vxill = vxill (ip) [Loadable Function)]
Open vxill interface.

Chapter 3: Function Reference 63

path - the ip address of type String. If omitted defaults to '127.0.0.1°.

The vxill() shall return instance of octave_vxill class as the result vxill.

3.16.6 vxill_close

vxill_close (vxill) [Loadable Function]

Close the interface and release a file descriptor.

vxill - instance of octave_vxill class.

3.16.7 vxill_read

[data, count] = wvxill_read (vxill, n) [Loadable Function]

Read from vxill slave device.

vxill - instance of octave_vxill class.
n - number of bytes to attempt to read of type Integer.

The vxill_read() shall return number of bytes successfully read in count as Integer and the
bytes themselves in data as uint8 array.

3.16.8 vxill_write

n

= vxill_write (vxill, data) [Loadable Function]
Write data to a vxill slave device.

vxill - instance of octave_vxill class.
data - data to be written to the slave device. Can be either of String or uint8 type.

Upon successful completion, vxill_write() shall return the number of bytes written as the
result n.

64

Appendix A GNU General Public License

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom
to share and change the works. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change all versions of a program—to make sure it remains
free software for all its users. We, the Free Software Foundation, use the GNU General Public
License for most of our software; it applies also to any other work released this way by its
authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs, and that you know you
can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you
to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of
the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they know
their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on
the software, and (2) offer you this License giving you legal permission to copy, distribute and/or
modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty
for this free software. For both users’ and authors’ sake, the GPL requires that modified versions
be marked as changed, so that their problems will not be attributed erroneously to authors of
previous versions.

Some devices are designed to deny users access to install or run modified versions of the software
inside them, although the manufacturer can do so. This is fundamentally incompatible with
the aim of protecting users’ freedom to change the software. The systematic pattern of such
abuse occurs in the area of products for individuals to use, which is precisely where it is most
unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for
those products. If such problems arise substantially in other domains, we stand ready to extend
this provision to those domains in future versions of the GPL, as needed to protect the freedom
of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in those
that do, we wish to avoid the special danger that patents applied to a free program could make it
effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render
the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

http://fsf.org/

Appendix A: GNU General Public License 65

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee
is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting work
is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer
of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate copy-
right notice, and (2) tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the work under this License,
and how to view a copy of this License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular program-
ming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means
a major essential component (kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a compiler used to produce the work,
or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to modify
the work, including scripts to control those activities. However, it does not include the
work’s System Libraries, or general-purpose tools or generally available free programs which
are used unmodified in performing those activities but which are not part of the work. For
example, Corresponding Source includes interface definition files associated with source files
for the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication
or control flow between those subprograms and other parts of the work.

Appendix A: GNU General Public License 66

The Corresponding Source need not include anything that users can regenerate automati-
cally from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its content, constitutes
a covered work. This License acknowledges your rights of fair use or other equivalent, as
provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others
for the sole purpose of having them make modifications exclusively for you, or provide
you with facilities for running those works, provided that you comply with the terms of
this License in conveying all material for which you do not control copyright. Those thus
making or running the covered works for you must do so exclusively on your behalf, under
your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on
20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against the work’s users,
your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an ap-
propriate copyright notice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipients a copy of this License along with the
Program.
You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also
meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement
in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable

Appendix A: GNU General Public License 67

section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion
of a covered work in an aggregate does not cause this License to apply to the other parts
of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms
of this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and
valid for as long as you offer spare parts or customer support for that product model,
to give anyone who possesses the object code either (1) a copy of the Corresponding
Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than
your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide
the Corresponding Source. This alternative is allowed only occasionally and noncom-
mercially, and only if you received the object code with such an offer, in accord with
subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy the object code
is a network server, the Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to
ensure that it is available for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corre-
sponding Source as a System Library, need not be included in conveying the object code
work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything

Appendix A: GNU General Public License 68

designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a
consumer product regardless of whether the product has substantial commercial, industrial
or non-consumer uses, unless such uses represent the only significant mode of use of the
product.

“Installation Information” for a User Product means any methods, procedures, authoriza-
tion keys, or other information required to install and execute modified versions of a covered
work in that User Product from a modified version of its Corresponding Source. The infor-
mation must suffice to ensure that the continued functioning of the modified object code is
in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in,
a User Product, and the conveying occurs as part of a transaction in which the right of
possession and use of the User Product is transferred to the recipient in perpetuity or for
a fixed term (regardless of how the transaction is characterized), the Corresponding Source
conveyed under this section must be accompanied by the Installation Information. But this
requirement does not apply if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to con-
tinue to provide support service, warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself materially and adversely
affects the operation of the network or violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation
available to the public in source code form), and must require no special password or key
for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable
to the entire Program shall be treated as though they were included in this License, to the
extent that they are valid under applicable law. If additional permissions apply only to part
of the Program, that part may be used separately under those permissions, but the entire
Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of
this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and
16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works containing it; or

Appendix A: GNU General Public License 69

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material;
or

e. Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who con-
veys the material (or modified versions of it) with contractual assumptions of liability
to the recipient, for any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further restriction but permits
relicensing or conveying under this License, you may add to a covered work material gov-
erned by the terms of that license document, provided that the further restriction does not
survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the
third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, you do not qualify to receive new licenses for
the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify any covered work.
These actions infringe copyright if you do not accept this License. Therefore, by modifying
or propagating a covered work, you indicate your acceptance of this License to do so.

Appendix A: GNU General Public License 70

10.

11.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from
the original licensors, to run, modify and propagate that work, subject to this License. You
are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or sub-
stantially all assets of one, or subdividing an organization, or merging organizations. If
propagation of a covered work results from an entity transaction, each party to that trans-
action who receives a copy of the work also receives whatever licenses to the work the
party’s predecessor in interest had or could give under the previous paragraph, plus a right
to possession of the Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge
for exercise of rights granted under this License, and you may not initiate litigation (includ-
ing a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed
by making, using, selling, offering for sale, or importing the Program or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but
do not include claims that would be infringed only as a consequence of further modification
of the contributor version. For purposes of this definition, “control” includes the right to
grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commit-
ment, however denominated, not to enforce a patent (such as an express permission to
practice a patent or covenant not to sue for patent infringement). To “grant” such a patent
license to a party means to make such an agreement or commitment not to enforce a patent
against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license
to downstream recipients. “Knowingly relying” means you have actual knowledge that, but
for the patent license, your conveying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some
of the parties receiving the covered work authorizing them to use, propagate, modify or
convey a specific copy of the covered work, then the patent license you grant is automatically
extended to all recipients of the covered work and works based on it.

Appendix A: GNU General Public License 71

12.

13.

14.

15.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights
that are specifically granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your
activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a)
in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you may not
convey it at all. For example, if you agree to terms that obligate you to collect a royalty
for further conveying from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely from conveying the
Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU Affero General Public
License into a single combined work, and to convey the resulting work. The terms of
this License will continue to apply to the part which is the covered work, but the special
requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

Revised Versions of this License.

The Free Software Foundation may publish revised and /or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a
certain numbered version of the GNU General Public License “or any later version” applies
to it, you have the option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of the GNU General Public License, you may choose any
version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU Gen-
eral Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no addi-
tional obligations are imposed on any author or copyright holder as a result of your choosing
to follow a later version.

Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-

Appendix A: GNU General Public License 72

16.

17.

ING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MOD-
IFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless
a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively state the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts
in an interactive mode:

program Copyright (C) year name of author

http://www.gnu.org/licenses/

Appendix A: GNU General Public License 73

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show ¢’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Lesser General Public License instead of this License. But first, please read http://www.gnu.
org/philosophy/why-not-1gpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

Index

B

Basic Usage Overviewt 2

C

clrdevice ..o 11
Common Functions.............cooiiiiiiiiiiinn.. 7
configureMulticast............. ... i 55
configureTerminator 28, 44, 47, 56
copyrighto 64

fclose................ 10, 12, 19, 22, 34, 39, 50, 60, 62
flush........................... 29, 39, 44, 47, 50, 56
flushinput o il 7,22, 39, 50
flushoutputl 7,22, 39, 51
fopen................ 10, 13, 19, 22, 34, 40, 51, 60, 62
fprintf....... 10, 22, 29, 40, 51, 56
fread......... 11, 13, 20, 23, 29, 34, 40, 51, 57, 60, 62
fscant ... 11
Function Reference 7
fwrite........ 11, 13, 20, 23, 30, 35, 40, 52, 57, 60, 62

G

Generalo 9
get ...l 13, 16, 23, 30, 35, 41, 45, 48, 52, 57
getpinstatus......... ... i 30
gPIb . 11
gpib_close..... ..o 11
gpibread 12
gpib_timeout 12
gpib_write.. 12
GPIB .. 10

177 14
12c_addr. ..o 15
12C_ClOSE. oo 15
12c_read . oo 15
12C WIIbe . ot 15
120 12
Installing and loading. ..., 1
instrhelp 9
Instrhwinfo 9

L

Loading ..o 1

M

maskWrite 16
Modbus ...t 16

74

@)

Off-lineinstall 1
Onlineinstall........... 1

P

parallel. 20
Parallel ... 19
PP-ClOSE . ..o 20
pp_ctrl. ... 21
pp-data...... ... 21
pp-datadir i 21
PP-stat. ... o 22

read 16, 31, 36, 41, 45, 48, 52, 58
readbinblock............ 7
readline 7
Requirements. 1
resolvehost 10

serial. 27
Serial (Deprecated)............ooooiiiiiiiin... 22
Serial Port ... i 28
serialbreak......... il 24, 31
seriallist..... ..o 28
serialport.o i 33
serialportlist...... 34
set.. oo 14, 17, 24, 31, 36, 41, 45, 48, 53, 58
setDTR ... 32
set RIS . . 32
303 37
SPI_CloSe. .ot 38
spireado 38
SPI_WIIte .. oo 38
spi_writeAndRead i 38
ST 34
SPOll . 12
srl_baudrate............o i i 25
srl_bytesizeo 25
SILClOSE . . v v 25
srlflush. ... 26
srloparity ... 26
stlread ... 28
Srl_stopbits.o 26
STL_timeout 27
STLLWTItE. oot 28

Index

L7502 PPN 42
BCP_ClOSE . . oo 43
tep-read. ...t 43
tep_timeout 43
BCP_WIItE . 43
TCP (Deprecated)...........coooiiiiininii.... 39
TCP Clientoooveii s 44
TCP Serveroovueiiiiii e, 47
tepelient ... 46
L7503 § o TP PP 44
BCPSEIVET ..ot 49
BTigger ..o 12

U

107 5 54
UAP_CloSe. ..ot 54
Udp_demo 54
udp_read . ..o 55
udp_timeout........ ..o 55
UAP_WIIte . oo 55
UDP (Deprecated)cccoouiiiiiiiian.... 50

UDP Port..... ... 55

75
udpport . ..o 59
usbtme. ... 61
usbtmc_close 61
usbtmc_read........... 61
usbtme_write........ 61
USBTMOC ... e 60
V
7« 1 1 62
vxill closeo 63
vxillread ... 63
vxill write. ... oo 63
VXTIl oo 62
W
warranty ... 64
Windows install 1
write. ...l 17, 33, 36, 42, 46, 49, 53, 58
writeAndRead 37
writebinblock......... ... 8
writeline. ... 8
writeread 8
writeRead 18

	1 Installing and loading
	Requirements
	Windows install
	Online Direct install
	Off-line install
	Loading

	2 Basic Usage Overview
	Authors
	Available Interfaces
	Basic Serial
	Serial
	SerialPort

	Basic TCP
	TCP
	TCP Client

	Basic UDP
	UDP
	UDP Port

	3 Function Reference
	Common Functions
	flushinput
	flushoutput
	readbinblock
	readline
	writebinblock
	writeline
	writeread

	General
	instrhelp
	instrhwinfo
	resolvehost

	GPIB
	@octave_gpib/fclose
	@octave_gpib/fopen
	@octave_gpib/fprintf
	@octave_gpib/fread
	@octave_gpib/fscanf
	@octave_gpib/fwrite
	clrdevice
	gpib
	gpib_close
	gpib_read
	gpib_timeout
	gpib_write
	spoll
	trigger

	I2C
	@octave_i2c/fclose
	@octave_i2c/fopen
	@octave_i2c/fread
	@octave_i2c/fwrite
	@octave_i2c/get
	@octave_i2c/set
	i2c
	i2c_addr
	i2c_close
	i2c_read
	i2c_write

	Modbus
	@octave_modbus/get
	@octave_modbus/maskWrite
	@octave_modbus/read
	@octave_modbus/set
	@octave_modbus/write
	@octave_modbus/writeRead
	modbus

	Parallel
	@octave_parallel/fclose
	@octave_parallel/fopen
	@octave_parallel/fread
	@octave_parallel/fwrite
	parallel
	pp_close
	pp_ctrl
	pp_data
	pp_datadir
	pp_stat

	Serial (Deprecated)
	@octave_serial/fclose
	@octave_serial/flushinput
	@octave_serial/flushoutput
	@octave_serial/fopen
	@octave_serial/fprintf
	@octave_serial/fread
	@octave_serial/fwrite
	@octave_serial/get
	@octave_serial/serialbreak
	@octave_serial/set
	@octave_serial/srl_baudrate
	@octave_serial/srl_bytesize
	@octave_serial/srl_close
	@octave_serial/srl_flush
	@octave_serial/srl_parity
	@octave_serial/srl_stopbits
	@octave_serial/srl_timeout
	serial
	seriallist
	srl_read
	srl_write

	Serial Port
	@octave_serialport/configureTerminator
	@octave_serialport/flush
	@octave_serialport/fprintf
	@octave_serialport/fread
	@octave_serialport/fwrite
	@octave_serialport/get
	@octave_serialport/getpinstatus
	@octave_serialport/read
	@octave_serialport/serialbreak
	@octave_serialport/set
	@octave_serialport/setDTR
	@octave_serialport/setRTS
	@octave_serialport/write
	serialport
	serialportlist

	SPI
	@octave_spi/fclose
	@octave_spi/fopen
	@octave_spi/fread
	@octave_spi/fwrite
	@octave_spi/get
	@octave_spi/read
	@octave_spi/set
	@octave_spi/write
	@octave_spi/writeAndRead
	spi
	spi_close
	spi_read
	spi_write
	spi_writeAndRead

	TCP (Deprecated)
	@octave_tcp/fclose
	@octave_tcp/flush
	@octave_tcp/flushinput
	@octave_tcp/flushoutput
	@octave_tcp/fopen
	@octave_tcp/fprintf
	@octave_tcp/fread
	@octave_tcp/fwrite
	@octave_tcp/get
	@octave_tcp/read
	@octave_tcp/set
	@octave_tcp/write
	tcp
	tcp_close
	tcp_read
	tcp_timeout
	tcp_write
	tcpip

	TCP Client
	@octave_tcpclient/configureTerminator
	@octave_tcpclient/flush
	@octave_tcpclient/get
	@octave_tcpclient/read
	@octave_tcpclient/set
	@octave_tcpclient/write
	tcpclient

	TCP Server
	@octave_tcpserver/configureTerminator
	@octave_tcpserver/flush
	@octave_tcpserver/get
	@octave_tcpserver/read
	@octave_tcpserver/set
	@octave_tcpserver/write
	tcpserver

	UDP (Deprecated)
	@octave_udp/fclose
	@octave_udp/flush
	@octave_udp/flushinput
	@octave_udp/flushoutput
	@octave_udp/fopen
	@octave_udp/fprintf
	@octave_udp/fread
	@octave_udp/fwrite
	@octave_udp/get
	@octave_udp/read
	@octave_udp/set
	@octave_udp/write
	udp
	udp_close
	udp_demo
	udp_read
	udp_timeout
	udp_write

	UDP Port
	@octave_udpport/configureMulticast
	@octave_udpport/configureTerminator
	@octave_udpport/flush
	@octave_udpport/fprintf
	@octave_udpport/fread
	@octave_udpport/fwrite
	@octave_udpport/get
	@octave_udpport/read
	@octave_udpport/set
	@octave_udpport/write
	udpport

	USBTMC
	@octave_usbtmc/fclose
	@octave_usbtmc/fopen
	@octave_usbtmc/fread
	@octave_usbtmc/fwrite
	usbtmc
	usbtmc_close
	usbtmc_read
	usbtmc_write

	VXI11
	@octave_vxi11/fclose
	@octave_vxi11/fopen
	@octave_vxi11/fread
	@octave_vxi11/fwrite
	vxi11
	vxi11_close
	vxi11_read
	vxi11_write

	A GNU General Public License
	Index

